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Introduction

8 The shell model, which is based on the assumption that nucleons
in the atomic nucleus move independently in single particle orbits
associated with a single particle potential, has been very successful
in explaining many features of nuclei.

® In this talk I will present a novel method, using the single particle
Schrodinger equation for a wave function '{J(r with cigen-energy
E, to determine the central potential V(@) directly from the
measured single particle matter density, p(¥) = [’Ji(?)]z and its

first and second derivatives, assuming known for all 7.

® ] present the results of an application of the method to the
experimental data of the charge distribution of the proton 3s, ,,
orbit given by the charge density difference, 4p c (r), between
charge density distributions of the isotones 2°°Pb — 2°Tl,
determined by analysis of elastic electron scattering
measurements.




Introduction h

8 [ point out that the resulting single particle potential, if found, will
provides a stringent limit on the effects of short correlations on
the expected values of long-range operators, an important test for

the shell model.

® The resulting potential can also be used as an additional
experimental constraint in determining a modern energy density
functional (EDF) for more reliable prediction of properties of
nuclei and nuclear matter.

® The charge density difference, 2%Pb — 2°Tl, 3s, , state
® Extraction of proton matter density from charge distribution

® The matter density difference is then used to determine the mean-

field potential V (¥) for the 3s, ,, state in 2°Pb

® Goal: Develop pure 3s,,, state to see if short range correlations

are negligible
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Formalism

2
Single-particle SchrodingerE%h_AqJ + V¥ = EY
m
n h s o _ A¥ ()
V(7F) —E+2mS(r), S(r) = 2@

If we know single-particle W.F. we can determine V(#)

Nonsingular V: AV () = 0 when () =0

Experimentally, one measures depe(f)) = [¥(7)]?




Operating with 4 on [‘P(?)]b

b is positive and real
. . vwb _ b—19
Using the relation V¥~ = by¥” V¥

A¥ (@)
Q)

With the definition S(7) =

We obtain the general relation:

_Ap®P  b-1 F" ['P(?)]br
$(F) = be@]” b° | @I

Forb> 2, V[¥(®]°= 0 and A[¥(@)]°= 0 when [¥(#)]"= 0.

For b = 1, Single Particle Schrodinger Equation
Forb=2,p(?) = [¥(#)]




Rt (r) N

Spherical: ¥,,; j (7) = - Y, j

h? danlj
2m dr?

B2 I(1+ 1)

+ |V(r) + T—

Rnlj = ERnlj

=3

V() = Veen(r) + 51 Vs (r) + % (1 = )Veow ()

h? % I(1+1) 1

Veen(r) = E + %S(T) “om 12 2 (1 = T)Veoui(r) — cis Voo (1)

Tz=1 for a neutron and -1 for a proton

€is=—=l(l+1)andlforj=1—1/2andj =l + 1/2, respectively

_ danU(T’) 1

S(r) drZ Rpy(r)
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d(Rnlz) R _anl!
dr Tl gy
d*(Ra1)) _ . (dRmij)? d?Rnyj (1)
dr? _2( dr) +2R"‘U dr?
A inaS(r) =
S0 = 1 [azr2 g 11 d(R U)
2Ry, | dr? 2Rnu
anz!_O
dr
When R,,;; =0
en fpj; dZ(R;!) 1 : [d(RilL) 2=0
dr ZRTI-U dr




Using the relation:

R%1i(r) = 4mr?pp;(r)

S(r) = 1 dzpnlj_l_zdpnlj_ 1 dPnlj :
20nij| dré " r dr  2pp;\ dr
dPnl!'zo
When 0,17 = 0: dr
nlj .

d%pnij | 2dPny _ _1 (dpnli)z_
> = - =0
dr r dr 2ppj \ dr
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Examples of application of method for 3s,,,:

R3$/2 ~Sin(k1‘ + (P)

We get constant potential:

Harmonic Oscillator:

1/2
15 1 4 4
R3s/2(r) = ( VB/Z) re 2" [1 - §vr2 +— (vrz)zl

2T 15
We get expected potential:
11 1
V(r) =E — - hw + Emwzr'2
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For commonly used potential, Woods-Saxon potential:
V(r) =Vo/[1+ exp((r — Ry)/ag)]
R3s/2(7) obtained numerically

Coulomb potential for equivalent uniform charge distribu

coul(y — 7,2 {3 — r?/R2)/2R;, T < Rep
v (r)=2Ze { 1/r r > Rqp

R%, = (5/3)(r%)cn

Spin-orbit potential:
Veo.(r) = cdVpen (r)/dr c~0.2

| gumn ol




/Determining point proton distribution from charge d@l

Pch(?) = fpp(;;) prs('? - ?)dB;;

1

8ma3 e~r/e

Experimentally p,,¢.(#) =

2 = %Tgfs with 755 = 0.85 fm (rms radius of ppfs)

(r®)en = [ r2pcn (AT /[ pep (F)dTF

(rz)ch = (rz)p + (rz)pfs

a

dmta a

_ (1 + (r + r')) e-(r+r’)/a]

1 (" r—r'
pen(7) = —L r'dr'p,(r") [(1 + | |) e—lr-r'|/a

a




Define Fourier transform of density:

F(q) = %ﬂ oQsin(qr) p(r)rdr
0

1 4m (%
P) = Gy . (@) F(@adg

-2
1
prs(‘l) = (1 + lzrgfsqz)

Fen(q) = prs(Q)Fp(Q)

We get the point proton density:

1 4m [
o) = Gy . Sinar) Fy(@ada




Apc(r) = pcp(r; 2°Pb) —pep (15 2°T0)

Rearrangement effect :

The charge distribution of 29°T| is scaled so that the
charge rms radius of the scaled density Is equal to
that of the 81 core protons in 2°°Pb.

Apre(1) = pen (r; 2°Pb) —a®pep, (ar; °°TI),
a =5.4792/5.4848 = 0.9990

& is obtained by assuming that the charge rms radius of the
core 81 protons in *°°Pb is larger than that of °T1by 0.005

fm, a value similar to the change in the charge rms radii for

isotones in this region
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Fit to smooth splice of two sine WFs: R~sin(kr + ¢)
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Fitted ML Polynomial x2 = 1.15

Fitted Rearangment ML Polynomial ¥2 = 1.81

Fitted WS x2 = 3.28

Conventional WS x2 = 8.85

Fitted WS: V,= -167.95 MeV R,=-0.03 fm and a, = 4.68 fm
Conventional WS: V,=-62.712 MeV R,= 7.087 fm and a, = 0|
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Conclusions

e We have developed a new method of determining

the single particle potential directly from the density
distributions

e The potential derived from the density distributions
of 3s,,, State in 2°°Pb shows large uncertainties

around the nodes as the experimental error is larger
than the value of the density

e We carried out a least-squares fit of a potential that
IS fit to the density data which is a much better fit
than the conventional Woods-Saxon potential
especially nearr =0 fm

e Clearly more accurate data is needed to better
determine the potential and answer the question
\_ how well can the data be reproduced by a
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We present a novel method, using the single particle Schrodinger equation, to
determine the central potential directly from the single particle matter density
and its first and second derivatives. As an example, we consider the
experimental data for the charge density difference between the isotones
2%pp — 29T, deduced by analysis of elastic electron scattering measurements
and corresponds to the shell model 3s,, proton orbit, and determine the
corresponding single particle potential (mean-field). We also present results of
least-square fits to parametrized single particle potentials. The 3s;, wave
functions of the determined potentials reproduce fairly well the experimental
data within the quoted errors. The fair agreement with fitted potentials may be
an indication that effects of short range correlations on charge distributions due
to shell model wave functions are not significant. More accurate experimental
data, with uncertainty smaller by a factor of two or more, may answer the
question how well can the data be reproduced by a calculated 3s,, wave
function.
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