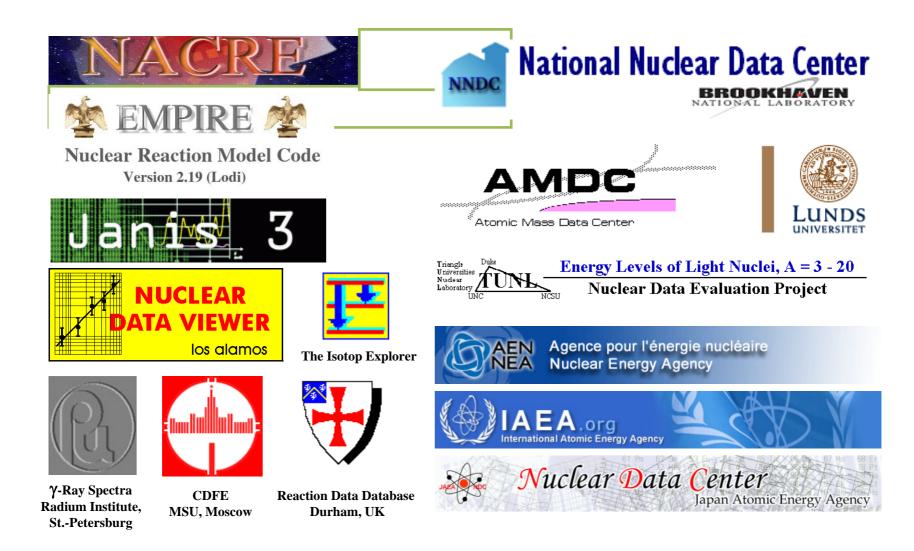


Web knowledge base on low-energy nuclear physics

Alexander Karpov, JINR, Dubna

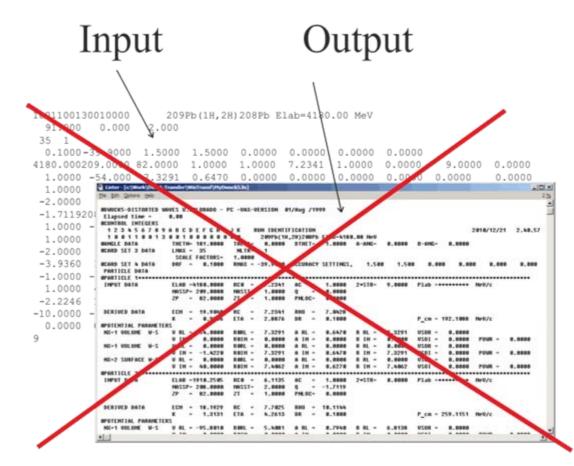

- What is "Knowledge base"
- Fusion-Fission-Evaporation analysis

JINR-SAR cooperation JINR-ARE cooperation

NUCLEUS-2015, Peterhof, 03.06.15

Nuclear Data Resources in the Internet

Nuclear Data Resources in the Internet


- NNDC <u>http://www.nndc.bnl.gov/index.jsp</u>
- CDFE <u>http://cdfe.sinp.msu.ru/index.en.html</u>
- The Isotopes Project (LBNL) <u>http://ie.lbl.gov/</u>
- TUNL <u>http://www.tunl.duke.edu/nucldata/</u>
- NN-Online <u>http://nn-online.org/</u>
- NEA Data bank <u>http://www.oecd-nea.org/dbprog/</u>
- NACRE <u>http://pntpm.ulb.ac.be/Nacre/</u>
- NDC JAEA <u>http://wwwndc.jaea.go.jp/</u>

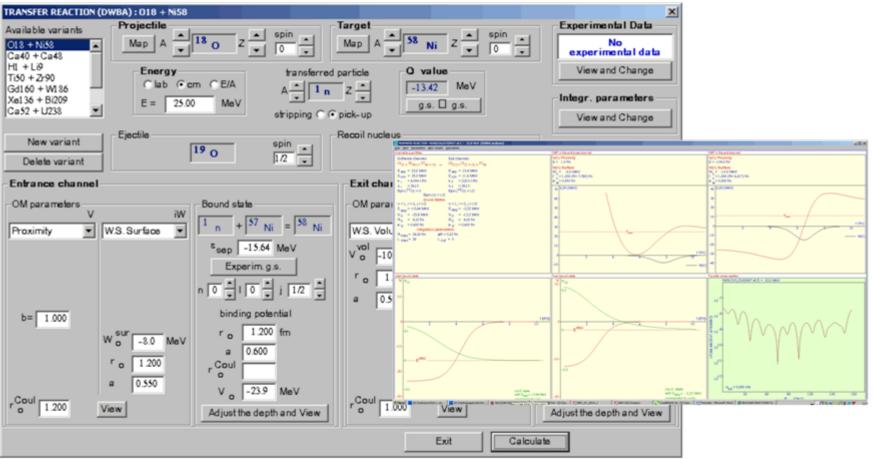
Computer Codes for Nuclear Data

- **TALYS** software for the simulation of nuclear reactions <u>http://www.talys.eu/</u>
- **EMPIRE** modular system of nuclear reaction codes for advanced modeling of nuclear reactions using various theoretical models <u>http://www.nndc.bnl.gov/empire219/</u>
- NEA Data Bank Computer Program Services http://www.oecd-nea.org/dbprog/
- LISE++ a tool for calculating the transmission and yields of fragments produced and collected in a spectrometer (more details in the next talk) <u>http://lise.nscl.msu.edu/lise.html</u>
- FRESCO, CCFULL, GRAZING, EPAX, DWUCK, PACE, and many others

What is Web Knowledge base?

Typical situation with scientific codes

- meaning of parameters?
- preparation of inputs?
- processing of outputs?
- no graphics
- OS dependent
- difficult to update

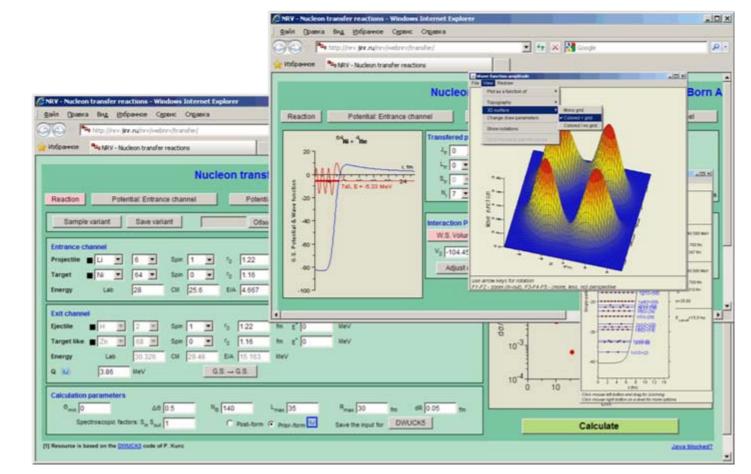

Solution: Interactive interface for codes with Graphics

What is Web Knowledge base?

First, it was done for Windows!

(25 years ago by V. Zagrebaev and A. Kozhin)

But, what about Linux, MacOS, Android, etc.?.. Does not work!



Solution: Do the same working in Internet Browsers

The Web Knowledge base is unique interactive research system:

- 1. Allowing to run complicated computational codes
- 2. Working in any Internet browser
- 3. Having graphical interface of preparation inputs and analysis of outputs

Done!

For the first time it becomes possible to study complicated nuclear dynamics just in the Internet!

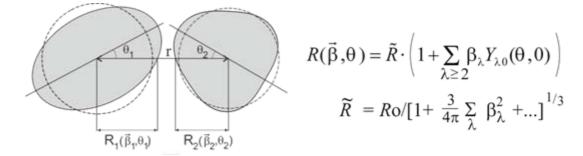
http://nrv.jinr.ru

Have an Internet browser? May try!

NRV. Main menu

Supported by Russian Foundation for Basic Research	Nuclean Low Energ	y Nudeor I	ÎONS V Knowledge	ideo Bose
Nuclear Properties	Nuclear Models	Nuclear Decays	Nuclear Reactions	
Nuclear Map	Shell Model	Alpha - decay	Elastic scattering Classical Semiclassical Optical Model Phase analysis	Experimental Data d σ/d Ω
Check your Browser Settings Java applets blocked?	Liquid Drop Model	Beta - decay	Inclastic Scattering Coulomb exvitation Direct process (DWBA) Channel coupling Deep inelastic collision	
Warning! NRV extensively uses Java. Your browser must support Java Virtual Machine	Two-Center Shell Model	Fission	Transfer reactions: Direct process (DWBA) Semicalssical approach (GRAZI 3-body classical model Two-nucleon transfer Massive transfer	NG code)
		Decay of excited nuclei	Fragmentation EPAX v.3 Break-up (DWBA) Semiclassical model	LISE **
All resources of the NRV Knowledg We, nevertheless, need a support of for further development of it. New n	our project by official establishment nodels of nuclear dynamics and muc		Fusion Empirical model Channel Coupling Langevin equations	Experimental Data O _{f US} (E)
more experimental data on nuclear i If you get useful results, please , que	ote the NRV in your papers and talk		Driving potentials	
In a case of elastic scattering, for ex V.I. Zagrebaev et al., OM code of N			Synthesis of SHE (movie) Evaporation residues Monte-Carlo	Experimental Data O _{XN} (E)
			Radiative capture Potential model	Experimental Data MACRE NACRE-II
			Pre-equilibrium LP fo 4-body classical model Semiclassical model Moving sources	rmation
	Kinematics: 2-body // 3-body // Q-values Detector loading			

Databases: Nuclear Map


🖉 NR V - N		<u> </u>																		
	Правка — 🏊				урвис С nrv/map/	правка							.		2					P
🍚 🕑 👉 Избран			- Nuclear I		nii vymapy			1	1						•]]					
	format	Z-A for	mat		stable	<mark>α-decay</mark> ‴Na	β ¹ -decay	β ⁺ -dec	ay (EC) ≄‴Na	Spontane	eous fissi	on Isom			lecay n-(decay <mark>t-o</mark> ≏'Na	decay <mark>2</mark> p	o-decay Na	2n-decay	Unknown -
Z Click on : 1000	a map to c	hoose a re	gion		-	nu	114													
	<u></u>	and the second second	-		¹⁵ Ne	¹⁸ Ne	¹⁷ Ne	¹⁸ Ne	¹⁹ Ne	²⁰ Ne	²¹ Ne	²² Ne	²³ Ne	²⁴ Ne	²⁵ Ne	²⁶ Ne	²⁷ Ne	²⁸ Ne	²⁹ Ne	³⁰ Ne
S	HE IS				¹⁴ F	15 _F	16 _F	17 _F	18 _F	19 _F	20 _F	21 _F	22 _F	23 _F	24 _F	25 _F	28 _F	27 _F	28 _F	29 _F
	50	100	150 1	¹² 0	¹³ 0	¹⁴ 0	¹⁵ 0	¹⁸ 0	¹⁷ 0	¹⁸ 0	¹⁹ 0	²⁰ 0	²¹ 0	²² 0	²³ 0	²⁴ 0	²⁵ 0	²⁸ 0	27 ₀	²⁸ 0
z	A	Fin	d & show	11 _N	12 _N	¹³ N	¹⁴ N	¹⁵ N	16 _N	17 _N	18 _N	19 _N	20 _N	21 _N	22 _N	23 _N	24 _N	25 _N		
		⁸ C	эс	¹⁰ C	¹¹ C	¹² C	¹³ C	¹⁴ C	¹⁵ C	¹⁶ C	17 _C	¹⁸ C	¹⁹ C	²⁰ C	²¹ C	22 _C				
		7 _B	8 ₈	⁹ В	10 _B	11 _B	12 _B	13 _B	¹⁴ B	15 _B	¹⁶ B	17 _B	¹⁸ B	19 ₈						
	⁵ Be	⁶ Be	⁷ Be	⁸ Be	9 _{Be}	¹⁰ Be	¹¹ Be	¹² Be	¹³ Be	¹⁴ Be										
	⁴ Li	⁵ Li	⁶ Li	7 _{Li}	⁸ Li	9 _{Li}	¹⁰ Li	11Li	12 _{Li}											
	³ He	⁴ He	⁵ He	⁶ He	7 _{He}	⁸ He	9 _{He}	¹⁰ He						-	tematics Separatio		of n	• 1	- A	
						6	He ₄ (H	elium, Z	=2)					0	Binding e Half life					
¹ H	² H	³ Н	⁴ H	⁵ H	E, keV			т _{1/2}	deo	ay mode	e				Halt lite Energy le	vels: Sp	in 📃	•	•	
	1 _n				0	0.	+ 80	6.70 ms	β	100%					Charge r.					
															Deformat Fission B					
															isotopes				Show	
•																				Þ

Nuclear Models: Fusion-fission-surviving

×

Supported by Russian Foundation for Basic Research	low Energ	y React Nudeor I	ions Vi nowledge	idet Bose		
Nuclear Properties	Nuclear Models	Nuclear Decays	Nuclear Reactions			
Nuclear Map	Shell Model	Alpha – decay	Elastic scattering Classical Semiclassical Optical Model Phase analysis	Experimental Data d σ/d Ω		
Check your Browser Settings Java applets blocked?	Liquid Drop Model	Beta - decay	Inelastic Scattering Coulomb excitation Direct process (DWBA) Channel coupling Deep inelastic collision			
Warning! NRV extensively uses Java. Your browser must Java support Java Virtual Machine	Two-Center Shell Model	Fission	Transfer reactions: Direct process (DWBA) Semicalssical approach (GRAZII 3-body classical model Two-nucleon transfer Massive transfer	Direct process (DWBA) Semicalssical approach (GRAZING code) 3-body classical model Two-nucleon transfer		
		Decay of excited nuclei	Fragmentation EPAX 4.3 Break-up (DWBA) Semiclassical model	LISE		
All resources of the NRV Knowledge We, nevertheless, need a support of o for further development of it. New m	ur project by official establishment odels of nuclear dynamics and muc		Fusion Empirical model Channel Coupling Langevin equations	Experimental Data O _{f US} (E)		
more experimental data on nuclear re If you get useful results, please, quot In a case of elastic scattering, for exam	Driving potentials Synthesis of SHE (movie)					
V.I. Zagrebaev et al., OM code of NR	V, http://nrv.jinr.ru/nrv/, and so (Evaporation residues Monte-Carlo	Experimental Data O _{XN} (E)		
			Radiative capture Potential model	Experimental Data MACRE NACRE-II		
			Pre-equilibrium LP fo 4-body classical model Semiclassical model	rmation		

Fusion: Quantum channel-coupling model

$$V_{12}(r;\vec{\beta}_{1},\theta_{1},\vec{\beta}_{2},\theta_{2}) = V_{C}(r;\vec{\beta}_{1},\theta_{1},\vec{\beta}_{2},\theta_{2}) + V_{N}(r;\vec{\beta}_{1},\theta_{1},\vec{\beta}_{2},\theta_{2}) + \frac{1}{2}\sum_{i=1}^{2}\sum_{\lambda}C_{i\lambda}\cdot\beta_{i\lambda}^{2}$$

$$H = -\frac{\hbar^{2}\nabla_{r}^{2}}{2\mu} + V_{C}(r;\vec{\beta}_{1},\theta_{1},\vec{\beta}_{2},\theta_{2}) + V_{N}(r;\vec{\beta}_{1},\theta_{1},\vec{\beta}_{2},\theta_{2}) + \sum_{i=1,2}\frac{\hbar^{2}\hat{I}_{i}^{2}}{2J_{i}} + \sum_{i=1,2}\sum_{\lambda\geq 2}\left(-\frac{1}{2d_{i\lambda}}\frac{\partial^{2}}{\partial s_{i\lambda}^{2}} + \frac{1}{2}c_{i\lambda}s_{i\lambda}^{2}\right)$$

$$H\Psi = E\Psi$$

$$H_{int}\phi_{v}(\vec{\alpha}) = \varepsilon_{v}\phi_{v}(\vec{\alpha})$$

$$H_{k}(r,\vartheta,\vec{\alpha}) = \frac{1}{kr}\sum_{l=0}^{\infty}i^{l}e^{i\sigma_{l}}(2l+1)\chi_{l}(r,\vec{\alpha})P_{l}(\cos\vartheta), \qquad \chi_{l}(r,\vec{\alpha}) = \sum_{v}y_{l,v}(r)\cdot\phi_{v}(\vec{\alpha})$$

$$y_{l,\nu}^{"} - \frac{l(l+1)}{r^2} + \frac{2\mu}{\hbar^2} \Big[E - \varepsilon_{\nu} - V_{\nu\nu}(r) \Big] y_{l,\nu} - \sum_{\mu \neq \nu} \frac{2\mu}{\hbar^2} V_{\nu\mu}(r) y_{l,\mu} = 0$$

1/2

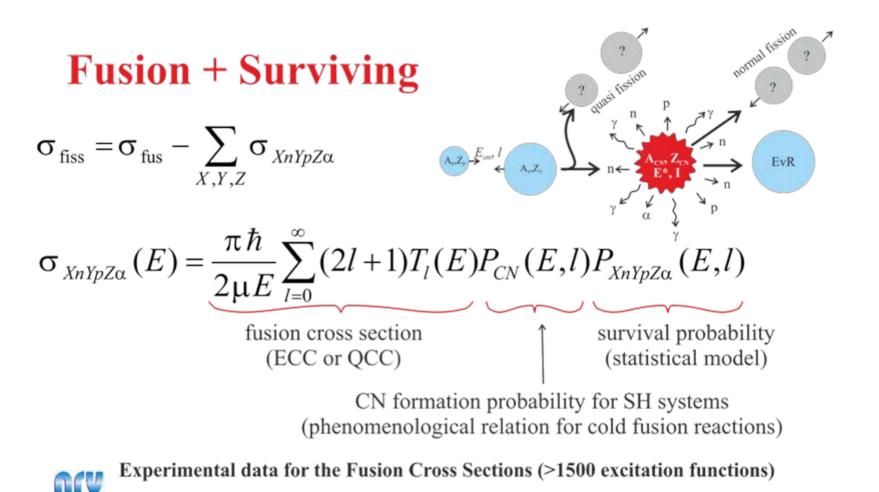
boundary conditions

$$y_{l,v}(r \to \infty) = \frac{i}{2} \left[h_l^{(-)}(\eta_v, k_v r) \cdot \delta_{v0} - \left(\frac{k_0}{k_v}\right)^{1/2} S_{v0}^l \cdot h_l^{(+)}(\eta_v, k_v r) \right]$$

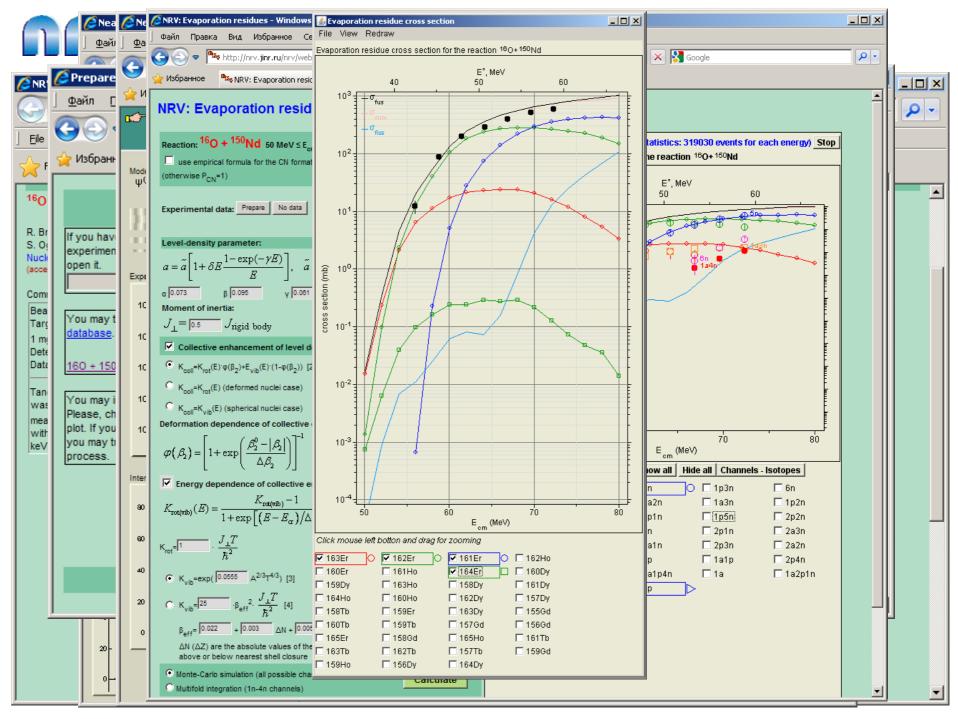
$$y_{l,v}^{\prime}(r < R_{\text{fus}}) \sim -ik_{l,v} y_{l,v}(r)$$

flux in channel v

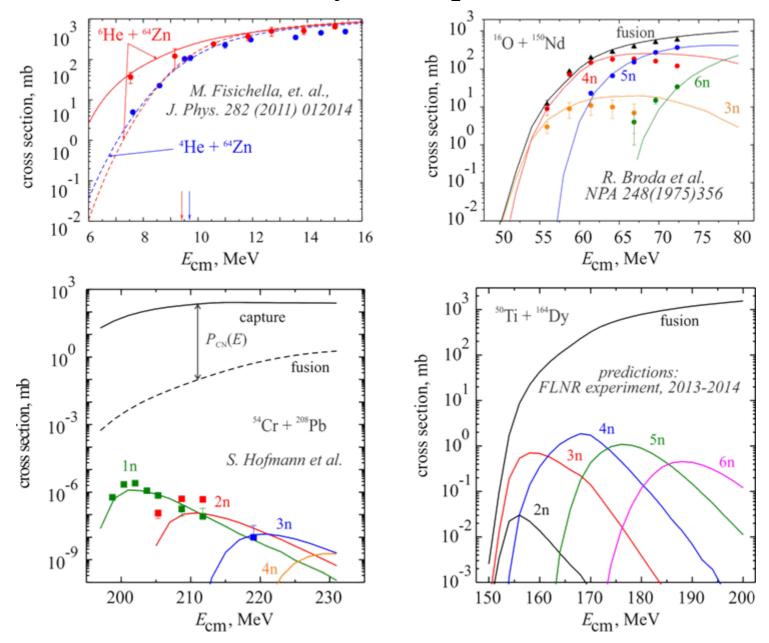
$$j_{l,v} = -i\frac{\hbar}{2\mu} (y_{l,v} \frac{dy_{l,v}^*}{dr} - y_{l,v}^* \frac{dy_{l,v}}{dr}) \Big|_{r \le R_{\text{fus}}} \qquad T_l(E) = \sum_{v} \frac{j_{l,v}}{j_{v}} j_0$$


$$\sigma_{\text{fus}}(E) = \frac{\pi}{k_0^2} \sum_{l=0}^{\infty} (2l+1) \cdot T_l(E)$$

CCFULL code (Hagino, Rowley, Kruppa) NRV-codes: Fusion-CC (Samarin, Zagrebaev)


Decay of excited nuclei (Statistical model)

$$\underbrace{ \text{Level Density}}_{\substack{\rho(Z,A,U,I) = \rho_{\text{int}}(Z,A,U,I) + K_{\text{coll}}(Z,A,U)}}_{\substack{\rho_{\text{int}}(Z,A,U,I) = \frac{(2I+1)\sqrt{a}}{24\left(U-\Delta-\frac{\hbar^{2}I(I+1)}{2J_{\perp}}\right)^{2}} \left(\frac{\hbar^{2}}{J_{\perp}}\right)^{3/2}} \exp\left[2\sqrt{a\left(U-\Delta-\frac{\hbar^{2}I(I+1)}{2J_{\perp}}\right)}\right] \quad a = \tilde{a}\left[1+\delta U\frac{1-\exp(-\gamma_{D}U)}{U}\right] \\ \underbrace{\text{v Decay Widths}}_{\substack{I = e^{*} - \Delta}} \\ \Gamma_{A \to B+a}(E^{*},I) = \frac{1}{2\pi\rho_{A}(E^{*},I)} \int_{0}^{E^{*} - B_{a}} \sum_{\substack{I = I = I \\ I = I}} T_{Ij}(e_{a}) \int_{\substack{I = I = I \\ I' = I = I}}^{I' = I = I} \rho_{B}(E^{*} - B_{a} - e_{a}, I') de_{a} \quad (a = n, p, \alpha) \\ \Gamma_{T}^{L}(E^{*},I) = \frac{1}{2\pi\rho_{A}(E^{*},I)} \int_{0}^{E^{*}} \int_{I' = I = I}^{I' = I} \rho_{A}(E^{*} - e_{\gamma},I') de_{\gamma} \\ \Gamma_{fiss}(E^{*},I) = \frac{K_{\text{Kramers}}(\text{friction})}{2\pi\rho_{A}(E^{*},I)} \int_{0}^{E^{*}} T_{fiss}(e)\rho_{A}^{\text{saddle}(E^{*} - e_{\gamma},I') de_{\gamma} \\ \mathcal{V} \text{Monte Carlo method} \\ P_{x} = \frac{\Gamma_{x}}{\Gamma_{tot}} P_{f} = \frac{\Gamma_{f}}{\Gamma_{tot}} \Gamma_{tot} = \sum_{i=n, p, k, \gamma, f} \Gamma_{i} \quad E^{*}(n) = E^{*}(n-1) - B_{x} - E_{particle} \quad E^{*} > \min(B_{a},B_{f}) \\ \mathcal{V} \text{Multifold integration} \\ \frac{e^{K_{a} - B_{a}(x)}}{method} P_{xn} = \frac{E_{0}^{*} - B_{a}(x)}{0} \frac{\Gamma_{n}}{\Gamma_{tot}} (E^{*}_{a}, I_{a}) \cdot W_{n}(E^{*}_{a}, e_{x}) \cdot \prod_{i=1}^{N} \frac{\Gamma_{\gamma}}{\Gamma_{tot}}} (E^{*}_{i}, I_{i}) de_{x} \\ \frac{e^{K_{a} - B_{a}(x)}}{\Gamma_{tot}} \frac{\Gamma_{a}}{\Gamma_{tot}}} \left(\frac{E^{*}_{a} - B_{a}(x)}{\Gamma_{tot}} - \frac{\Gamma_{a}}{\Gamma_{tot}} (E^{*}_{a}, I_{a}) \cdot W_{n}(E^{*}_{a}, e_{x}) \cdot \prod_{i=1}^{N} \frac{\Gamma_{\gamma}}{\Gamma_{tot}} (E^{*}_{i}, I_{i}) de_{x} \\ \frac{e^{K_{a} - B_{a}(x)}}{\Gamma_{tot}} \frac{\Gamma_{a}}{\Gamma_{tot}}} \left(\frac{E^{*}_{a} - I_{a}}{\Gamma_{tot}} - \frac{E^{*}_{a} - B_{a}(x)}{\Gamma_{tot}} \right) \cdot \frac{E^{*}_{a} - B_{a}(x)}{\Gamma_{tot}} \left(\frac{E^{*}_{a} - B_{a}(x)}{\Gamma_{tot}} - \frac{E^{*}_{a} - B_{a}(x)}{\Gamma_{tot}}} \right) \cdot \frac{E^{*}_{a} - E^{*}_{a} - E^{*}_{a}(E^{*}_{a}, I_{a}) \cdot \frac{E^{*}_{a} - E^{*}_{a}} - \frac{E^{*}_{a} - E^{*}_{a}(E^{*}_{a}, I_{a})}{\Gamma_{tot}} \left(\frac{E^{*}_{a} - E^{*}_{a}(E^{*}_{a}, I_{a}) \cdot \frac{E^{*}_{a}}{\Gamma_{tot}} - \frac{E^{*}_{a} - E^{*}_{a}}{\Gamma_{tot}} - \frac{E^{*}_{a} - E^{*}_{a}} - \frac{E^{*}$$



Experimental data for the Evaporation Residue Cross Sections (~750 excitation functions)

Tool for analysis and prediction

PRESENT possibilities of fusion-evaporation codes

a) Statistical code alone

Level densities (energy dependence)
Decay widths (neutron, proton, alpha, gamma, fission)
Survival probabilities (Monte-Carlo and Multifold integration)

b) Fusion codes alone

Fusion cross section
Barrier distribution
Partial fusion cross section

c) Combination of Fusion and Decay codes

•Fission cross section

•Total survival cross section

- •Evaporation cross sections for any possible channel
- •Isotopic evaporation cross sections

•Account for CN formation probability (for cold fusion)

•Fission-fragment mass-charge distributions

SOON-COMING (1-2 years) possibilities of fusion-evaporation codes

Combination of Fusion and Decay codes

•Account for fission transient effects (fission delay time)

•Average multiplicities of pre- (from CN) and post- (from fragments) scission evaporated particles

•Energy spectra of evaporated particles (survived events, before and after scission of fissioning nuclei)

Statistics of use of the Knowledge base

http://nrv.jinr.ru

Year	Nuclear data Nr. of searches	Computational codes Nr. of runs			
2011	17 000	20 000			
2012	36 000	21 000			
2013	197 000	32 000			
2014	199 000 per year ~540 per day	36 000 per year ~100 per day			
2014	1 every 160 sec!	1 every 15 min!			

The most intensively using countries except Russia (according to feedbacks and journal citations):

USA, Germany, France, China, India, Italy, Poland

Prof. V. Zagrebaev Head of the project

Dr. A. Karpov

Unique research instrument in Internet Everyone, Everywhere, Free

The Team

Dr. A. Denikin

A. Alekseev Web programmer

V. Rachkov

Prof. V. Samarin

M. Naumenko

Students...

NRV WEB KNOWLEDGE BASE ON LOW ENERGY NUCLEAR PHYSICS

Karpov A.V.¹, Denikin A.S.^{1,2}, Alekseev A.P.³, Samarin V.V.¹, Naumenko M.A.¹, Rachkov V.A.¹ ¹ Flerov Laboratory of Nuclear Reactions, JINR, Dubna, Russia; ² International University "Dubna", Dubna, Russia; ³ Chuvash State University, Cheboksary, Russia E-mail: karpov@jinr.ru

The NRV web knowledge base on low-energy nuclear physics [1] was developed at FLNR, JINR to allow quick access to the up-to-date experimental data on nuclear structure and cross sections of nuclear reactions as well as analysis of the data and modeling of the processes of nuclear dynamics within well-established physical approaches.

There are several unique advantages of the NRV web knowledge base compared to other nuclear databases.

As a rule, the nuclear databases supply users with ordinary text information. Thus, to obtain even the simplest systematics the user must manually prepare a separate file with all the necessary data and then use a separate graphical package to plot it. The NRV web knowledge base contains special programs for graphic representation of the data, their comparative analysis and obtaining systematics of all kinds either over a group of nuclei or the whole nuclear map.

Our databases on experimental cross sections of nuclear reactions allow quick processing, easy graphical comparison and analysis of the data within different theoretical models. All this is performed just in a window of the web browser without downloading and installation of any additional computational or graphical software. The computational programs for modeling low-energy nuclear dynamics are the significant part of the NRV web knowledge base.

Other advantages include simplicity of use, the interactive graphical interface allowing to adjust the parameters of theoretical models, detailed descriptions, graphical representation of the results, easy access via the Internet, etc.

The NRV web knowledge base contains most of the available experimental data on properties of nuclei as well as data on the cross sections of different nuclear reactions including fusion, evaporation and elastic scattering.

The available codes include the nuclear map, the shell model, the optical model, the CC model, the DWBA approach, reaction kinematics, etc.

The NRV web knowledge base is now widely used not only for scientific purposes, but also as a valuable tool in the education process in the field of nuclear physics [2].

This work was supported by grant 15-07-07673-a of the Russian Foundation for Basic Research (RFBR).

1. NRV web knowledge base on low-energy nuclear physics. http://nrv.jinr.ru/

2. A.S.Denikin et al. // Proc. of Conf. "Scientific services in Internet". 2008. P.393.