Provide IT services necessary for the fulfillment of the JINR Topical Plan on Research and International Cooperation in an efficient and effective manner

Building world-class competence in IT and computational physics

24/7 support of computing infrastructure and services such availability is called nonstop service

IT-infrastructure is one of the JINR basic facilities
JINR Local Area Network
Comprises 7955 computers & nodes
Users – 4099, IP – 12568
Remote VPN users – 864
E-library - 1435, mail.jinr.ru-2000
High-speed transport (10 Gb/s)

Controlled-access at network entrance.
General network authorization system involves basic services (Kerberos, AFS, batch systems, JINR LAN remote access, etc.)
IPDB database - registration and the authorization of the network elements and users, visualization of statistics of the network traffic flow, etc.
Access Service to Electronic Resources of World Publishers

Total e-library users: 1375

Local users

Electronic Resources of Elsevier, IOP, Springer, AIP, APS, AMS, Wiley

Remote JINR users from Member States:
- Republic of Azerbaijan - 24
- Slovak Republic - 39
- Republic of Moldova - 6 (+3)
- Romania - 37, Bulgaria - 1 (+8), Georgia - 1 (+7)
LHC Computing Model

Tier-0 (CERN):
- Data recording
- Initial data reconstruction
- Data distribution

Tier-1 (14 centres):
- Permanent storage
- Re-processing
- Analysis
- Simulation

Tier-2 (>200 centres):
- Simulation
- End-user analysis
Combined (sum of experiments)

Starting from 2014 pledges
<table>
<thead>
<tr>
<th>Country</th>
<th>Normalized CPU time (kS$\text{sec})</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Country</td>
<td>29,663,288,664</td>
</tr>
<tr>
<td>Russia</td>
<td>1,162,595,524</td>
</tr>
<tr>
<td>Job</td>
<td>920,138,350</td>
</tr>
<tr>
<td>Job</td>
<td>30,034,918</td>
</tr>
</tbody>
</table>

Country Normalized CPU time 2014-2015

COUNTRY Normalized CPU time (kSsec) per COUNTRY

- Canada
- Czech Republic
- France
- Germany
- Italy
- Netherlands
- Russia
- South Korea
- Switzerland
- Sweden
- Spain
- United Kingdom
- United States of America
- Others
Creation of CMS Tier1 in JINR

- Engineering infrastructure (a system of uninterrupted power supply, climate control);
- High-speed reliable network infrastructure with a dedicated reserved data link to CERN (LHCOPN);
- Computing system and storage system on the basis of disk arrays and tape libraries of high capacity;
- 100% reliability and availability.
Tier-1 Components

March 2015
• LHCOPN
• 2400 cores (~ 30 kHS06)
• 5 PB tapes (IBM TS3500)
• 2,4 PB disk
• Close-coupled, chilled water cooling InRow
• Hot and cold air containment system
• MGE Galaxy 7000 – 2x300 kW
energy efficient solutions 3Ph
power protection with high
adaptability
Inauguration of Tier1 CMS center in LIT JINR
March 2015
2400 cores (~ 30 kHS06)
5 PB tapes (IBM TS3500)
2,4 PB disk

Every year addition of:
11,5 kHS06
1,6 PB tapes
0,9 PB disk
Network monitoring information system - more than 623 network nodes are in round-the-clock monitoring.
HybriLIT heterogeneous computing cluster: current state

- **Computing resources:**
 - **CPU** Intel Xeon E5-2695v2: 168 cores
 - **GPU** K40 & K20: 37248 cores
 - **Intel Xeon Phi** 7120P&5110P: 182 cores
 - RAM: 896 Gb
 - Disk storage: 57 Tbyte
 - Ethernet
 - InfiniBand: 40 Gb/s
- **Peak performance** for floating point computations
 - Single precision: 77 TFLOPS
 - Double precision: 29 TFLOPS
- Power consumption: 7 kW

Operating system: Scientific Linux 6.5

File systems: EOS and NFS

Batch system: SLURM
Parallel computing on HybriLIT

Parallel computing for QCD problems:

F. Burger (IP, HU, Berlin, Germany),
M. Müller-Preussker (IP HU, Berlin, Germany),
E.-M. Ilgenfritz (BLTP& VBLHEP, JINR),
A. M. Trunin (BLTP JINR)

Parallel computing for investigation of Bose-systems:

Alexej I. Streltsov (“Many-Body Theory of Bosons” group at CQD, Heidelberg University, Germany),
Oksana I. Streltsova (LIT JINR)

Parallel computing for Technical problems:

A. Ayriyan (LIT JINR), J. Busa Jr. (Tu of Kősice, Slovakia),
E.E. Donets (VBLHEP, JINR),
H. Grigorian (LIT JINR; Yerevan State University, Armenia),
J. Pribis (LIT JINR; Tu of Kősice, Slovakia)
Training courses on HybriLIT

Parallel programming technologies on hybrid architectures

7 – 17 July, 2014
Participants From Mongolia, Romania, Russia

27 August, 2014
Participants from CIS and Russian institutes and companies

1 and 5 September, 2014
Participants from India, Germany, Japan, Ireland, Austria, Ukraine, Russia

International Conference for Young Scientists
"MODERN PROBLEMS OF APPLIED MATHEMATICS & COMPUTER SCIENCE"

MPAMCS 2014
August 25 - 29 2014, Dubna, Russia

Dubna International Advanced School of Theoretical Physics
Helmholtz International Summer School
Lattice QCD, Hadron Structure and Hadronic Matter

More 100 students and young scientists from Germany, India, Mongolia, Ukraine, Romania, Bulgaria, Moldova, Egypt...
JINR cloud service: current state

Cloud characteristics:
- Number of users: 74
- Number of running VMs: 81
- Number of cores: 122
- Occupied by VMs: 134
- Total RAM capacity: 252 GB
- RAM occupied by VMs: 170 GB

FN — front-end node,
CNs — cloud nodes
Cloud and heterogeneous cluster development

Advanced cloud infrastructures
– Dynamically reconfigurable computing services
– Large-scale open data repository and access services

Advanced heterogeneous computing
– User friendly information-computing environment
– New methods and algorithms for parallel hybrid computations
– Infrastructure for tutorials on parallel programming techniques

Changes:
• high availability for cloud core and web-interfaces as well as DB backend
• storage based on distributed network filesystem (16 TB in total or 8 TB with redundancy=2)
• +80 cores, +160 GB of RAM
• +VMs with private IPs
• connected with external private clouds

Yearly performance increase ~ 60 Tflops
There is a demand in special infrastructure what could become a platform for training, research, development, tests and evaluation of modern technologies in distributed computing and data management. Such infrastructure was set up at LIT integrating the JINR cloud and educational grid infrastructure of the sites located at the following organizations:

- Institute of High-Energy Physics (Protvino, Moscow region),
- Bogolyubov Institute for Theoretical Physics (Kiev, Ukraine),
- National Technical University of Ukraine "Kyiv Polytechnic Institute" (Kiev, Ukraine),
- L.N. Gumilyov Eurasian National University (Astana, Kazakhstan),
- B.Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine (Kharkov, Ukraine),
- Institute of Physics of Azerbaijan National Academy of Sciences (Baku, Azerbaijan)
General Purpose Computing Cluster
Local users (no grid)
Sharing of the resources according to the processing time among the divisions of the Institute and user groups in 2015.

Grid-Infrastructure: JINR-LCG2 Tier2 Site
JINR-CMS Tier1 Site

Cloud Infrastructure

Distribution of cloud resources among the Laboratories and JINR groups in 2015.

Usage of Tier1 centers by the CMS experiment (last month)
Development of management system for NICA project

Current status:
- Financial planning and cost control – in production;
- Distributed collection of earned value data – in production;
- Installation of CERN’s EVM system at JINR and system integration – finished, in production;
- Development of subsystem for versioning of plans – in progress.

Solution of tasks on processing, storage and security of petabyte data volume of experiments on NICA complex

Aim: get optimal configuration of processors, tape drives, and changers for data processing

Job & data flow scheme of T0-T1 NICA-MPD

Under study structure composition:
- Tape robot,
- Disk array,
- CPU Cluster.
LIT JINR - China collaboration

LIT team is a key developer of the BES-III distributed computing system

A prototype of BES-III Grid has been built (9 sites including IHEP, CAS, and JINR). Main developments have been done at IHEP and JINR. The Grid is based on DIRAC interware.

Monitoring
- BES-III grid monitoring system is operational since February 2014.
- Implementation of the new monitoring system based on DIRAC RSS service are in progress

Job management
- Advising on the CE's installation and management
- BES-III jobs can be submitted on JINR cloud service now

Data management
- Installation package for Storage Element was adopted for BES-III Grid
- Solution on dCache-Lustre integration was provided for main data storage in IHEP
- Research on the alternative DB and data management service optimization is in progress

Infrastructure
- Creation of the back-up DIRAC services for BES-III grid at JINR is in progress
The primary goal of the WLCG project is to create a global infrastructure of regional centers for processing, storage and analysis of data of the LHC physical experiments.

The grid-technologies are a basis for constructing this infrastructure.

A protocol between CERN, Russia and JINR on participation in the LCG project was signed in 2003. MoU about participation in the WLCG project was signed in 2007.

Tasks of the Russian centers and JINR within WLCG:

- Creation of a complex of tests for WLCG software
- Introduction of WLCG services for experiments
- Development of WLCG monitoring systems
- Development of simulation packages for experiments
- Creation of a Tier1 center in Russia
JINR activity at WLCG project

• Participation in development of software for ATLAS, ALICE, CMS
• Development WLCG Dashboard
• Global data transfer monitoring system for WLCG infrastructure
• NOSQL storage
• Integration GRID, Cloud, HPC
• Local and global Monitoring of Tier3 centers
• Development of DDM, AGIS for ATLAS
• GENSER & MCDB
WLCG Google Earth Dashboard
Entering into the era of Big Data

A comparative diagram of processed data evidently shows that the studies underway at CERN are performed under Big Data conditions. After LHC modernization and start-up in 2015, the data stream will increase 2.5 times thus demanding increase in the resources and optimization of their use.
Evolving PanDA for Advanced Scientific Computing

ATLAS (BNL, UTA), OLCF, ALICE (CERN, LBNL, UTK), LIT JINR:

- adapt PanDA for OLCF (Titan)
- reuse existing PanDA components and workflow as much as possible.
- PanDA connection layer runs on front-end nodes in user space. There is a predefined host to communicate with CERN from OLCF, connections are initiated from the front-end nodes
- SAGA (a Simple API for Grid Applications) framework as a local batch interface.
- Pilot (payload submission) is running on HPC interactive node and communicating with local batch scheduler to manage jobs on Titan.
- Outputs are transferred to BNL T1 or to local storage
Creation of a **unified information environment** integrating a number of various technological solutions, concepts, techniques, and software in order to offer **optimal approaches** for solving various types of **scientific and applied** tasks on a global level of the development of advanced information and computation technologies.

Unified environment
- Grid
- Supercomputer (heterogeneous)
- Cloud
- Local computing cluster
-

Requirements:
- scalability
- interoperability
- adaptability to new technical solutions.
- operates 12 months a year in a 24x7 mode
CICC to MICC

Build up the Multifunctional Information and Computing Complex (MICC)

- fault-tolerant infrastructure with electrical power storage and distribution facilities with expected availability of 99.995%,
- supports and uses a large variety of architectures, platforms, operational systems, network protocols and software products
- provides means for organization of collective development
- supports solution of problems of various complexity and subject matter
- enables management and processing of data of very large volumes and structures (Big Data)
- provides means to organize scientific research processes
- enables training IT infrastructure users
Multifunctional Information & Computing Complex

- Engineering infrastructure
- Local network infrastructure and telecommunication data links
- Tier 1 level grid system of data processing of the CMS experiment on the Large Hadron Collider (LHC), including that as a prototype of the system of data storage and processing of the NICA experiments in a role of the center of Tier 0 and Tier 1 levels
- Tier 2 level grid system to support LHC experiments (ATLAS, ALICE, CMS, LHCb), FAIR (PANDA) and other large-scale experiments and projects within the global grid infrastructure
- High-performance computing system (including parallel computations) beyond the range of heterogeneous and grid systems
- Heterogeneous computer complex for high-efficiency calculations
- Cloud environment
Parallel software will be the mainstream:
• development and support of the program libraries of general and special purpose;
• creation and support of program libraries and software complexes realized on the parallel programming technologies CUDA, OpenCL, MPI+CUDA, etc.;
• support and development of a specialized service-oriented environment for modeling experimental installations and processes and experimental data processing;
• tools and methods for software development:
 – flexible, platform-independent simulation tools
 – self-adaptive (data-driven) simulation development software
Modern parallelization involves multiplicative effects coming from:
1) Vectorization (SIMD - Single Instruction Multiple Data) factor 2 to 4;
2) Multithreading – factor 4/3; 3) ν-Many core processor – factor ν. Total $\approx 4\nu$

Tasks:
- global track reconstruction;
- event reconstruction in RICH;
- electron identification in TRD;
- clustering in MVD, STS and MUCH;
- participation in FLES (First Level Event Selection);
- development of the Concept of CBM Databases;
- magnetic field calculations;
- beam time data analysis of the RICH and TRD prototypes;
- contribution to the CBMROOT development;
- D0-, vector mesons, $J/\psi\rightarrow e^+e^-$ and $J/\psi\rightarrow \mu^+\mu^-$ reconstruction;

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>pC@30GeV</td>
<td>14</td>
<td>22</td>
<td>11</td>
</tr>
<tr>
<td>pAu@30GeV</td>
<td>18</td>
<td>22</td>
<td>27</td>
</tr>
<tr>
<td>AuAu@10AGeV</td>
<td>0.18</td>
<td>18</td>
<td>64</td>
</tr>
<tr>
<td>AuAu@25AGeV</td>
<td>7.5</td>
<td>13.5</td>
<td>5250</td>
</tr>
</tbody>
</table>

Modern parallelization involves multiplicative effects coming from:

<table>
<thead>
<tr>
<th>STS: CA</th>
<th>STS: Kalman Filter</th>
<th>RICH: ring reconstruct.</th>
<th>TRD: track reconstruct.</th>
<th>TRD: el. id. criterion</th>
<th>KFPar - ticle</th>
</tr>
</thead>
<tbody>
<tr>
<td>164.5</td>
<td>0.5</td>
<td>49.0</td>
<td>1390</td>
<td>0.5</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Average time per core (μs/track or μs/ring) of SIMD-algorithms (besides track reconstruction in the TRD) for data processing.

Global throughput increases linearly with the number of cores.
The 3D modeling of the magnetic systems

The booster dipole magnet (NICA)

The dipole magnet of SIS100 (FAIR)

The booster quadrupole magnet (NICA)

The quadrupole magnet of SIS100 (FAIR)
HepWeb Overview

http://hepweb.jinr.ru/

Provides: WEB access to computing resources of LIT for Monte Carlo simulations of hadron-hadron, hadron-nucleus, and nucleus-nucleus interactions, by means of most popular generators.

Realization: service-oriented architecture.

Goals:
- Monte Carlo simulations at the server
- Provide physicists with new calculation/simulation tools
- Mirror site of GENSER of the LHC Computing GRID project
- Provide physicists with informational and mathematical support
- Introduce young physicists into HEP world
Tasks solved (2015):
- Improvement of string fragmentation
- Improvements of processes cross sections
- Inclusion of the Reggeon cascading for correct description of nucleus breakups
- Improvement of parton momenta sampling

To do: fine tuning of the model parameters

Improved QGSp will be available in G4.10.2.beta (end June 2015)
It is expected that new QGSp will improve calorimeter responses!

Slow neutron production, ITEP experimental data (1983)
[It is expected this improves shower shape]

\[\pi^+ p \rightarrow \pi^+ X, \ 100 \text{ GeV/c} \]

\[\pi^0 \text{ decay} \]

\[\pi^+ p \rightarrow \pi^+ X, \ 100 \text{ GeV/c} \]
Track visualization in TPC of NICA/MPD
Au + Au at $\sqrt{s} = 7$ GeV

Visualization of freezeout surface
Au + Au at $\sqrt{s} = 7$ GeV

Visualization for Heavy Ion Collision Experiments
G. Musulmanbekov, A. Solovjev (LIT)
Projects in framework Distributed computing

- Worldwide LHC Computing Grid (WLCG)
- EGI-InSPIRE
- RDIG Development
- Project BNL, ANL, UTA “Next Generation Workload Management System for BigData”
- Tier1 Center in Russia (NRC KI, LIT JINR)
- 6 Projects at CERN
- CERN-RFBR project “Global data transfer monitoring system for WLCG infrastructure”
- BMBF grant “Development of the grid-infrastructure and tools to provide joint investigations performed with participation of JINR and German research centers”
- “Development of grid segment for the LHC experiments” with South Africa;
- Development of grid segment at Cairo University and its integration to the JINR GridEdu
- JINR - FZU AS Czech Republic Project “The grid for the physics experiments”
- NASU-RFBR project “Development and implementation of cloud computing technologies on grid-sites at LIT JINR and BITP for ALICE experiment”
- JINR-Romania cooperation Hulubei-Meshcheryakov programme
- JINR-Moldova cooperation (MD-GRID, RENAM)
- JINR-Mongolia cooperation (Mongol-Grid)
- JINR-China cooperation (BES-III)
- Cooperation with Belarus, Slovakia, Poland, Bulgaria, Kazakhstan, Armenia, Georgia, Azerbaijan…
On 28 September – 02 October, 2015, Montenegro (Budva), will host the regular JINR XXV Symposium on Nuclear Electronics and Computing - NEC'2015 and students’ schools on advanced information technologies

http://NEC2015.jinr.ru
Thank you for your attention!
DISTRIBUTED COMPUTING AND BIG DATA AT JINR

Korenkov V.V.
Laboratory of Information Technologies, JINR, Dubna, Russia
E-mail: korenkov@cv.jinr.ru

The report presents the concept and the evolution of the global computing infrastructure for storage, processing and analysis of experiments at the Large Hadron Collider at CERN. Brief information about the participation of Russia in this process is given. An overview of projects in the field of distributed computing and Big Data, performed at the Laboratory of Information Technologies (LIT JINR) in Russia, CERN, USA, China and JINR member states is presented.

Special attention is paid to the creation of the center of the Tier1 level in Russia for storage and data processing of experiments at the Large Hadron Collider, the development of cloud and hybrid infrastructure, as well as of the computing model of megaproject NICA at JINR. The results and plans for the development of a platform for Big Data management are presented.