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Huge Q-fission value for SHE
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Bimodal symmetric fission



The main dynamical effects in SF

1. Nuclear friction in the fission: 

- overdamped collective motion at the descent from saddle to scission

- particle emission at the descent (Mn
pre-sc, Eelapsed

pre-sc )

2. Charge polarization during the descent from sadlle to scission: charge 

distribution for isobaric chains: Y(Z/A)

3. Competion between different fission modes 

4. Distribution of excitation energy between fragments: Mn(A, Z, E*
scp)

5. Shell structure for very deformed nuclei: shell corrections, fission barriers, 

mass parameters, fission modes, level density



The prompt fission neutron double differential spectrum 
integrated over fragment mass and charge distributions

consist from five summands

•emission at the descent from saddle to scission;

• scission neutrons due to the dynamical processes 

(ternary fission: 5He -> 4He + n  etc);

• post scission emission from moving exited fragments.



Saddle-to-scission descent stage

• saddle-to-scission time is altered by the nuclear dissipation 

( )( ).1)0( 2 γγγττ ++== sdscsdsc

saddle-to-scission time is defined by the dynamics and may be different 
for the different fission modes

Averaged dissipation energy may be approximated by expression

Neutron multiplicity               depends on the ratio   



The post-scission neutron multiplicity and spectra are formed as the result 

of neutron emission from the primary fission fragments which have distributions 

over mass, kinetic energy, excitation energy, and spin. 

In the center-of-mass frame 

of the fissioning compound nucleus the double-differential 

spectra can be presented in the simplified form

Post-scission evaporation

The kinetic and excitation energies and spins of fragments have been calculated 
in the framework of the fission scission point model. 
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The temperature at the scission point is determined from the energy balance 
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At scission point the spin of the compound nucleus is divided between fission 

fragments and the relative motion degree of freedom according to the relation

Kinetic energy of the fragments is a sum of Coulomb interaction energy, 

kinetic energy at scission point, and rotational energy
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Total fragment excitation energy consists from the thermal, deformation 
and rotation  energy at the scission point

Total fission fragment kinetic energy is equal to the sum of the Coulomb 
interaction energy and of the fragment kinetic energy at the scission point

The fragment kinetic energy at the scission point  is supposed to be equal 
approximately 8 - 10 MeV. 

The time of the fragment acceleration up to 95 per cent of TKE  is order of 10-20 c, 
what is much less than the fragment thermalization time and characteristic time of 

neutron emission from fragment at low energy fission. Therefore neutrons 
evaporate practically from the fission fragment moving with full TKE. 

Corresponding corrections can be included in the model.
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Potential energy at the scission point
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• Saddle and bifurcation points and valleys on the potential-energy 

surface of    fissioning nucleus determine the properties of fission modes

Smoothed primary mass distribution is formed by 5 fission modes: 
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Each asymmetric component is influenced by corresponding nuclear shells: 
 
YSI  is defined by 132Sn shells : Z = 50 , N = 82 
 
YSII is defined by deformed shelll :  N = 86 – 90 
 
Superasymmetric YSA1 YSA2  modes are defined 
 
by splitted  78Ni shells : Z = 28 , N = 50                                                   
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• Frozen quantal fluctuatuations in the charge equlibration mode
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Dependences of neutron multiplicities on the saddle-to-scission time. 
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Conclusions

This model may be useful for: 

•fission dynamics studies with neutron probe

•predictions of fission neutron characteristics of SHE

•evaluation of prompt fission neutron data (GEN-IV).

Problems:

• Scission neutrons.

• Fragment excitation energy partition at scission point.

• Dispersion of the excitation energy.

• Fragment spin generation mechanism.

• Nuclear friction. 



Thank you for your attention!


