

Ремизов Павел Дмитриевич

м.н.с. кафедры физики ускорителей и радиационной медицины физического факультета МГУ м.н.с. лаборатории пучковых технологий и медицинской физики НИИЯФ МГУ

Получение изотопа циркония-89 медицинского назначения в фотоядерных реакциях

Специальность 1.3.15 (01.04.16) Физика атомных ядер и элементарных частиц, физика высоких энергий

ДИССЕРТАЦИЯ

На соискание учёной степени кандидата физико-математических наук

Научный руководитель доктор физико-математических наук профессор А.П. Черняев

Способы получения радиоизотопов

Стандартные способы:

Способ	Реакции	Достоинства	Недостатки
Реакторный	$ \begin{array}{c} A_{Z}X(n,\gamma)^{A+1}ZX; \\ A_{Z}X(n,\gamma)^{A+1}ZX \to \\ A_{Z+1}Y; \\ A_{Z}X(n,f)^{a}ZY \end{array} $	1. Высокие мощности производства	 Большое количество радиоактивных отходов, выгорание Низкая удельная активность продуктов (n, γ)- и (n, f)-реакций Логистика
Циклотронный	$ \begin{array}{c} {}_{Z}^{A}X(p,n)_{Z+1}^{A}Y; \\ {}_{Z}^{A}X(d,n)_{Z+1}^{A+1}Y \end{array} $	 Возможность установки в клиниках Высокая удельная активность 	 Сложность в обслуживании Дороговизна установок Толщина и масса мишени

 $_{Z}^{A}X + \gamma \rightarrow _{Z-1}^{A-1}Y + p$ Получение изотопов с высокой удельной активностью на ускорителях электронов возможно в реакциях: ${}_{Z}^{A}X + \gamma \rightarrow {}_{Z-2}^{A-2}Y + \alpha$

Данная работа посвящена разработке метода получения перспективного для иммуно-ПЭТ радиоизотопа ⁸⁹**Zr** в фотоядерных реакциях.

На ускорителях электронов получение ⁸⁹Zr возможно в реакциях:

$$^{92}\text{Mo}(\gamma, p2n)^{89m+g}\text{Nb} \rightarrow ^{89}\text{Zr};$$
 $^{93}\text{Nb}(\gamma, p3n)^{89}\text{Zr}$

 $^{^{94}}$ Mo(γ, αn) 89 Zr + 95 Mo(γ, α2n) 89 Zr;

Цель работы:

Разработка метода получения перспективного медицинского изотопа ⁸⁹Zr с требуемыми для медицины характеристиками в фотоядерных реакциях на ускорителях электронов.

Задачи:

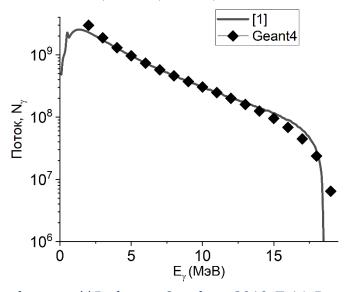
- 1. Провести исследования фотоядерных реакций с испусканием заряженных частиц на различных изотопах Мо, Nb и Zr в широком диапазоне энергий и экспериментально определить выходы активностей и сечения образования продуктов этих реакций.
- 2. Проанализировать возможные способы получения ⁸⁹Zr в фотоядерных реакциях с учётом образования примесных изотопов циркония и выбрать наиболее перспективный канал для промышленного производства.
- 3. Провести сравнение полученных экспериментальных результатов с теоретическими расчетами в рамках существующих моделей ядра и предложить подходы к теоретическим расчетам выходов изученных реакций, которые можно использовать для прогнозной оценки наработки ⁸⁹Zr.

Облучаемые мишени

20 МэВ	40 МэВ	55 МэВ
1. ^{nat} Mo, цилиндр 6 мм X 6 мм, 1,82 г 2. ⁹⁴ Mo (88 %), порошок, 1,443 г 3. ^{nat} Nb, гранулы в фольге, 2,1 г 4. ^{nat} Zr, фольга, 0,3 г	 natMo, цилиндр 6 мм X 6 мм, 1,82 г natNb, гранулы в фольге, 2,1 г 	 natMo, пластина, 0,06 г natMo, пластина, 0,007 г natMo, пластина, 0,044 г

Спектры облученных мишеней измерялись на **полупроводниковых спектрометрах с детекторами из сверхчистого германия** Canberra и Ortec с разрешением 2 кэВ по линии 1332 кэВ ⁶⁰Со. Калибровка по эффективности проводилась с использованием стандартных эталонных источников ¹⁵²Eu, ²²⁶Ra, ¹⁸²Ta, ¹³⁷Cs

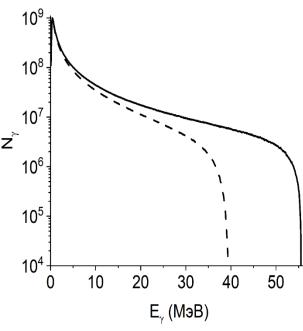
Линейный ускоритель электронов


Varian Trilogy

Тормозная мишень - W

Энергия пучка электронов 20 МэВ

Ток пучка - 10 нА



Ускорители электронов

Линейный ускоритель электронов ЛИНАК-200 (ОИЯИ)

Тормозная мишень – 3 мм Pb Энергия пучка электронов **40 МэВ**

Разрезной микротрон НИИЯФ МГУ

Тормозная мишень – 2,1 мм W, размеры пучка 8×2 мм² энергия пучка электронов **55 МэВ**, средний ток 40-45 нА

Определение средневзвешенных сечений

$\sigma_{\rm i}$	Сечение реакции (мбн);	Сред
(D:	Вес фотонов данной энергии в пучке	100 M

$$N_A$$
 Число Авогадро

t_{обл} Время облучения мишени, с

t_{изм} Время измерения спектра облученной мишени, с

Средневзвешенное сечение мониторной реакции ¹⁰⁰**Мо(γ, n)**⁹⁹**Мо** [мб]:

$$<\sigma_{ ext{moh}}> = rac{\sum \sigma_i \varphi_i(E_{ ext{nop}}; E_{ ext{rp}})}{\sum \varphi_i(E_{ ext{nop}}; E_{ ext{rp}})}$$

Интегральная плотность потока через мониторную мишень $\left[\frac{\gamma}{c^{M^2c}}\right]$:

$$F_{\text{MOH}} = \frac{\lambda SM}{<\sigma_{\text{MOH}} > mpN_A(1 - e^{-\lambda t_{\text{AKT}}})e^{-\lambda t_{\text{OXJ}}}(1 - e^{-\lambda t_{\text{ИЗМ}}})\theta\eta\varepsilon k}$$

Интегральная плотность потока для изучаемых реакций с учётом перенормировки на разницу порогов с мониторной реакцией:

$$F_{\text{эксп}} = F_{\text{мон}} \frac{\sum \varphi_j(E_{\text{пор}}^{\text{изуч}}; E_{\text{гр}})}{\sum \varphi_i(E_{\text{пор}}^{\text{мон}}; E_{\text{гр}})}$$

Экспериментальные средневзвешенные сечения [мб]:

$$<\sigma_{\scriptscriptstyle \mathfrak{I}KC\Pi}> = \frac{\lambda S(N+Z)}{F_{\scriptscriptstyle \mathsf{H}\mathfrak{I}\mathsf{J}\mathsf{Y}\mathsf{Y}}mpN_{A}(1-e^{-\lambda t_{\scriptscriptstyle \mathsf{I}KT}})e^{-\lambda t_{\scriptscriptstyle \mathsf{OXJ}}}(1-e^{-\lambda t_{\scriptscriptstyle \mathsf{H}\mathfrak{I}\mathsf{M}}})\theta\eta\varepsilon k}$$

Определение выходов изотопов

1) Активность радиоизотопов с $T_{1/2}>>1$ ч

$$A=YmIt$$
 , где Y – выход активности $[\frac{\mathrm{Б}\kappa}{\mathrm{M}\kappa\mathrm{A}\mathrm{Y}\times\mathrm{\Gamma}}]$, получаемый из эксперимента:

$$Y = \frac{\lambda S}{Im\theta\eta \varepsilon k t_{\text{обл}} e^{-\lambda t_{\text{ОХЛ}}} (1 - e^{-\lambda t_{\text{ИЗМ}}})}$$

2) Активность радиоизотопов с $T_{1/2} \sim 1$ ч

$$A=A_{
m yd}^{
m Hac}mI(1-e^{-\lambda t})$$
 , где $A_{
m yd}^{
m Hac}$ – удельная активность насыщения $[rac{{
m E}\kappa}{{
m M}\kappa{
m A} imes r}]$, получаемая из эксперимента:

$$A_{\rm yd}^{\rm Hac} = \frac{\lambda S}{Im\theta\eta\varepsilon k(1 - e^{-\lambda t_{\rm odd}})e^{-\lambda t_{\rm oxd}}(1 - e^{-\lambda t_{\rm usm}})}$$

3) Количество ядер стабильных изотопов:

$$N^{
m ctad} = rac{\langle \sigma_{
m teop}
angle pmFN_A}{(N+Z)} \, t$$
 , где $\langle \sigma_{
m teop}
angle$ – теоретическое средневзвешенное сечение: $<\sigma_{
m teop}> = rac{\sum \sigma_i arphi_i(E_{
m nop}; \; E_{
m rp})}{\sum arphi_i(E_{
m nop}; \; E_{
m rp})}$

Теоретические расчёты

Теоретические расчёты сечений фотоядерных реакций проведены в рамках:

- 1) TALYS программный код для вычисления параметров ядерных реакций, основанный на оптической модели ядра [2]. Для реакций (γ , p) для большинства тяжёлых ядер $<\sigma_{\text{теор}}> \ll <\sigma_{\text{эксп}}>$
- 2) Комбинированная модель фотонуклонных реакций (КМФР) комбинация полумикроскопической, экситонной и испарительной моделей для описания фотонуклонных реакций, индуцируемых в средних и тяжелых ядрах [3]. Встречаются значительные расхождения теоретических и экспериментальных выходов.

В основном состоянии изоспин $T_0 = \frac{N-Z}{2}$ [4]. При поглощении ядром фотона E1 возбуждаются состояния:

$$T_{<} = T_{0}$$
 и $T_{>} = T_{0} + 1$. Расщепление по энергии: $\Delta E = E(T_{>}) - E(T_{<}) = \frac{60(T_{0}+1)}{A}$ МэВ. Вероятности

возбуждения:
$$\frac{P(T_{>})}{P(T_{<})} = \frac{1}{T_0} \left(\frac{1 - 1.5T_0 A^{-2/3}}{1 + 1.5A^{-2/3}} \right)$$
.

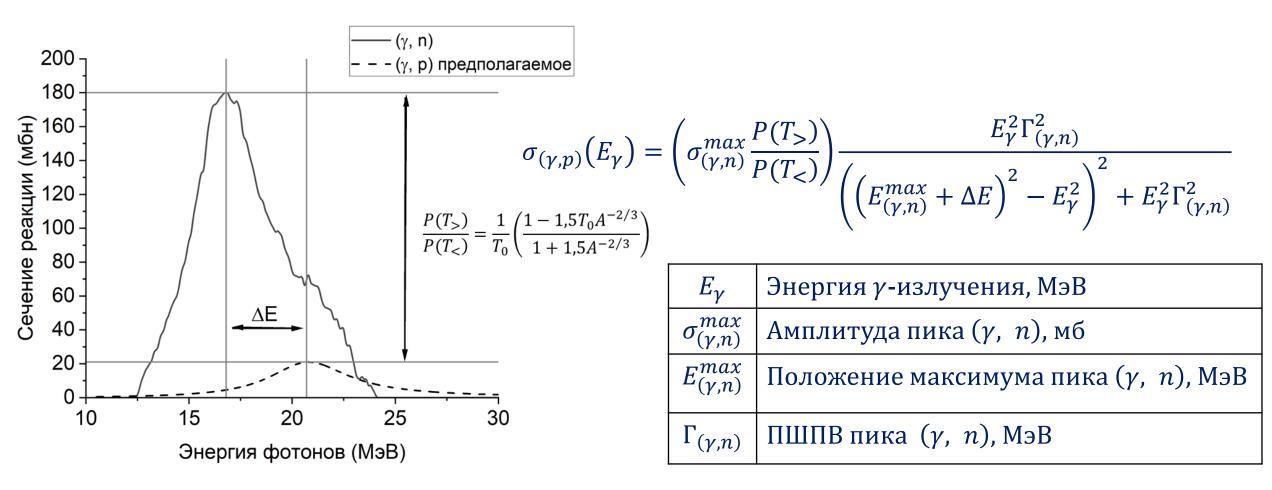
3) Метод преобразования средневзвешенных сечений [5]:

сечений:
$$<\sigma_{(\gamma,p)}>=<\sigma_{(\gamma,n)}>Q\frac{P(T_{>})}{P(T_{<})}$$
 $Q=\frac{\int_{E_{(\gamma,p)}}^{E^{\mathrm{Makc}}}d\varphi(E)}{\int_{E_{(\gamma,p)}}^{E^{\mathrm{Makc}}}d\varphi(E)}$

Связь средневзвешенных Поправка на разницу порогов:

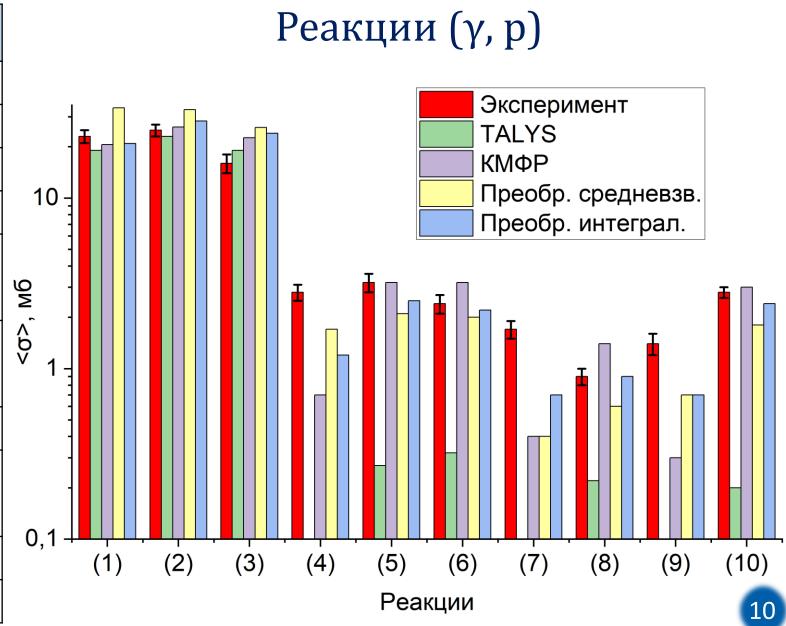
$$Q = \frac{\int_{E_{(\gamma, \mathbf{p})}^{MARC}}^{E^{MARC}} d\varphi(E)}{\int_{E_{(\gamma, \mathbf{n})}}^{E^{MARC}} d\varphi(E)}$$

Модифицированный порог реакции (ү, р):


$$E_{(\gamma,p)}^{\text{мод}} = E(\gamma,p) + \Delta E$$

- [2] Modern Nuclear Data Evaluation with the TALYS Code System. Koning A.J., Rochman D.
- [3] Combined Model of Photonucleon Reactions B. S. Ishkhanov and V. N. Orlin
- [4] Giant dipole resonance of atomic nuclei. Prediction, discovery, and research. Ishkhanov B. S., Kapitonov I. M.
- [5] Investigation of (γ,p) -reactions on zirconium and molybdenium nuclei V. A. **Zheltonozhsky, A. M. Savrasov**

4) Метод преобразования интегральных сечений:



$$\sigma_{(\gamma,p)}$$
 (общее) = $\sigma_{(\gamma,p)}$ (TALYS $\equiv T_{<}$) + $\sigma_{(\gamma,p)}$ ($T_{>}$)

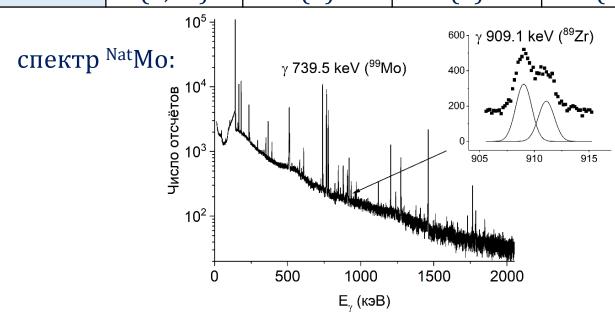
N	Реакция, энергия	$<\sigma_{ m эксп}>$, мб
(1)	⁹² Mo(γ, p) ^{91m} Nb 20 MэB	23±2
(2)	⁹² Mo(γ, p) ^{91m} Nb 40 MэB	25±2
(3)	⁹² Mo(γ, p) ^{91m} Nb 55 MэB	16±2
(4)	⁹⁶ Mo(γ, p) ⁹⁵ Nb 20 MэB	2,8±0,3
(5)	⁹⁶ Mo(γ, p) ⁹⁵ Nb +	3,2±0,4
	⁹⁷ Mo(γ, pn) ⁹⁵ Nb 40 MэB	
(6)	⁹⁶ Mo(γ, p) ⁹⁵ Nb +	2,4±0,3
	⁹⁷ Mo(γ, pn) ⁹⁵ Nb 55 MэB	
(7)	⁹⁷ Mo(γ, p) ⁹⁶ Nb 20 MэB	1,7±0,2
(8)	⁹⁷ Mo(γ, p) ⁹⁶ Nb +	0,9±0,1
	⁹⁸ Mo(γ, pn) ⁹⁶ Nb 55 MэB	
(9)	⁹⁸ Mo(γ, p) ⁹⁷ Nb 20 MэB	1,4±0,2
(10)	⁹⁸ Mo(γ, p) ⁹⁷ Nb 55 MэB	2,8±0,2

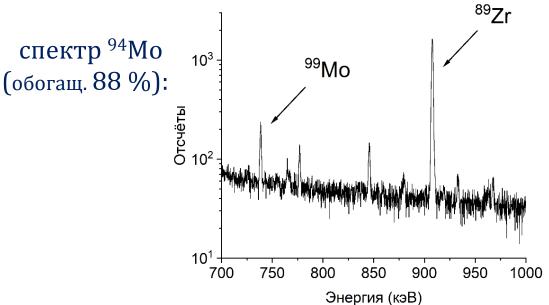
Реакции (γ, pXn) на молибдене при энергии 55 МэВ

	⁹² Mo(γ, p2n) ^{89m} Nb	⁹² Mo(γ, p2n) ^{89g} Nb	⁹² Mo(γ, pn) ⁹⁰ Nb	⁹⁴ Mo(γ, pn) ^{92m} Nb	¹⁰⁰ Mo(γ, pn) ^{98m} Nb
		+		+	
		92 Mo(γ , 3n) 89 Mo \rightarrow 89 SNb		95 Mo(γ , p2n) 92m Nb	
$<\sigma_{ m эксп}>$ (мб)	1,0±0,1	2,4±0,2	3,5±0,6	0,77±0,05	0,20±0,06
			4,0±0,4 [6]		
TALYS1.96 (мб)	0,7	1,9	5,9	0,77	0,10

[6] CROSS-SECTIONS OF PHOTONUCLEAR REACTIONS ON natMo TARGETS AT END-POINT BREMSSTRAHLUNG ENERGY UP TO Eymax = 100 MeV. A.N. Vodin et. al.

В реакциях (γ, pXn) на ниобии образуется ⁸⁹Zr и стабильные изотопы циркония


Ожидается, что удельная активность ⁸⁹Zr, полученного в реакции ⁹³Nb(γ, p3n)⁸⁹Zr, составит менее 1 % от максимальной



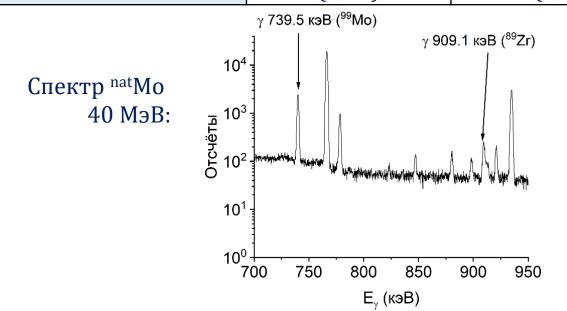
Реакции (γ, αХп) при энергии 20 МэВ

<u>Данные получены впервые</u>

Реакция	⁹² Mo(γ,α) ⁸⁸ Zr	7 .	¹⁰⁰ Mo(γ,αn) ⁹⁵ Zr	⁹³ Nb(γ,αn) ⁸⁸ Y	⁹⁰ Zr(γ,αn) ⁸⁵ Sr	⁹¹ Zr(γ,α) ^{87m} Sr	⁹⁶ Zr(γ, α) ⁹² Sr	⁹⁶ Zr(γ,αn) ⁹¹ Sr
Порог + кулон. Барьер, МэВ	~ 23	~ 32	~ 28	~ 30	~ 35	~ 22	~ 21	~ 30
$<\sigma_{ m эксп}>$, мб (TALYS)	0,09±0,01 (0,05)	1,01±0,07 (0)	0,05±0,01 (0)	1,01±0,07 (0)	0,03±0.01 (0)	0,007±0,001 (0,001)	0,006±0,001 (0,001)	0,15±0,05 (0)

(0,005)

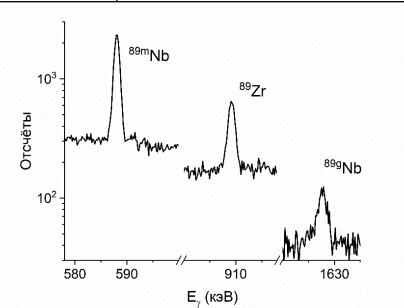
Реакции (γ, αХп) при энергиях 40 и 55 МэВ


40 МэВ: <u>Данные получены впервые</u> 94 Mo(γ , α n) 89 Zr + 100 Mo(γ , α n) 95 Zr 92 Mo(γ , α) 88 Zr 92 Mo(γ , α n) 87 Zr 93 Nb(γ , α 2n) 87 Y 93 Nb(γ , α n) 88 Y Реакция 95Mo(γ , α 2n)89Zr $0,21\pm0,02$ $<\sigma_{
m эксп}>$, мб $0,022\pm0,03$ 0,242±0,015 0,176±0,015 0,14±0,03 $0,27\pm0,02$

(0,04)

55 МэВ:

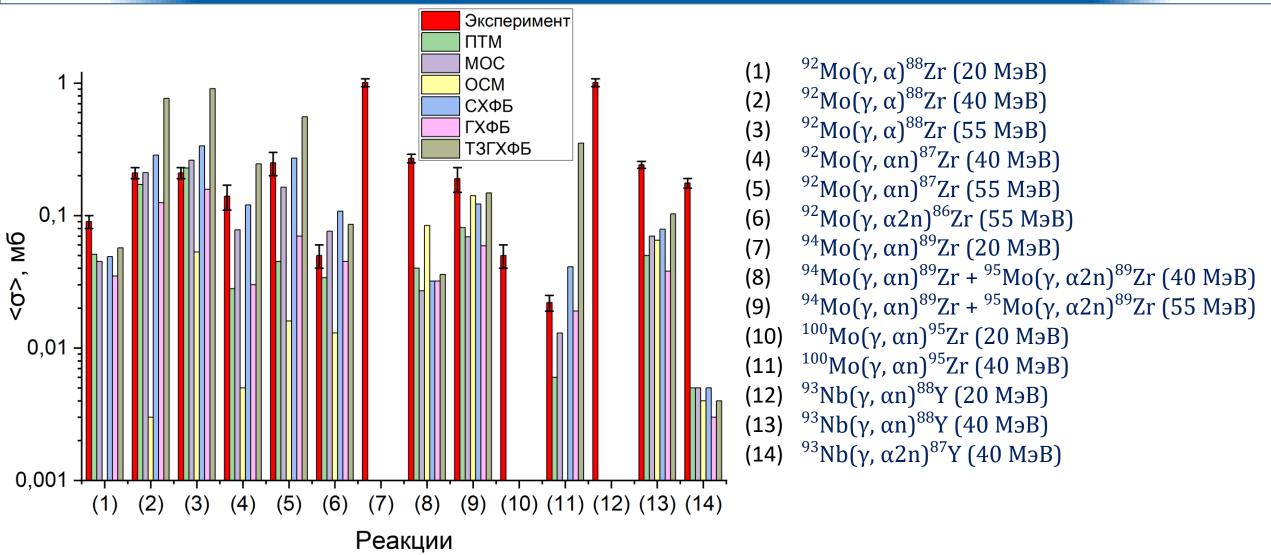
(TALYS)


	-			
Реакция	⁹² Mo(γ, α) ⁸⁸ Zr	92 Mo(γ , α n) 87 Zr	⁹² Mo(γ, α2n) ⁸⁶ Zr	94 Mo(γ , α n) 89 Zr + 95 Mo(γ , α 2n) 89 Zr
/ c > ME (TAIVE)	0,21±0,02	0,25±0,05	0,05±0,01	0,19±0,04
$<\sigma_{ m эксп}>$, мб (TALYS)	(0,17)	(0,05)	(0,03)	(80,0)

(0,17)

(0,03)

Спектр ^{nat}Mo 55 МэВ:



(0,05)

(0,006)

Модели плотностей уровней в ядре:

ПТМ – модель постоянной температуры; МОС – модель обратного смещения Ферми-газа; ОСМ – обобщённая сверхтекучая модель ядерной жидкости; СХФБ – таблицы Скирма-Хартри-Фока-Боголюбова; 5. ГХФБ – таблицы Горни-Хартри-Фока-Боголюбова; 6. ТЗГХФБ – таблицы температуро-зависимых уровней Горни-Хартри-Фока-Боголюбова

Наработка 89 Zr в реакциях (γ , pXn) и (γ , αXn)

Реакция	Мишень	Энергия	$Y\left(\frac{\kappa \kappa \kappa}{\kappa \kappa \Lambda \kappa \times \Gamma}\right)$	Время для достижения 37 МБк	Удельная активность *	Радионукли дная	Основные примеси *
			/	89 Zr ($m = 5$ r, $I = 0.4$	(от	чистота *	
			$A_{\rm yd}^{\rm Hac} \left(\frac{\kappa \rm KK}{M \kappa \rm A \times r}\right)$	мА)	максимальной)		
⁹⁴ Mo(γ, αn) ⁸⁹ Zr	^{nat} Mo	20 МэВ	0,73±0,04	~ 25 ч	< 20 %	~ 94 %	⁸⁸ Zr, ⁹⁰ Zr, ⁹¹ Zr, ⁹² Zr
94 Mo(γ , α n) 89 Zr	99 % ⁹⁴ Mo	20 МэВ	8,1±0,5	~ 2,3 ч	< 60 %	99,9 %	⁹⁰ Zr
⁹⁴ Mo(γ, αn) ⁸⁹ Zr + ⁹⁵ Mo(γ, α2n) ⁸⁹ Zr	^{nat} Mo	55 МэВ	70±4	~ 15 мин	< 10 %	~ 90 %	⁸⁸ Zr, ⁹⁰ Zr, ⁹¹ Zr, ⁹² Zr
⁹⁴ Mo(γ, αn) ⁸⁹ Zr + ⁹⁵ Mo(γ, α2n) ⁸⁹ Zr	36 % ⁹⁴ Mo, 63 % ⁹⁵ Mo	55 МэВ	280±15	~ 4 мин	< 33 %	99 %	⁹⁰ Zr, ⁹¹ Zr, ⁸⁸ Zr
92 Mo(γ, p2n) 89 mNb + 92 Mo(γ, 3n) 89 Mo \rightarrow 89 gNb \rightarrow 89 Zr	^{nat} Mo	55 МэВ	8,5±0,5 18,0±0,9	~ 30 мин облучение + 12 мин охлаждение	~ 90 %	99,9 %	⁹⁰ Zr

^{*} После радиохимического выделения

Сравнение стандартного способа наработки ⁸⁹Zr с предлагаемым

Характеристика	Стандартный способ	Предлагаемый способ		
Реакция	⁸⁹ Y(p, n) ⁸⁹ Zr; ⁸⁹ Y(d, 2n) ⁸⁹ Zr	92 Mo(γ , p2n) ^{89m+g} Nb \rightarrow ⁸⁹ Zr		
Аппарат	Ускоритель протонов, дейтронов	Ускоритель электронов		
Кол-во аппаратов в мире	~ 1 000 - 1 500	> 10 000		
Стоимость оборудования	\$\$ \$\$	\$\$		
Мишень	nat y	^{nat} Mo		
Масса мишени	Миллиграммы (узкий пучок, глубина	Сотни граммов (широкий профиль		
	проникновения - микрометры)	пучка и высокая проникающая		
		способность)		

Результаты и выводы

- 1. Разработаны **новые способы получения** перспективного медицинского радиоизотопа ⁸⁹Zr в (γ , pXn) и (γ , α Xn) реакциях.
- 2. На ускорителях электронов с энергией 55 МэВ и выше в реакциях ⁹²Мо(γ, p2n)^{89m+g}Nb → ⁸⁹Zr возможно достижение радионуклидной чистоты ~ 99,9 % и удельной активности ⁸⁹Zr ~ 90 % от максимальной. Такой метод обладает преимуществами перед стандартным методом наработки ⁸⁹Zr на циклотронах
- 3. Уточнены средневзвешенные сечения для **15 (γ, рХп)** реакций и впервые получены средневзвешенные сечения **18 (γ, αХп)** реакций на изотопах Мо, Nb и Zr под действием тормозного излучения ускорителей электронов с энергией пучка 20, 40 и 55 МэВ
- 4. Предложен **новый подход к теоретической оценке выходов реакций (γ, р)**. В рамках данного подхода среднее отклонение теоретических расчётов от экспериментальных для изотопов молибдена составило 36 %. Разработанный метод можно использовать для **прогнозной оценки выходов реакций (γ, р)** для производства медицинских и промышленных изотопов
- 5. Экспериментальные данные о сечениях реакций (γ, αХп) при энергии пучка 20 МэВ свидетельствуют о прямом механизме осуществления указанных фотоядерных реакций в области гигантского дипольного резонанса. Осуществлению этих реакций не препятствует кулоновский барьер

Публикации

Научные результаты по теме диссертации опубликованы в **25 печатных работах**. Среди них **5 статей** в журналах, индексируемых Web of Science и Scopus:

- 1. Study of Photonuclear Reactions with the Alpha Particles' Emission on Zirconium, Niobium, and Molybdenum / M.V. Zheltonozhskaya, P.D. Remizov, A.P. Chernyaev // Applied Radiation and Isotopes [в печати] (ИФ 2.7)
- 2. Фотопротонные реакции на молибдене / П. Д. Ремизов, М. В. Желтоножская, А. П. Черняев и др. // Известия Российской академии наук. Серия физическая. 2023. Т. 87, № 8.
- Photoproton reactions on molybdenum / P. D. Remizov, M. V. Zheltonozhskaya, A. P. Chernyaev et al. // **Bulletin of the Russian Academy of Sciences: Physics.** 2023. Vol. 87, no. 8. (**M 0.8**)
- **3.** Исследование реакций с вылетом протонов на 179, 180Hf / В. А. Желтоножский, М. В. Желтоножская, П. Д. Ремизов и др. // Известия Российской академии наук. Серия физическая. 2022. Т. 86, № 9. С. 1305–1309.
- Study of reactions with the emission of protons on 179, 180Hf / V. A. Zheltonozhskiy, M. V. Zheltonozhskaya, P. D. Remizov et al. // **Bulletin of the Russian Academy of Sciences: Physics.** 2022. Vol. 86, no. 9. P. 1309–1314. (**MФ 0.8**)
- **4.** (γ, pxn)-реакции на естественном молибдене / П. Д. Ремизов, М. В. Желтоножская, А. П. Черняев и др. // **Ядерная физика.** 2023. Т. 86, № 1. С. 99–103.
- (γ, pxn) reactions on natural molybdenum / P. D. Remizov, M. V. Zheltonozhskaya, A. P. Chernyaev et al. // **Physics of Atomic Nuclei.** 2022. Vol. 85, no. 6. P. 818–822. (**ΜΦ 0.8**)
- **5.** Ремизов П. Д. Современные медицинские радионуклиды для иммуно-ПЭТ // **Медицинская** радиология и радиационная безопасность 2022. Т. 67, № 3. С. 67–74.
- Remizov P. D. Novel Immuno-PET Medical Radionuclides // **Medical Radiology and Radiation Safety** 2022. Vol. 67, No. 3. P. 67–74. (**ИФ 0.5**)

Доклады на конференциях

Научные результаты докладывались на 16 международных и всероссийских научных конференциях:

- **NUCLEUS** 2020, 2021, 2022
- Международная конференция студентов, аспирантов и молодых ученых «**Перспективы** развития фундаментальных наук» 2021
- Всероссийский молодежный научный форум **OpenScience** 2021, 2022*
- «Концентрированные потоки энергии в космической технике, электронике, экологии и медицине» 2018, 2020, 2021
- Ломоносовские чтения 2020, 2021, 2022, 2023
- Международная научная конференция студентов, аспирантов и молодых ученых **Ломоносов** 2020, 2021, 2022

Работа поддержана грантом РФФИ N 20-315-90124 «Получение циркония-89 с помощью ускорителей электронов»

^{*} Доклад "Исследования фотоядерных реакций с испусканием заряженных частиц на тяжёлых ядрах" был признан лучшим в категории Физика атомного ядра и частиц.

Спасибо за внимание

Положения, выносимые на защиту:

- 1. С использованием экспериментальных данных о сечениях реакций (γ, pXn) и (γ, αXn) на изотопах Мо, Nb и Zr разработан метод получения медицинского изотопа ⁸⁹Zr на ускорителях электронов, способный составить конкуренцию традиционному способу наработки этого изотопа.
- 2. Проведённый анализ экспериментальных данных о сечениях реакций (γ, αХп) при энергии пучка 20 МэВ позволил установить доминирующий механизм этих реакций в области энергий гигантского дипольного резонанса. Проведённый анализ экспериментальных данных о сечениях реакций (γ, р) позволил разработать новый способ теоретического расчёта выходов реакций (γ, р), который может быть применён для оценки наработки изотопов в прикладных целях.