

Создание нейтронного источника с использованием реакций (ү,n) на лазерно-плазменном ускорителе и его использование для диагностики параметров электронного пучка

<u>Д.А. Горлова^{1,2}</u>, А.Ю. Заворотный^{1,2}, И.Н. Цымбалов^{1,2}, К.А. Иванов^{1,3}, А.Б. Савельев^{2,3}, А.Л. Полонский¹

> ¹Институт ядерных исследований РАН ²МГУ им. М.В. Ломоносова, Физический факультет ³Физический институт имени П. Н. Лебедева РАН

> > gorlova.da14@physics.msu.ru

Научный коллектив

Сотрудники: Иван Цымбалов, Константин Иванов, Илья Мордвинцев, Сергей Шуляпов, Роман Волков, Александр Лапик, Андрей Туринге, Артур Русаков, Андрей Полонский, Андрей Савельев

Аспиранты: Диана Горлова, Аким Заворотный, Владислав Прокудин

Студенты: Екатерина Стародубцева, Валерия Скибина, Анастасия Сивко

Лаборатория Фотоядерных Реакций ИЯИ РАН

Лаборатория Релятивистской Лазерной плазмы ФФ МГУ

0. Введение, актуальность работы

1. Ускорение электронов на 1 ТВт лазерной системе МГУ

2. Генерация нейтронов полученными электронами в фотоядерных реакциях

3. Методика диагностики параметров пучка на основе измерения выхода нейтронов

4. Выводы и перспективы

gorlova.da14@physics.msu.ru

Ядерная фотоника

Ядерная фотоника: результаты и перспективы

В.Г. Недорезов^а, <u>С.Г. Рыкованов⁶, А.Б. Савельев</u>^{в, г}

^вИнститут ядерных исследований Российской академии наук, проспект 60-летия Октября 7а, Москва, 117312, Российская Федерация ⁶Сколковский институт науки и технологий, Территория Инновационного Центра Сколково, Большой бульвар 30, стр.1, Москва, 121205, Российская Федерация ^вМосковский государственный университет имени М.В. Ломоносова, Физический факультет, Ленинские горы 1 стр. 2, Москва, 119991, Российская Федерация ^гФизический институт им. П.Н. Лебедева РАН, Ленинский проспект 53, Москва, 119991, Российская Федерация

10.3367/UFNr.2021.03.038960

ядерная фотоника

© 2017 г. В. Г. Недорезов^{а,} *, А. Б. Савельев-Трофимов^b ^aФедеральное государственное бюджетное учреждение науки Институт ядерных исследований Российской академии наук ^bМосковский Государственный Университет им. М.В. Ломоносова, Физический факультет *e-mail: vladimir@cpc.inr.ac.ru Поступила в редакцию 10.06.2017 г.

10.1134/S207956291606004X

3rd International Conference on Nuclear Photonics (NP2020)

Dates June 7-11, 2021

Актуальность работы

Зачем изучать взаимодействие лазерных импульсов релятивистской интенсивности с веществом?

Современные лазерные системы имеют частоту повторения 0.1-1 кГц и мощности 1 ТВт-10 ПВт и могут быть использованы для создания компактных ускорителей заряженных частиц

Требования к источнику:

- Высокий пиковый поток частиц
- Желательно высокий средний поток
- Стабильность
- Высокая частота повторения
- Компактность, простота, дешевизна

High-Repetition-Rate Advanced Petawatt Laser System of ELI Beamlines, photo by Lawrence Livermore National Laboratory.

Релятивистские интенсивности:

$$I \sim 10^{18} \div 10^{21} W / cm^2$$

P Laboratory of Relativistic Laser Plasma

Актуальность работы

Низкоплотные мишени – струи газа

Esarey E. et al. Rev. Mod. Phys. 2009. Vol. 81, № 3

Релятивистские интенсивности:

 $I \sim 10^{18} \div 10^{21} W / cm^2$

Thévenet, M., et al. *Nature Physics* 12.4 (2016): 355.

Mao, J. Y., et al. *Applied Physics Letters* 106.13 (2015): 131105.

rlp.ilc.edu.ru

RLP | Laboratory of Relativistic Laser Plasma

Нужны коллимированные пучки электронов

с большим зарядом

- Источники для медицинских приложений
- моделирование астрофизических явлений
- исследование фотоядерных реакций
- компактные ускорители электронов и источники рентгеновского излучения

Зачем изучать взаимодействие лазерных импульсов релятивистской интенсивности с веществом?

 $I \sim 10^{18} \div 10^{21} W / cm^2$

Релятивистские интенсивности:

Актуальность работы

Для лазерных систем

0. Введение, актуальность работы

1. Ускорение электронов на 1 ТВт лазерной системе МГУ

2. Генерация нейтронов полученными электронами в фотоядерных реакциях

3. Методика диагностики параметров пучка на основе измерения выхода нейтронов

4. Выводы и перспективы

gorlova.da14@physics.msu.ru

Выход ү-излучения увеличивается при использовании искусственного предымпульса

K. A. Ivanov et al., Physics of Plasmas 21, 093110 (2014)

Типы мишеней в эксперименте

Экспериментальная установка

Экспериментальная установка

Ті:Sa ~ 5-10¹⁸ Вт/см² Nd:YAG ~ 10¹² Вт/см²

Детекторы:

- Сцинтиллятор LANEX
- Магнитный спектрометр
- Цилиндр Фарадея
- Не³ счетчики

Описание детекторов

*Y. Glinec et al. Rev. Sci. Instrum., vol. 77, no. 10, 2006

Параметры электронного пучка

Нормальное падение

Пространственная стабильность электронного пучка

I. Tsymbalov, D. Gorlova et. al., Plasma Phys. Control. Fusion 63 022001 (2021)

Параметры электронного пучка

RLP | Laboratory of Relativistic Laser Plasma

Численное РІС моделирование

Численное РІС моделирование

0. Введение, актуальность работы

1. Ускорение электронов на 1 ТВт лазерной системе МГУ

2. Генерация нейтронов полученными электронами в фотоядерных реакциях

3. Методика диагностики параметров пучка на основе измерения выхода нейтронов

4. Выводы и перспективы

gorlova.da14@physics.msu.ru

Фотоядерные реакции на лазерах

Преимущества лазеров:

- Высокий пиковый поток гамма-квантов
- Времяразрешенные исследования
- Исследования по схеме совпадений
- Широкий спектр энергий электронов и гамма-квантов
- Длительность импульса нейтронов <нс

Генерация нейтронов в фотоядерных реакциях

Генерация нейтронов в фотоядерных реакциях

Вторичная мишень и ее геометрические размеры	Ве 40x30x30 мм	D (в форме D ₂ 0) 100x150x30 мм	U (природный) диск диаметром 75 мм и толщиной 15 мм	Рb 200x120x50 мм	W 40x20x20 мм	
Среднее число нейтронов/выстрел	9,3±2,1	5,1±2,4	<1	<1	<1	
Максимальное число нейтронов/выстрел	15	9	1	1	1	
Число нейтронов/с*срад	~10 ⁵		~104			
Эффективность нейтронов/Дж*с*срад	~10 ⁶		~10 ⁵			

Число зарегистрированных нейтронов и параметры нейтронного источника, для различных вторичных мишеней – Be, D, U,

Рь, W. Рекордный поток ~10⁶ нейтронов/с*срад получен в реакциях (p,n) на 50 Дж лазерной системе с I ~10²⁰ Вт/см2

Д. Горлова и др. «Поверхность», принято в печать

0. Введение, актуальность работы

1. Ускорение электронов на 1 ТВт лазерной системе МГУ

2. Генерация нейтронов полученными электронами в фотоядерных реакциях

3. Методика диагностики параметров пучка на основе измерения выхода нейтронов

4. Выводы и перспективы

Фотоядерная методика измерения заряда пучка

RLP | Laboratory of Relativistic Laser Plasma

Расчет чувствительности детектора в GEANT4

Д. Горлова и др. «Поверхность», принято в печать

Фотоядерная методика измерения заряда пучка

Вторичная мишень	Ве	D	U	Pb	W	Из GEANT4 коэффициенты конверсии К(Т)= N_n/N_e^-
Т, МэВ	Коэффицие	ент К(Т)=N _n /N _e	-, полученный в	моделирован	іии GEANT, ∙10 ⁻	↑ \
1	6,8±1,0	-	-	-	-	1.5 МэВ - Ве
1.5	23,4±1,8	0,20±0,15	3,5±1,2	2,6±0,5	3,2±0,9	Ц 9 12.2 МэВ - D 11.1
2	50±3	2,9±0,5	27±4	17,8±1,2	20,2±2,2	Б Щ Т Т Т Т Т Т Т Т Т Т Т Т Т
2.5	100±4	9,5±1,0	119±14	74±4	73±4	
Т, МэВ	Заряд Q для электронов с E>1 МэВ , пКл				Е, МэВ	
1	270±70	-	-	-	-	
1.5	109±26	(7±6)*10 ³	80±27	105±20	85±24	Заряд пучка:
2	60±14	(0,6±0,3)*10 ³	11,8±1,9	18,2±1,2	16,0±1,7	50±12 пКл (E>1 МэВ)
2.5	33±8	190±90	3,0±0,4	4,8±0,3	4,8±0,3	25±7 пКл (Е>3 МэВ)
Полученные в модел	ировании	GEANT4 коэфо	фициенты пер О лля различн	есчета в за	ряд пучка, а	

Д. Горлова и др. «Поверхность», принято в печать

Фотоядерная методика измерения заряда пучка

Вторичная мишень	Be	D	U	Pb	W	Из GEANT4 коэффициенты конверсии К(T)= N_n/N_e^-
Т, МэВ	Коэффици	ент K(T)= $\mathrm{N_n}/\mathrm{N_e}$	–, полученный в	моделирова	нии GEANT, ·10 ⁻	
	10					D(γ,n) cross section
1	6,8±1,0	-	-	-	-	σ, mb
1.5	23,4±1,8	0,20±0,15	3,5±1,2	2,6±0,5	3,2±0,9	
2	50±3	2,9±0,5	27±4	17,8±1,2	20,2±2,2	
2.5	100±4	9,5±1,0	119±14	74±4	73±4	
Т, МэВ	Заряд Q для электронов с E>1 МэВ , пКл					
1	270±70	-	-	-	-	$< S_{qn} >= 2,5 \pm 0.5$ mbarn
1.5	109±26	(7±6)*10 ³	80±27	105±20	85±24	10^1 10^2
2	60±14	(0,6±0,3)*10 ³	11,8±1,9	18,2±1,2	16,0±1,7	E, MeV
2.5	33±8	190±90	3,0±0,4	4,8±0,3	4,8±0,3	I. Isymbalov et.al., Physics of Atomic Nuclei 80 397 (2017)
Полученные в модел также оцененные с их	ировании с использов	GEANT4 коэфо анием заряды	фициенты пер Q для различн	есчета в за ых вторичн	аряд пучка, а ых мишеней.	

RLP | Laboratory of Relativistic Laser Plasma

0. Введение, актуальность работы

1. Ускорение электронов на 1 ТВт лазерной системе МГУ

2. Генерация нейтронов полученными электронами в фотоядерных реакциях

3. Методика диагностики параметров пучка на основе измерения выхода нейтронов

4. Выводы и перспективы

gorlova.da14@physics.msu.ru

Выводы

- Экспериментально и численно была продемонстрирована генерация стабильного (флуктуация положения~0.1 рад), коллимированного (~0.05 рад) электронного пучка с зарядом 50-100 пКл (E>1.7 МэВ) и температурой ~1.5-2.5 МэВ с использованием пленочной мишени. Была достигнута эффективность преобразования~1-2 нКл/Дж в электроны с E>1.7 МэВ на 1 ТВт лабораторной лазерной системе. Механизмом ускорения является прямое лазерное ускорение (DLA) в плазменном канале.
- Был создан лазерно-плазменный источник нейтронов с потоком ~10⁵-10⁶ с⁻¹срад⁻¹ с использованием реакций (γ, n) на 1 ТВт лазерной системе
- Предложена и реализована методика измерения заряда Q и температуры T пучка электронов на лазерно-плазменном ускорителе по измерению выхода нейтронов. Полученные значения хорошо согласуются со значениями, измеренными стандартными средствами диагностики пучка.
- Основными преимуществами предложенной фотоядерной методики являются: простота использования, помехоустойчивость; наличие четко определенного порога измерения, связанного с порогом реакции; возможность измерения заряда сильно расходящегося пучка, а также возможность использования совместно с источником нейтронов.

Спасибо за внимание!

Перспективы: генерация позитронов

Processes leading to the pair productionTrident processBethe-Heitler process $e^- + Z \rightarrow 2e^- + e^+ + Z$ $e^- + Z \rightarrow e^- + Z + \gamma$ $E_e > 2m_ec^2$ $\gamma + Z \rightarrow e^+ + e^- + Z$

Simulation geometry

N_{el}=5*10⁷

W target thicknesses: 0.2, 0.5, 1, 1.5, 2 mm Electron spectrum slope: 1, 1.5, 2 MeV

RLP | Laboratory of Relativistic Laser Plasma

Перспективы: генерация позитронов

D. Gorlova et al 2019 Proc. SPIE 11037, 110370H

Перспективы: мишени – газовые струи

RLP | Laboratory of Relativistic Laser Plasma

Laser Optics 2022, Saint-Petersburg

Перспективы: мишени – газовые струи

RLP | Laboratory of Relativistic Laser Plasma

Laser Optics 2022, Saint-Petersburg