Исследование фотоядерных реакций с помощью фотонов, полученных в обратном комптоновском рассеянии

К. А. Стопани, Г. И. Быхало

Научно-исследовательский институт ядерной физики им. Д. В. Скобельцына

20 октября 2022 г.

История появления метода LCS

Laser Compton Scattering

Источники фотонов на основе метода обратного комптоновского рассеяния лазерного пучка на ускоренных электронах.

1) R. H. Milburn, *Electron Scattering by an Intense Polarized Photon Field*, PRL **10**, 75 (1963).

2) F. R. Arutyunian and V. A. Tumanian, *The Compton effect on relativistic electrons and the possibility of obtaining high energy beams*, Phys. Lett. **4**, 176 (1963).

Метод впервые реализован на 600 МэВ синхротроне ФИАН. Рубиновый лазер $\lambda = 694.3$ нм, max(E_{γ}) = 8,3 МэВ. $I = 0,07 \ \gamma$ /сек. [О. F. Kulikov et al., Phys. Lett. **13**, 344 (1964)].

В качестве источника фотонов метод впервые использован для измерения сечения $\gamma p \rightarrow$ hadrons при $E_{\gamma} = 1,44-4,66$ ГэВ. [J. Ballam et al., PRL 23, 498 (1969)].

Обратное комптоновское рассеяние

Формула Клейна-Нишины

$$\frac{d\sigma}{d\Omega} = \frac{1}{2}r_e^2\left(\frac{\lambda}{\lambda'}\right)^2\left(\frac{\lambda}{\lambda'} + \frac{\lambda'}{\lambda} - \sin^2\theta\right).$$

Энергия γ после рассеяния

$$T_{\gamma}' = rac{T_{\gamma}(1+eta)}{1+rac{T_{\gamma}}{T_e}-(eta-rac{T_{\gamma}}{T_e})\cos heta}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Для малых θ : $T'_{\gamma} \approx rac{4\gamma^2 T_{\gamma}}{1+(\gamma\theta)^2+rac{4\gamma^2 T_{\gamma}}{m_ec^2}} o 4\gamma^2 T_{\gamma}.$

Максимальная энергия LCS фотонов

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Энергетический спектр LCS фотонов

▲ロト ▲舂 ト ▲ 臣 ト ▲ 臣 ト 一臣 - の Q ()~

Энергетическое разрешение LCS фотонов

Ширина энергетического спектра после коллимации

Источники фотонов на основе обратного комптоновского рассеяния

- Множество установок, но в основном в области энергий до 1 МэВ
- ► HIGS (США) 1—100 МэВ, 10⁷ ÷ 10¹⁰ γ/с
- ▶ SLEGS (КНР) 2—20 МэВ, 300—550 МэВ, $10^5 \div 10^7 \ \gamma$ /с, строительство
- ► MEGA-ray (США), 0,5—2,3 МэВ, 10¹² γ/с
- ELI-NP (Румыния), 1—20 МэВ, 10¹³ у/с, строительство
- РОКК-1М (Новосибирск, ИЯФ СО РАН), 100—1200 МэВ, 2 · 10⁶ γ/с

- ► SAGA-LS (Япония), до 3,5 МэВ, 10⁷ γ/с
- ▶ NewSUBARU (Япония), 1—76 МэВ, 10⁶ γ/с

Источники фотонов на основе обратного комптоновского рассеяния

	LADON	LEGS	POKK-1M	GRAAL	LEPS	HIGS
	1978–1993	1987–2006	1993–	1995–	1998–	1996–
	Италия	США	Россия	Франция	Япония	США
<i>Т</i> _е , МэВ	1,5	2,5–2,8	1,4–6,0	6	8	0,24–1,2
T_γ , эВ	2,45	2,41-4,68	1,17–4,68	2,41–3,53	2,41-4,68	1,17–6,53
T'_{γ} , МэВ	5–80	110–450	100-1600	550-1500	1500-2400	1–100
ΔE , M ₃ B	2–4	5	10–20	16	30	0,008-8,5
$\gamma/$ сек	$5 imes 10^5$	$5 imes 10^6$	10 ⁶	$3 imes 10^6$	$5 imes 10^6$	до 10 ¹⁰

Актуальность исследований

- Поверхностное возбуждение \rightarrow когерентное состояние \rightarrow термализация \rightarrow отделение частиц
- Ширина и форма низко- и высоко-энергетических хвостов ГДР
- Фотоядерные реакции в области энергий выше ГДР
- ▶ Фотоядерные данные востребованы и за пределами ядерной физики, практически в любых научных и прикладных разработках при энергиях выше ≈ 10–15 МэВ.
- Астрофизика при *T* > 1 ГК: фотодиссоциация в (γ, n), (γ, p), (γ, α) и, возможно, других реакциях.
- Радиомедицина, планирование доз.
- Энергетика, управляемая реакция деления, ускоренная трансмутация отходов в пучках ускорителей.

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー のくで

Неразрушающая инспекция и контроль.

Системный эффект доступности полных и достоверных фотоядерных данных.

Программа исследований

- Координированная программа исследований "Обновление библиотеки фотоядерных данных и разработка стандартной базы данных по силовым функциям фотовозбуждения".
- Измерения проводились в 2016—2020 гг.
- ► МФЯР на ⁹Be, ⁸⁹Y, ¹⁰³Rh, ¹³³Cs, ¹³⁹La, ¹⁵⁹Tb, ¹⁶⁵Ho, ¹⁶⁹Tm, ¹⁸¹Ta, ¹⁹⁷Au, ²⁰⁹Bi.
 - Измерение фотонейтронных сечений на пучке квазимонохроматических фотонов

- Параллельное измерение интегральных сечений МФЯР методом наведенной активности
- Оценка

Накопительное кольцо NewSUBARU

NewSUBARU на схеме комплекса Spring8.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

Накопительное кольцо NewSUBARU

- Для измерений используется накопительное кольцо NewSUBARU входит в состав ускорительного комплекса Spring8 (Япония)
- Номинальная энергия инжекции 1 ГэВ
- Энергия ускорения/замедления 0,5—1,5 ГэВ
- Максимальный ток электронного пучка 500 мА, среднее время жизни $\tau = 12$ ч (на практике $\tau = 3 \div 6$ ч)
- Тор-ир режим на энергии инжекции 974 МэВ
- Длина окружности 120 м, 11 выводов пучка в основном прикладные источники синхротронного излучения

Накопительное кольцо NewSUBARU

Источник LCS фотонов

Схема выводов пучка синхротронаNewSUBARU. BL01 — точка вывода сгенерированного LCS излучения.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Источник LCS фотонов

Схема расположения лазерного оборудования и измерительной установки

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - の々⊙

Измерение фотонейтронных сечений

Обозначения

• Фотонейтронные сечения (вылет любого числа *р* подразумевается)

$$\sigma(\gamma, \mathsf{xn}) \equiv \sigma(\gamma, \mathsf{xn}) + \sigma(\gamma, \mathsf{xn1p}) + \sigma(\gamma, \mathsf{xn2p}) + \dots$$

Сечение выхода нейтронов

$$\sigma(\gamma, \mathsf{Sn}) = \sigma(\gamma, \mathsf{1n}) + 2\sigma(\gamma, \mathsf{2n}) + 3\sigma(\gamma, \mathsf{3n}) + \dots$$

Сечение фотопоглощения

$$\sigma(\gamma, \mathsf{abs}) = \sigma(\gamma, \mathsf{1n}) + \sigma(\gamma, \mathsf{2n}) + \sigma(\gamma, \mathsf{3n}) + \dots$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

Нейтронный детектор

Nucl. Instrum. and Meth. A **871**, 135 (2017).

Принцип действия: замедлитель + пропорциональные счетчики, сгруппированные в 3 кольца.

 $n + {}^{3}\text{He} \rightarrow p + {}^{3}\text{H} + 765 \text{ keV}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Нейтронный детектор

Эффективность регистрации нейтронов

Fig. 3. The total detection efficiency and efficiencies of the individual rings of the flatresponse neutron detector. Results of the calibration with a ²³²Cf source are shown by the filled symbols. Results of the MCNP Monte Carlo simulations for monochromatic neutrons are shown by the broken lines, while those for the neutron-evaporation spectra by the solid lines.

Новый метод разделения каналов реакций с различной множественностью вместо метода кольцевых отношений.

не более одной реакции в мишени, число реакций (γ , xn) связано с числом совпадений N_j :

$$N_{j} = \sum_{\substack{x=j \\ \alpha = j}}^{n} C_{j}^{x} \varepsilon^{j} (1-\varepsilon)^{x-j} R_{x}.$$

Нейтронный детектор

Моделирование нейтронных спектров в TALYS

Геометрия эксперимента

Схема расположения облучаемой мишени и детекторов в эксперименте по измерению сечений фотонейтронных реакций на пучке LCS-фотонов.

Измерение фотонейтронных сечений на ⁹Ве — ²⁰⁹Ві _{Схема эксперимента}

- ► λ = 1064 нм,
 - $E_e = 660 902 \text{ M}$ əB,
 - $E_{\gamma} = 7,7-14,3 \text{ M}$ эВ
- ► SHG λ = 532 нм, E_e = 640—982 МэВ, E_γ = 14,5—40,12 МэВ
- Время замедления нейтронов $\tau \approx 100$ мкс, частота импульсов лазера f = 1 кГц.
- Толстые мишени h = 2-20 мм.
- Непрерывное измерение фона с помощью генератора BEAM ON/OFF

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Измерение фотонейтронных сечений на ${}^{9}\text{Be} - {}^{209}\text{Bi}$

Непрерывное измерение фона в процессе набора данных

ВЕАМ ON — 80 мс, ВЕАМ OFF — 20 мс.

Измерение фотонейтронных сечений на ${}^{9}\text{Be} - {}^{209}\text{Bi}$

Распределение времени регистрации фотонного импульса

Метод определения интенсивности пучка фотонов

Длительность лазерного импульса $\tau_l = 25 \div 60$ нс, частота повторения $f_l = 0.5 \div 20$ кГц, а периодичность e^- импульсов ускорителя NewSUBARU $\tau_e = 2$ нс. Число фотонов, попадающих на мишень в течение времени одного импульса лазера подчиняется распределению Пуассона:

$$n \sim P(\mu)$$

Среднее число фотонов в импульсе:

$$\langle n
angle = rac{\langle E_{\mathsf{MP}}
angle}{\langle E_{\mathsf{SP}}
angle arepsilon_{\mathsf{Nal}} (1 - arepsilon_{\mathsf{мишень}})}$$

イロト 不得 トイヨト イヨト

ъ

Измерение фотонейтронных сечений на ⁹Ве — ²⁰⁹Ві

Распределение времени регистрации нейтронов

Одновременное протекание нескольких реакций за время

импульса

Использование толстых мишеней при высоких интенсивностях пучка. Пример ¹⁹⁷Аu.

Figure 1: Cross sections of the (γ ,1n), (γ ,2n), (γ ,3n) reactions on ¹⁹⁷Au (see legend). "True" curves denote TALYS-calculated cross sections used as parameters of simulation, "restore" denotes cross sections reconstructed from the simulated data with the assumption that multiple reactions do not occur.

∃ \0 < \0</p>

メロト メポト メヨト メヨト

Модель времени регистрации нейтронов

 $f(t|i, j; \mu_1, ..., \mu_N)dt$ — вероятность того, что за время между двумя LCS-импульсами регистрируется ровно *j* нейтронов и *i*-ый зарегистрированный нейтрон регистрируется в промежутке $\tau \in [t; t + dt)$. Параметры μ_k — среднее число реакций *k*-го типа.

- Рассматриваются все возможные комбинации зарегистрированных/пропущенных нейтронов от реакций (γ,xn) и от фона.
- 2. Источник фоновых нейтронов реакции (γ ,xn) вне мишени, и/или на фоновых нейтронах. Они рассматриваются так же, как и реакции на мишени с помощью набора параметров μ_{bkg_k} (μ_{bkg_1} включает в себя также и остальные источники фона).
- Нейтроны от реакций на мишени отличаются от фоновых нейтронов временем рождения: нейтроны (*γ*,*x*n) рождаются во время лазерного импульса, фоновые нейтроны рождаются непрерывно.
- 4. Входные данные модели:
 - 4.1 эффективность регистрации нейтрона $\epsilon(E_n) = \epsilon = const;$
 - 4.2 функция отклика детектора на нейтроны, рожденные в реакции на мишени, $f_1(t)$;
 - 4.3 аналогичная функция отклика на фоновые нейтроны, $f_{\rm bkg}(t)$.

Пример. $E_{\gamma} = 25,52$ МэВ, мишень ⁸⁹Ү. \blacktriangleright $f_1(t)$ 0.02 1/1 data fsingle fit 0.018 0.016 0.014 0.012 0.01 0.008 0.006 0.004 0.002 0

Модель времени регистрации нейтронов

0

Фон

0.0001

0.0002

0.0003

0.0004 0.0005

 $f_{bkg}(t) = const$

0.0006 0.0007

イロト イヨト イヨト イヨト æ 👘

0.0009

0.0008

0.001

Модель времени регистрации нейтронов

Пример. $E_{\gamma} = 25,52$ МэВ, мишень ⁸⁹Ү. Результат аппроксимации.

Восстановление спектра исходного пучка фотонов методом МСМС

Восстановление спектра исходного пучка фотонов методом **MCMC**

Результат восстановления

(日) æ

Монохроматизация сечений

Получение Байесовской оценки сечений с помощью метода МСМС

Формула Байеса позволяет получить апостериорное распределение оценки монохроматизированных сечений на основе исходных данных и априорной информации о регулярности поведения $\sigma(E)$.

$$p_{ ext{posterior}}(\sigma_{ ext{unfold}}|\sigma_{ ext{exp}}) \sim L(\sigma_{ ext{exp}}|\sigma_{ ext{unfold}})p_{ ext{prior}}(\sigma_{ ext{unfold}})$$

где $p_{\text{prior}}(\sigma_{\text{unfold}}) = e^{-\tau S(\sigma_{\text{unfold}})}$, а $S(\sigma_{\text{unfold}}) - \phi_{\text{ункция, пропорциональная}}$ нерегулярности данных. Пример:

$$p_{\text{prior}}(\sigma) = e^{-\tau S(\sigma)} = e^{-\tau \sum (\sigma_{i+1} - \sigma_i)^2}$$

イロト 不得下 イヨト イヨト

Монохроматизация сечений

Получение Байесовской оценки сечений с помощью метода МСМС

Измерение сечений 209 Bi $(\gamma, 1 \div 4n)$

Полученные результаты (сечения после деконволюции) и сравнение с оценкой

Измерение сечений 209 Bi $(\gamma, 1 \div 4n)$

Сравнение с активационным экспериментом

Table 2. Comparison of the experimental yields of photonuclear reactions on 209 Bi with model calculations.

Beaction	101	10 × Yield, C ⁻¹		
rteaction	Experiment	CMPNR	TALYS	
(γ, p)		$2.58\cdot 10^3$	66.3	
$(\gamma, 2n)$	$2.3(2)\cdot 10^4$	$2.53\cdot 10^4$	$3.01\cdot 10^4$	2,9(6) · 10 ⁴ (включая 2n1p,)
$(\gamma, 3n)$	$3.1(3)\cdot 10^3$	$2.95\cdot 10^3$	$3.11\cdot 10^3$	3,6(7) · 10 ³ (—"— 3n1p,)
$(\gamma, 4n)$	$1.02(8) \cdot 10^3$	$0.881 \cdot 10^3$	$1.10\cdot 10^3$	1,1(2) · 10 ³ (—"— 4n1p,)
$(\gamma, 4n1p)_m$	4.9(4)	$0.290^{(a)}$	0.328	
$(\gamma, 5n)$	$2.0(2) \cdot 10^2$	$0.750\cdot 10^2$	$2.29\cdot 10^2$	
$(\gamma, 5n1p)$	73(7)	0.421	0.0148	
$(\gamma, 6n)$	7.8(7)	0.399	6.29	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

*) $|^{208}$ Pb $\rangle \cdot |1h_{9/2}\rangle_{\pi}$

Измерение сечений 209 Bi $(\gamma, 1 \div 4n)$

Прямые реакции и аномально повышенный выход 1n при больших энергиях

- Источником 1п на 30–40 МэВ является либо КД-механизм, либо полупрямые процессы эмиссии из входного состояния ГДР.
- Наблюдаемая ширина ГДР 4,3÷4,6 МэВ меньше значений из систематики, хорошее согласие с ¹/₃ Г↓ _{2p2h}.
- => Долгоживущее коллективизированное входное состояние.

イロト 不得 トイヨト イヨト

Измерение сечений 59 Co (γ, xn)

Измерение сечений 89 Y (γ, xn)

▲ロト▲圖ト▲画ト▲画ト 画 のへで

Измерение сечений 103 Rh (γ, xn)

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - 釣ん(で)

Измерение сечений 139 La (γ, xn)

▲ロト ▲昼 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○ ○

Измерение сечений 159 Tb(γ , xn)

[T. Kawano et al., NDS 163, 109 (2020)]

Измерение сечений 165 Ho (γ, xn)

[T. Kawano et al., NDS 163, 109 (2020)]

Измерение сечений 169 Tm (γ, xn)

[T. Kawano et al., NDS 163, 109 (2020)]

Измерение сечений 181 Ta (γ, xn)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Заключение

- Коллаборацией из России, Германии, Китая, Румынии и Японии проведена масштабная программа экспериментальных измерений парциальных фотонейтронных сечений с вылетом до 5 нейтронов, впервые, начиная с 1990-х гг.
- Разработан новый метод разделения каналов реакций различной множественности на основе анализа распределения времени регистрации нейтронов.
- Получены сечения фотоядерных реакций на ²⁰⁹Ві, ⁸⁹Ү, ¹⁶⁹Тm, ¹⁹⁷Аu, ⁵⁹Со, ¹⁶⁵Но, ¹⁸¹Та.

Спасибо за внимание!