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MOTIVATIONS

1. A large body of experimental information concerning
cluster decay widths of resonance states is accumulated.

2. Redefinition of the cluster spectroscopic
characteristics has changed the view on clustering
significantly.

3. Supercomputing era came. Advanced approaches to
nuclear structure producing wave functions of nuclei
which make it possible to describe nuclear spectra,
moments, electromagnetic transitions, etc. with rather
high quality are created.



INTENSIONS

A global intension is to create a theory of clustering
suited to the requirement of supercomputing era.

A particular program is to build techniques for
description of the cluster observables for the wave
functions of such a type in the case that they are
representable in the form of the oscillator expansion.

Contrary to the modern approaches to clustering
concentrating attention on the  qualitative
manifestation of clustering in strongly clustered
states we try to make a quantitative theory and to
consider all states as the objects.



Fermionic molecular dynamics (H. Feldmeier, T.
Neff).

Density contours of 13C nucleus states (internal CS)




NUCLEAR PROCESSES AND MANIFESTATION
OF CLUSTERING

|. Spontaneous cluster decay.
ll. Cluster transfer reactions.

l1l. Cluster knock-out.

V. RESONANCE SCATTERING OF COMPOSITE
PARTICLES AND RESONANCE REACTIONS.

In particular studies in the framework of resonance
processes by thick target technique In the Inverse
kinematics. The investigations are:

1. Modern, being in progress, promising.

2. Providing broad and rich spectra.



CLUSTERING IN THE SHELL MODEL (MANG ,1957)

A basic concept of the approach is the definition of
measures of clustering in arbitrary A-nucleon model
(cluster characteristics) [H.J. Mang Z. Phys. 148, 556
(1957); V.V. Balashov et al. JETP 37, 1385 (1959); a
set of works by SINP MSU and VSU groups]:

a) the spectroscopic amplitude

Coipe =< Wy | A{¥ 58, (D)W} >;

b) the projection of the nuclear wave function onto

the cluster channel — the cluster form factor and its
norm — spectroscopic factor

A 1
D, (p)=<¥ |A{Y, ?5(9 =P Win(Q )WY} >

12
S fCD(p) |2 Pzdp = Zn:(CMIDC) X



In the case that C is the X-nucleon cluster, the WFs of
the mother and the daughter nuclei ¥, (R,,) and ¥, (R,)

are superpositions of the oscillator WFs, the CM
motions of the nuclei described by these WFs are zero

oscillations the formula

A n/2
MDC ZFMDC ( 1) (A Xj XnIFh/TD(XN)

takes place. Here first two multipliers present the
recoil factor and the muiltiplier

Xy =<y |4 (R)P; >

denotes cluster coefficient.



Multi-nucleon fractional parentage coefficient of the X-
nucleon configuration W, is defined as:

FI\?D(XN) =< \PM (RI\/I )| A{LPD(RD )\PXN § >

where the notation: ¥, , (R, ,) Stands for the WF

of the traditional shell model containing the redundant
center-of-mass (CM) coordinate.

In the most part of papers these WFs are related to the
lowest nucleon configuration.



Methods of calculation of the cluster coefficients for
various cluster masses and nucleon configurations are
developed in many papers. As an example, a general
expression for the cluster coefficients of light d, t, h,
and a clusters takes the form:

X
X noy =< Hni (n0) : 000 B0y (R ) >=

=1

X 1/2 K
x””(w]‘[ni !j X1 ]a!
i=1 j=1

[Ichimura et al. Nucl. Phys. A 204, 225 (1973)]. The
SU(3)-coupling of the one-nucleon WFs is implied
here. The components of the symmetry  (n0);n=>'n.

contribute to the expression only.
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REDEFINITION OF THE CLUSTERING MEASURES.
“NEW” CLUSTER CHARACTERISTICS.

In the paper [T. Fliessbach and H.J. Mang, Nucl. Phys. A
263, 75 (1976)] the habituated view on the clustering
measures was thrown doubt. The matter is that a certain
matching procedure (point or integral) is required to
deduce the amplitude and the width of a cluster channel.

The values of one and the same sense can solely be
matched (compared).



So the cluster form factor
1

must be matched with the same projection of the
cluster channel WF. Not:

D, (p) % (o),

f () — a solution of two-body problem, with the traditional
norm, but:

D () =< ¥y | Ay — o= P (Q)Fc >

D (p) > D'\ (p)

' A 1 '
D(P) =< o, | AW, =00 = P (@, )} >

where:



And the channel wave function:
Yo.c = AlYp0(p)Yc ) -

microscopic solution of A-nucleon problem which
may be RGM, OCM, etc. In the case that it is
normalized as usual:

S L g 1
(Poic|¥oic) = S(E—E"), 8(k —k), etc.

the WF of the relative motion must be normalized as:

N N 1

N1/2 — N1/2 SV

(N3 >0() [N, 0 3)) S(E —E"), 5k — k"), etc.
where:

N,@(p) = [N(p', p)p(p"p"*dp’



N(p’9 p”) —
A 1

A{wAlwAzgﬁ<p-pﬂ>v.m<s>p)}>.

N

<A{TAlwAzéa<p—p'>Ylm(%)}

As a result:
D' (p)=N_ ¢ (p)=N"¢(p).

D, (p) «——> N3¢ (p).
N 2@y (p) «=—> 4(p)

S'voc =INJ?D(p) [ pdp

R. Lovas et al. Phys. Rep. 294, 265 (1998).



NEW SPECTROSCOPIC FACTORIN A
CONFIGURATION MIXING SHELL MODEL

In the case that the WFs Y,Y. are presented in the
form of superposition of the oscillator WFs the
calculations of “new” characteristics can be carried out

by the following way:

1. The eigenvalues & | and the eigenfunctions Ty, ()
are found by diagonalization of the norm kernel matrix:

IN =< ody (DY | A | W od, ()P, >.
f|k (p)= Zn: Br:(I D ().

& =<¥of (DY A Yo f (P¥.>.  (3)



2. The “new” cluster form factor @ ', (p) is expanded
onto the eigenfunctions of the norm kernel :

D' (p) = 25_1/2 <D (p)| f,(p)>1,(p)=

Z ‘9_1/2 2 CIC/IIDC Brll(l a1 (P).

n
the “new” spectroscopic factor takes the form

SII\/'IDC Zg ZC&IDCC:AE)CB:; Br:(’l‘

In the particular case that the sole value of n contributes:

S ' _ SMDC . [Fl\/llQD (CN )]2
MDC — o R 2
%SM'DC %[FM'D(CN)]




Inserting the complete set of the resonance wave
functions

[=Y|¥, ><¥y |
|
into exp. (3) it is easy to deduce the relationship:

-1 nl n'l k pk
=& 2 CMiDCCMiDC BB
Inn'
Performing summation over k one can obtain:

> Swoc =dim| k|

|
The sum rule of the "“new” spectroscopic factors
corresponding to a fixed value of n (cluster
strength in 2hw domain turn out to be unity. Thus
the statistical properties are described accurately.
That is critical for the dense spectra. In average:

SII\/I(E)DC ~ ,0|_1(E)



SHELL MODEL CALCULATIONS

As usual the WFs of the modern versions of the shell
model are:

a) presented in the form of a superposition of A-nucleon
oscillator WFs,

b) fulfill the factorization condition:

qJM(D)(RM(D)) = ¢OOO(RM(D))qJM(D)‘

Therefore they are convenient in operating in the just
presented formalism.



As that is the case for approaches proposed earlier
the lowest oscillator wave function of a cluster is
used in the approach:

Y = X =4N =0[f]=[4](Ax) = (00)L =05 =0T =0 >

where [f ] is the symbol of the permutation symmetry
(Young frame) and (Au) — the SU(3) symmetry (Elliott
symbol). The problem is concentrated on the
calculation of the fractional parentage coefficient :

<Wy (Ry) | A5 (Ry) Wy, () =(n0)} >



To do that within the shell model approach
normalized SU(3) states in are constructed by
diagonalization of the SU(3) Casimir operator. In
the explicit form these operators can be written as:

C=(Q-Q)-3L
where the projection of the Hermitian conjugated
quadrupole operator takes the form:

Q=T33 Ao iy B B o)
2

L — operator of angular momentum.



From the technical point of view Casimir operator is
conveniently expressed in the formalism of the fermion
second quantization:

C=B'B
3t TaTaf T
B' = Z b{1,2,3,..,X}a1 d,a;...dy
1,2,3,.X}
B = Z b{1,2,3,..,X}~aX s Ay 15

1,2,3,. X}

To determine the permutation symmetry in each state
obtained by this way the operator:

Fi=1/2(1+ Pifp

is used. Its mean values are different for different Young
frames [f].



This approach as a whole was called Cluster-Nucleon
Configuration Interaction Model (CNCIM) and presented
first time in the paper [A. Volya, Yu.M. Tchuvil’sky. Phys.
Rev. C 91, 044319 (2015).

The Hamiltonian proposed in the paper [Y. Utsuno, S.
Chiba, Phys. Rev. C 83, 021301 (2011) is used.

For (s-d)-shell nuclei presented bellow the core is 160
and the size of the basis (m-scheme) is about 104x104 .

For 160 and 10Be the core is 4He. The size of the basis
is about 107°x3-107-° .



GENERAL TRENDS OF THE SPECTROSCOPIC
FACTORS.

Spectroscopic factors of a=clusters in 32S
states
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O -cluster strength in 32S spectrum
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CLUSTER-NUCLEON CONFIGURATION
INTERACTION MODEL AND DESCRIPTION OF
EXPERIMENTAL DATA

O -clustering in the ground states of (s-d)-shell

nuclei
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O -clustering in 160
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CONCLUSIONS

1.A theoretical approach and mathematics making
possible to calculate cluster spectroscopic amplitudes,
form factors and spectroscopic factors of arbitrary
nuclear states in advanced versions of the shell model
iIncluding no-core one is built.

2. It is proved that this the expedient allows one to
describe accurately the statistical properties of dense
cluster spectra.

3. Using this approach pioneering descriptions of the
spectroscopic characteristics of dense spectra of highly
excited states of nuclei are obtained.

4. The example demonstrating that the cluster
observables may be a tool of the test on the quality of a
dynamical model is found.



5. The approach already built looks promising for
applications in various areas of the cluster
physics.

6. We see ways of great improvement of the
developed approach such as: involving of realistic
cluster wave functions, description of heavy
cluster channels, creation of hybrid models, etc.
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ALPHA-PARTICLE LEVEL DENSITY PUZZLE
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NP, p")
T(P,p) |=
V(PP )
o

—1>

P
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\V)

<A{‘PA3PA2%8(p—p')Y.m(9p)}

A{‘PAI‘PAzizs(p—p”)Y.m(%)B-

P

There is a possibility to rearrange it in a Schrodinger-
like form:

(NJ'T + NV, —E")o(p) =0

but the resulting Hamiltonian turn out to be non-
Hermitian one.
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FIG. 3: The excitation function for ¥C+a elastic seattering at 180° in c.m. frame for the entire

energy range measured in this experiment. The solid curve is the best R-matrix fit.

M.L. Avila et al. Phys. Rev. C 90, Ne 2, 024327 (2014).
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results in two-body equation of another type:

(T, +V, ~E'N,)o(p) = 0,

1 & 1 &
E'=E-E -E,, p=—>TF — — r
! : A ; A, J:ZA;H J
where
A i 1
N1/2 — N1/2 — _
(N3 0| Ny *03)) S(E—E"), 5(k — k"), etc.
and
/NI )

p (N(p',p)
> o= 1| T(.p) e dp,

V(p',p)
\Vp ) \ J

>




RESONATING GROUP MODEL (WHEELER, 1937)

The wave function of the resonating group model is
chosen in the form:

Yain, = A{TAITAz(P(ﬁ)},

A—(:]m (1+§(—1)pf>)

The A-fermion Schrodinger equation
HLPA1+A2 - E\PA1+A2 ) |:| z-f +\7 .

2 A+A,

where



Introducing a new wave function:
~ N1/2 =
o(p) =N, “o(p)

one can obtain the Schrodinger-like equation with
Hermitian Hamiltonian.

(N —1/2-|- N ~1/2 n N —1/2V —1/2 )(I)(P) 0,

where the habituated orthonormalization conditions
take place:

<(|)(5)\(|)(5)> =1 - for states of discrete spectra,

<(|)E (5)\¢E.(5)> =3(E - E"), etc. - for continuum states.



OUTGROWS OF RGM

1. A unified theory of nucleus (K. Wildermuth, Y.C.

Tang).y _ Z A{‘{IiAI\P'jA\z(Pij (P)} +ZLPis(hell
AA. ] ‘

2. Algebraic version of RGM (G.F. Filippopv et al).
3. Generator coordinate method (H. Horiuchi).

4. Many-body RGM (M. Kamimura).

5. Approximate methods

a)Brink’s method (1957).

b)Cluster model (B.F.Beyman, A. Bohr, 1958)

c) Orthogonality conditions model (S. Saito, 1969).
d) THSR-method (1997).



MATHEMATICS OF CLUSTERING
l. Translationally- invariant shell model (TISM)

Cluster fractional parentage coefficient (FPC) is defined
as: a A -
Fuoe =< ¥ | A{¥ 8, (P)¥} > (1)

where: 4, () — wave function (WF) of the relative motion,

VY, ,¥Y,,Y. — internal translationally-invariant wave
functions (WFs) of the mother, daughter nuclei and the
cluster respectively. Thus FPC TISM coincides with the
SA.



O-clustering in 10Be
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@) The existence of this state is suggested by the existence of
£.070 MeV state in B which could be the isobaric analog,
see conceptual discussion in Ref. [20];

®) Widths deduced from the isobaric analog channel

OB = Li(0)+a [21,22]:

©) results from Ref. [22];

@) results from Ref. [23].

) Total width .

) In Ref. [22] the state was assigned spin-parity 6*.



Alpha cluster spectroscopic factors in Mg
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QUANTITATIVE CHARACTRISTICS OF CLUSTERING
IN MODERN MICROSCOPIC NUCLEAR MODELS
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Modern studies of the clustering phenomena are dividable into two groups.
Typical investigations of the first type are the antisymmetrized molecular
dynamics [1] and the fermionic molecular dynamics [2]. In these approaches
clustering properties of some low-laying nuclear states are qualitatively
confirmed to emerge directly from NN-interactions. The cluster structures turn
out to be visible as humps in the density distribution in the body-fixed
coordinate frame.

Another type of the approaches to clustering explores the quantitative
concepts such as the cluster spectroscopic amplitudes, form factors
spectroscopic factors, etc. These values provide possibilities to investigate
various processes of cluster decay, resonance cluster scattering, cluster break-up
and transfer of composite particles. The discussed characteristics are calculated
in various versions of the shell model. Binary cluster channels are described in
the framework of simple two-body or advanced orthogonality conditions model.
In near future one might expect that high-quality resonating group model would
be involved.

The present talk demonstrates methods of calculation of the -cluster
characteristics in modern shell-model approaches such as configuration
interaction technique [3] and no-core shell model [4]. The compatibility of the
resulted wave functions and two-body channel wave functions is discussed. The
cluster decay properties of multitude of low-laying and highly excited states of
nuclei are investigated in one and the same procedure with the excitation
energies, electromagnetic moments and other characteristics of these states [5,6].
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