ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В.ЛОМОНОСОВА»

ФИЗИЧЕСКИЙ ФАКУЛЬТЕТ

КАФЕДРА ОБЩЕЙ ЯДЕРНОЙ ФИЗИКИ

МАГИСТЕРСКАЯ ДИССЕРТАЦИЯ

«БАРИОННЫЕ ВЗАИМОДЕЙСТВИЯ ПРИ БОЛЬШИХ ЯДЕРНЫХ ПЛОТНОСТЯХ И НЕЙТРОННЫЕ ЗВЁЗДЫ»

Выполнил студент 213 группы Михеев Семен Алексеевич

Научный руководитель: к.ф.-м.н. Третьякова Татьяна Юрьевна

Научный консультант: к.ф.-м.н. Ланской Дмитрий Евгеньевичч

Допущен к защите Зав. кафедрой _____

MOCKBA

Оглавление

Введение	2
1. Описание модели	4
1.1. Потенциал Скирма	5
1.2. Бесконечная ядерная материя	8
1.3. Нейтронные звёзды	13
2. Нуклонная материя	15
3. Гиперон-нуклонная материя	22
Заключение	29
Список использованных источников	31
Приложение 1. Расчёт плотности энергии	34
Приложение 2. Алгоритм расчета уравнения состояния	41
Приложение 3. Алгоритм расчета уравнения TOV	44

ВВЕДЕНИЕ

Нейтронные звезды - гидростатически равновесные звёзды, вещество которых состоит в основном из нейтронов и имеет плотность порядка ядерной. Идея существования нейтронных звёзд была впервые предложена в 1934 году Бааде и Цвикки, первые модели были созданы Оппенгеймером и Волковым. Современные теоретические расчеты указывают на возможность существования нейтронных звезд с массами от 0,1 M_{\odot} , хотя нейтронные звёзды со столь малыми массами до настоящего времени не наблюдались. Что касается верхнего предела, различные модели дают различные результаты, но в большинстве расчетов максимально возможная масса не превышает или слегка превышает 2 M_{\odot} . [1]

На сегодняшний день нейтронные звёзды наблюдаются во всех диапазонах электромагнитного спектра. Подавляющее большинство измерений масс нейтронных звезд было выполнено с помощью радионаблюдений вращающихся пульсаров в двойных системах. В настоящее время в Галактике известно более 2500 пульсаров, однако около 90% из них изолированы и их массы не могут быть измерены, так как все современные методы основаны на точном отслеживании орбитальных движений через время прибытия импульсов от пульсаров. Среди нейтронных звёзд с надёжно измеренными массами большинство попадает в интервал от 1,3 до 1,5 масс Солнца. [2]

За последние годы был сделан ряд важных открытий в физике нейтронных звёзд. 17 августа 2017 года был зарегистрирован первый всплеск гравитационных волн от слияния двух нейтронных звёзд, GW170817. Событие было зарегистрировано одновременно всеми тремя гравитационно-волновыми детекторами детекторной сети LIGO-Virgo [3]. Теперь информация об электромагнитных и гравитационных волнах может

быть объединена для получения ограничений на скорость расширения Вселенной и уравнения состояния плотной ядерной материи. В 2019 году были получены первые спектроскопические свидетельства синтеза тяжёлых элементов в слиянии нейтронных звёзд, был зарегистрирован стронций. [4] Помимо доказательства нуклеосинтеза в слиянии нейтронных звёзд, это событие является, по сути, первым доказательством того, что нейтронная звезда богата нейтронами. Также в 2019 году при помощи наземного телескопа Green Bank Telescope была обнаружена самая массивная из известных на данный момент нейтронная звезда, J0740+6620,с массой $2.14 \pm 0.2 M_{\odot}$, которая расположена на расстоянии около 4,6 тысячи световых лет от Земли. [5]

Нейтронные звёзды являются объектами, в которых реализуется широкий спектр экстремальных состояний вещества, который недоступен для лабораторных исследований: сверхвысокие магнитные поля, сверхъядерная плотность, сверхтекучая барионная компонента. Поэтому исследование нейтронных звёзд важно не только для астрофизики, но и для ядерной физики. [6]

Для построения модели нейтронной звезды необходимо уметь описывать уравнение состояния материи нейтронной звезды. Точный состав внутреннего ядра нейтронной звезды не известен, поэтому существует большое разнообразие теоретических моделей. В этой работе мы описываем материю нейтронных звёзд, как бесконечную ядерную материю. В самом простом варианте материя нейтронных звёзд состоит из нейтронов, протонов, электронов и мюонов, однако известно, что при плотностях, в несколько раз превышающих плотность насыщения ядерной материи, могут возникать гипероны. Первыми при увеличении плотности должны, предположительно, появиться Λ -гипероны, поэтому в данной работе изучается нейтронные звёзды, состоящие из нуклонов, лептонов и Λ -гиперонов.

1. Описание модели

В первом приближении вещество нейтронных звёзд может быть описано, как вырожденный газ невзаимодействующих нейтронов. В частности, уравнение идеального нейтронного газа было использовано в первых моделях нейтронных звёзд, созданных Оппенгеймером и Волковым [7]. В более сложных моделях частицы в ядерной материи взаимодействуют между собой и необходимо иметь эффективную модель описания этого взаимодействия.

Существует большое разнообразие теорий, которые могут быть основаны на фундаментальных физических свойствах взаимодействия или на анализе экспериментальных данных и построении моделей содержащих некоторое количество параметров. Важное место занимают методы самосогласованного среднего поля, направленные на моделирование эффективного взаимодействия и создание эффективных функционалов плотности энергии. В этой работе используется взаимодействие Скирма [8] - самосогласованная нерелятивистская модель среднего поля.

Взаимодействие Скирма построено с помощью дельта-сил, которые согласуются со свойствами ядерных сил. Такой подход позволяет упростить решение системы уравнений в методе Хартри-Фока, но приводит к возникновению большого числа параметров в модели. Модель Скирма является эффективным способом описания барионного взаимодействия и позволяет в одном подходе описывать и нуклон-нуклонное, и гиперон-нуклонное взаимодействие. Модель Скирма достаточно широко распространена и используется в различных работах для изучения свойств ядер и ядерной материи [9]. В том числе существуют работы, в которых данная модель применяется для описания нейтронных звёзд [10–12]. Однако стоит отметить, что модель Скирма является нерелятивистской, что приводит к её ограниченности в описании области высоких плотностей.

1.1. Потенциал Скирма

Потенциалы эффективного взаимодействия Скирма выглядит следующим образом:

Для нуклон-нуклонного взаимодействия [13]

$$V_{NN}(\overrightarrow{r_{1}}, \overrightarrow{r_{2}}) = t_{0}(1 + x_{0}P_{\sigma})\delta(\overrightarrow{r_{1}} - \overrightarrow{r_{2}})$$

$$+ \frac{1}{2}t_{1}(1 + x_{1}P_{\sigma})[\overrightarrow{P}'^{2}\delta(\overrightarrow{r_{1}} - \overrightarrow{r_{2}}) + \delta(\overrightarrow{r_{1}} - \overrightarrow{r_{2}})\overrightarrow{P}^{2}]$$

$$+ t_{2}(1 + x_{2}P_{\sigma})\overrightarrow{P}'\delta(\overrightarrow{r_{1}} - \overrightarrow{r_{2}})\overrightarrow{P}$$

$$+ iW_{0}\overrightarrow{\sigma}[\overrightarrow{P}' \times \delta(\overrightarrow{r_{1}} - \overrightarrow{r_{2}})\overrightarrow{P}]$$

$$(1.1)$$

Для гиперон-нуклонного взаимодействия [14]

$$V_{\Lambda N}(\overrightarrow{r_{\Lambda}},\overrightarrow{r_{N}}) = u_{0}(1+\xi_{0}P_{\sigma})\delta(\overrightarrow{r_{\Lambda}}-\overrightarrow{r_{N}})$$

$$+ \frac{1}{2}u_{1}(1+\xi_{1}P_{\sigma})[\overrightarrow{P}'^{2}\delta(\overrightarrow{r_{\Lambda}}-\overrightarrow{r_{N}})+\delta(\overrightarrow{r_{\Lambda}}-\overrightarrow{r_{N}})\overrightarrow{P}^{2}]$$

$$+ u_{2}\overrightarrow{P}'\delta(\overrightarrow{r_{\Lambda}}-\overrightarrow{r_{N}})\overrightarrow{P}$$

$$+ iW_{0}^{\Lambda}\overrightarrow{P}'\delta(\overrightarrow{r_{\Lambda}}-\overrightarrow{r_{N}})[\overrightarrow{\sigma}\times\overrightarrow{P}]$$

$$(1.2)$$

Для гиперон-гиперонного взаимодействия [15]

$$V_{\Lambda\Lambda}(\overrightarrow{r_1}, \overrightarrow{r_2}) = \lambda_0 \delta(\overrightarrow{r_1} - \overrightarrow{r_2})$$

$$+ \frac{1}{2} \lambda_1 [\overrightarrow{P}'^2 \delta(\overrightarrow{r_1} - \overrightarrow{r_2}) + \delta(\overrightarrow{r_1} - \overrightarrow{r_2}) \overrightarrow{P}^2]$$
(1.3)

где $\overrightarrow{P} = \frac{1}{2i}(\nabla_1 - \nabla_2)$ — оператор импульса относительного движения, действующий на правую обкладку матричного элемента, а $\overrightarrow{P'}$ – на левую, $P_{\sigma} = \frac{1}{2}(1 + \sigma_1 \sigma_2)$ — спиновый обменный оператор, σ_1 и σ_2 – спины барионов. Для гиперон-нуклонного взаимодействия индексы 1 и 2 в выражениях выше заменяются на Λ и N соответственно.

Последний член в выражениях 1.1 и 1.2 отвечает за спин-орбитальное взаимодействие и равен нулю в однородной и неполяризованной ядерной материи. Также для полноценного описания NN- и ΛN -взаимодействия выражений 1.1 и 1.2, описывающих двухчастичное взаимодействие, необходим ещё один член, описывающий многочастичные эффекты. Для нуклон-нуклонного взаимодействия он может быть записан с помощью тройных сил:

$$V_{123}(\overrightarrow{r_1}, \overrightarrow{r_2}, \overrightarrow{r_3}) = t_3 \delta(\overrightarrow{r_1} - \overrightarrow{r_2}) \delta(\overrightarrow{r_2} - \overrightarrow{r_3})$$
(1.4)

Альтернативным способом описания этого эффекта является зависимость от нуклонной плотности (*n*):

$$V_{12}(\overrightarrow{r_1}, \overrightarrow{r_2}, n) = \frac{1}{6} t_3 (1 + x_3 P_\sigma) [n(\frac{\overrightarrow{r_1} + \overrightarrow{r_2}}{2})]^\sigma \delta(\overrightarrow{r_1} - \overrightarrow{r_2})$$
(1.5)

Эти два способа описания эквивалентны при условии $x_3 = 1$ и $\sigma = 1$.

Для гиперон-нуклонного потенциала многочастичные эффекты описываются аналогичным образом, через тройные силы или зависимость от нуклонной плотности (*n*) [16]:

$$V_{\Lambda NN}(\overrightarrow{r_{\Lambda}}, \overrightarrow{r_{N1}}, \overrightarrow{r_{N2}}) = u_3 \delta(\overrightarrow{r_{\Lambda}} - \overrightarrow{r_{N1}}) \delta(\overrightarrow{r_{\Lambda}} - \overrightarrow{r_{N2}})$$
(1.6)

$$V_{\Lambda N}(\overrightarrow{r_{\Lambda}}, \overrightarrow{r_{N}}, n) = \frac{3}{8}u_{3}(1 + \xi_{3}P_{\sigma})\delta(\overrightarrow{r_{\Lambda}} - \overrightarrow{r_{N}})n^{\gamma}(\frac{\overrightarrow{r_{\Lambda}} + \overrightarrow{r_{N}}}{2})$$
(1.7)

При $\gamma = 1$ в выражении 1.7 эти два варианта практически эквивалентны для гиперядер и эквивалентны для симметричной ядерной материи, то есть для материи, в которой количество протонов равно количеству нейтронов. Однако в нейтронных звёздах, при сильном дисбалансе между протонами и нейтронами, тройные силы и зависимость от плотности могут приводить к разным результатам. Более того, существуют параметризации с зависимостью от плотности с $\gamma \neq 1$, которые не могут быть представлены с помощью тройных сил. В данной работе в том числе исследуется, как вышеописанные особенности ΛN -взаимодействия влияют на характеристики нейтронных звёзд.

Основываясь на этих потенциалах, можно рассчитать другие необходимые нам характеристики материи.

Энергия в материи рассчитывается следующим образом:

$$E = \langle \phi | T + V | \phi \rangle \tag{1.8}$$

В выражении 3.2 первое слагаемое определяет кинетическую энергию,

второе - потенциальную энергию. Более удобной величиной, чем полная энергия является плотность энергии (*H*).

$$E = \int H dr \tag{1.9}$$

Подробный вывод плотности энергии из потенциала, основанный на работе [13] приведён в приложении.

Выражение для плотности энергии NN-взаимодействия:

$$H_{NN} = K + \frac{1}{4} t_0 [(2+x_0)n_N^2 - (2x_0+1)(n_p^2+n_n^2)]$$
(1.10)
+ $\frac{1}{24} t_3 n_N^{\sigma} [(2+x_3)n^2 - (2x_3+1)(n_p^2+n_n^2)]$
+ $\frac{1}{8} [t_1(2+x_1) + t_2(2+x_2)]\tau n_N$
+ $\frac{1}{8} [t_2(2x_2+1) - t_1(2x_1+1)](\tau_p n_p + \tau_n n_n)$

Здесь $n_N = n_n + n_p$ – барионная плотность материи, а $\tau = \tau_n + \tau_p$ – плотность кинетической энергии. $K = (\frac{\hbar^2}{2m})\tau_N$ – член зависящий от кинетической энергии.

Выражения для плотности энергии гиперон-нуклонного и гиперонгиперонного взаимодействия рассчитываются аналогично 1.10 и выглядят следующим образом:

$$H_{N\Lambda} = K_{\Lambda} + u_0 (1 + \frac{\xi_0}{2}) n_N n_{\Lambda}$$

$$+ \frac{1}{8} [u_1 (2 + \xi_1) + u_2 (2 + \xi_2)] (\tau_N n_{\Lambda} + \tau_{\Lambda} n_N) + H_3$$
(1.11)

В случае зависимости от плотности:

$$H_3 = \frac{3}{8}u_3(1 + \frac{\xi_3}{2})n_N^{\gamma+1}n_\Lambda$$

В случае тройных сил:

$$H_3 = \frac{1}{4}u_3(1 + \frac{\xi_3}{2})n_\Lambda(n_N^2 + 2n_n n_p)$$

Здесь кинетический член $K_{\Lambda} = (\frac{\hbar^2}{2m_{\Lambda}})\tau_{\Lambda}$. Для гиперон-гиперонного

взаимодействия:

$$H_{\Lambda\Lambda} = \frac{\lambda_0}{4} n_{\Lambda}^2 + \frac{1}{8} \lambda_1 n_{\Lambda} \tau_{\Lambda} \tag{1.12}$$

Соответственно, полная плотность энергии материи:

$$H = H_{NN} + H_{N\Lambda} + H_{\Lambda\Lambda} \tag{1.13}$$

Все параметризации Скирма ведут себя очень похоже при ядерных плотностях и хорошо описывают ядра и гиперядра, но имеют самое различное поведение в экстремальных областях. Именно поэтому крайне важно тестирование параметризаций при высоких плотностях.

1.2. Бесконечная ядерная материя

В работе исследуется бесконечная ядерная материя и различные её характеристики. Важным параметром ядерной материи является её протонная заселенность (Y_p) . Y_p – это отношение числа протонов в материи к общему числу барионов. Также в дальнейшем будут использоваться и другие заселённости: нейтронная, электронная, мюонная и гиперонная $(Y_n, Y_e, Y_\mu \ u \ Y_\Lambda$ соответственно). В этой работе исследуется материя, состоящая из протонов, нейтронов, мюонов, электронов и Λ -гиперонов, и находящаяся в состоянии химического равновесия. Такая форма материи характеризуется следующими процессами.

$$n \Longleftrightarrow p + e^- + \bar{\nu}_e \Longleftrightarrow p + \mu^- + \bar{\nu}_\mu$$
$$n + n \Longleftrightarrow n + \Lambda$$

Исходя из этого, состояние химического равновесия определяется следующей системой уравнений для химических потенциалов.

$$\begin{cases} \mu_p + \mu_e = \mu_n \\ \mu_\mu = \mu_e \\ \mu_\Lambda + m_\Lambda = \mu_n + m_n \end{cases}$$
(1.14)

Химические потенциалы барионов здесь рассчитываются следующим образом:

$$\mu_i = \frac{\partial H}{\partial n_i} \tag{1.15}$$

Химические потенциалы лептонов в данной работе включают в себя массу лептонов:

$$\mu_e = \sqrt{m_e^2 + (3\pi^2 Y_e n)^{2/3}} \tag{1.16}$$

$$\mu_{\mu} = \sqrt{m_{\mu}^2 + (3\pi^2 Y_{\mu} n)^{2/3}} \tag{1.17}$$

Учтём связи между фракциями различных составляющих: $Y_n + Y_p + Y_\Lambda = 1, Y_\mu = Y_p - Y_e$. Таким образом система уравнений для химических потенциалов имеет три неизвестные: Y_p, Y_Λ и Y_e .

$$\begin{cases} \mu_p(Y_p, Y_\Lambda) + \mu_e(Y_e) = \mu_n(Y_p, Y_\Lambda) \\ \mu_\mu(Y_p, Y_e) = \mu_e(Y_e) \\ \mu_\Lambda(Y_p, Y_\Lambda) + m_\Lambda = \mu_n(Y_p, Y_\Lambda) + m_n \end{cases}$$
(1.18)

В материи без гиперонов $Y_{\Lambda} = 0$ и система уравнений для химических потенциалов включает в себя два уравнения при двух неизвестных:

$$\begin{cases} \mu_p(Y_p) + \mu_e(Y_e) = \mu_n(Y_p) \\ \mu_\mu(Y_p, Y_e) = \mu_e(Y_e) \end{cases}$$
(1.19)

Выражение для энергии на нуклон имеет вид:

$$\varepsilon = \frac{H}{n} = \varepsilon_{NN} + \varepsilon_{\Lambda N} + \varepsilon_{\Lambda \Lambda} \tag{1.20}$$

Запишем выражения для каждого слагаемого.

$$\varepsilon_{NN}(Y_p, Y_\Lambda, n) = \frac{3}{5} \frac{\hbar^2}{2m} (\frac{3\pi^2}{2})^{2/3} n^{2/3} F_{5/3}$$

$$+ \frac{1}{4} t_0 n[(x_0 + 2)(Y_n + Y_p)^2 - (2x_0 + 1)(Y_p^2 + Y_n^2)]$$

$$+ \frac{1}{24} t_3 n^{\sigma+1} [(x_3 + 2)(Y_p + Y_n)^{\sigma+2} - (2x_3 + 1)(Y_p + Y_n)^{\sigma}(Y_p^2 + Y_n^2)]$$

$$+ \frac{3}{40} (\frac{3\pi^2}{2})^{2/3} n^{5/3} [2^{2/3} [t_1(x_1 + 2) + t_2(x_2 + 2)](Y_n^{8/3} + Y_n^{5/3}Y_p + Y_p^{5/3}Y_n + Y_p^{8/3})$$

$$+ \frac{1}{2} [t_2(2x_2 + 1) - t_1(2x_1 + 1)] F_{8/3}],$$

$$(1.21)$$

где

$$F_m(Y_p) = 2^{m-1} [Y_p^m + (1 - Y_p)^m]$$

$$\varepsilon_{N\Lambda}(Y_p, Y_\Lambda, n) = \frac{3}{5} \frac{\hbar^2}{2m_\Lambda} (3\pi^2)^{2/3} N_\Lambda^{5/3} + u_0 (1 + \frac{\xi_0}{2}) n(Y_\Lambda - Y_\Lambda^2)$$

$$+ \frac{3}{40} (3\pi^2)^{2/3} [u_1 (2 + \xi_1) + u_2 (2 + \xi_2)] n^{5/3} Y_\Lambda (Y_\Lambda^{2/3} - Y_\Lambda^{5/3} + Y_n^{5/3} + Y_p^{5/3}) + \varepsilon_3$$
(1.22)

где для тройных сил:

$$\varepsilon_3 = \frac{1}{4}u_3(1 + \frac{\xi_3}{2})n^2 Y_{\Lambda}(Y_n^2 + 4Y_nY_p + Y_p^2)$$
(1.23)

Для зависимости от плотности:

$$\varepsilon_3 = \frac{3}{8} u_3 (1 + \frac{\xi_3}{2}) n^{\gamma+1} Y_\Lambda (1 - Y_\Lambda)^{\gamma+1}$$
(1.24)

$$\varepsilon_{\Lambda\Lambda}(Y_{\Lambda},n) = \frac{\lambda_0}{4} n Y_{\Lambda}^2 + \frac{3}{40} \lambda_1 (3\pi^2)^{2/3} n^{5/3} Y_{\Lambda}^{8/3}$$
(1.25)

Нейтронная заселённость определяется как $Y_n = 1 - Y_p - Y_\Lambda$, n – барионная плотность материи, вычисляемая в fm^{-3} . С помощью выражений 1.20-1.25 можно рассчитать и остальные необходимые характеристики.

Энергия симметрии (*a_s*) и её производные (*K*, *L_{sym}*). Здесь *n*₀ – плотность насыщения:

$$a_s = \frac{1}{8} \frac{\partial^2 \varepsilon}{\partial Y_p^2}_{Y_p = 1/2} \tag{1.26}$$

$$L = 3n_0 (\frac{\partial a_s}{\partial n})_{n=n_0} \tag{1.27}$$

$$K_{sym} = 9n_0^2 (\frac{\partial^2 a_s}{2})_{n=n_0}$$
(1.28)

Экспериментальное значение плотности насыщения для тяжелых ядер:

$$n_0 = 0.16 \pm 0.005 fm^{-3}$$

Давление рассчитывается по следующей формуле:

$$p = n^2 \frac{d\varepsilon}{dn} \tag{1.29}$$

С учётом 1.20 это можно переписать следующим образом:

$$p(Y_{p}, Y_{\Lambda}, n) = \frac{2}{5} \frac{\hbar^{2}}{2m} (\frac{3\pi^{2}}{2})^{2/3} n^{5/3} F_{5/3} + \frac{2}{5} \frac{\hbar^{2}}{2m_{\Lambda}} (3\pi^{2})^{2/3} n^{5/3} Y_{\Lambda}^{5/3}$$
(1.30)
+ $\frac{1}{4} t_{0} n^{2} [(x_{0} + 2)(Y_{n} + Y_{p})^{2} - (2x_{0} + 1)(Y_{p}^{2} + Y_{n}^{2})]$
+ $\frac{1}{24} t_{3} n^{\sigma+2} (\sigma + 1) [(x_{3} + 2)(Y_{p} + Y_{n})^{\sigma+2} - (2x_{3} + 1)(Y_{p} + Y_{n})^{\sigma} (Y_{p}^{2} + Y_{n}^{2})]$
+ $\frac{5}{40} (\frac{3\pi^{2}}{2}) n^{8/3} [2^{2/3} [t_{1}(x_{1} + 2) + t_{2}(x_{2} + 2)](Y_{n}^{8/3} + Y_{n}^{5/3}Y_{p} + Y_{p}^{5/3}Y_{n} + Y_{p}^{8/3})$
+ $\frac{1}{2} [t_{2} (2x_{2} + 1) - t_{1} (2x_{1} + 1)]F_{8/3}] + u_{0} (1 + \frac{\xi_{0}}{2}) n^{2} (Y_{\Lambda} - Y_{\Lambda}^{2})$
+ $\frac{1}{8} (3\pi^{2})^{2/3} [u_{1} (2 + \xi_{1}) + u_{2} (2 + \xi_{2})] n^{8/3} Y_{\Lambda} (Y_{\Lambda}^{2/3} - Y_{\Lambda}^{5/3} + Y_{n}^{5/3} + Y_{p}^{5/3}) + p_{3}$
+ $\frac{\lambda_{0}}{4} n^{2} Y_{\Lambda}^{2} + \frac{\lambda_{1}}{8} (3\pi^{2})^{2/3} n^{8/3} Y_{\Lambda}^{8/3}$

Соответственно, для тройных сил:

$$\varepsilon_3 = \frac{1}{2}u_3(1 + \frac{\xi_3}{2})n^3 Y_\Lambda(Y_n^2 + 4Y_nY_p + Y_p^2)$$
(1.31)

Для зависимости от плотности:

$$\varepsilon_3 = \frac{3}{8}u_3(1+\frac{\xi_3}{2})(\gamma+1)n^{\gamma+2}Y_{\Lambda}(1-Y_{\Lambda})^{\gamma+1}$$
(1.32)

Также, для дальнейших расчётов необходимо ввести энергетическую плотность материи, которая отличается от H (1.13) тем, что включает

массы частиц и энергетические плотности лептонов:

$$\epsilon(n_e, n_p, n_n, n_\mu) = n_b \varepsilon + n_n m_n c^2 + n_p m_p c^2 + n_\Lambda m_\Lambda c^2 + \epsilon_e(n_e) + \epsilon_\mu(n_\mu)$$
(1.33)

Здесь $n_b = n_n + n_p + n_\Lambda$, а ϵ_{μ} и ϵ_e – энергетические плотности мюонов и электронов соответственно. Они рассчитываются из следующих соображений [17].

Число состояний для свободных электронов в единицу объема:

$$dn = \frac{d^3k}{(2\pi\hbar)^3} = \frac{4\pi k^2 dk}{(2\pi\hbar)^3}$$
(1.34)

Интегрируя это выражение от 0 до k_F (импульс Ферми) получим численную плотность электронов.

$$n_e = \frac{8\pi}{(2\pi\hbar)^3} \int_0^{k_F} k^2 dk = \frac{k_F^3}{3\pi^2\hbar^3}$$
(1.35)

Дополнительная двойка в числителе здесь появляется из-за того, что на каждом энергетическом уровне электрон имеет два возможных направления спина. Из 1.35 получим значение импульса Ферми:

$$k_F = \hbar (3\pi^2 n_e)^{1/3} \tag{1.36}$$

Вклад электронов в энергетическую плотность с учётом их массы покоя определяется следующим выражением:

$$\epsilon_e(k_F) = \frac{8\pi}{(2\pi\hbar)^3} \int_0^{k_F} (k^2 c^2 + m_e^2 c^4)^{1/2} k^2 dk \qquad (1.37)$$
$$= \epsilon_0 \int_0^{k_F/m_e c} (u^2 + 1)^{1/2} u^2 du$$
$$= \frac{\epsilon_0}{8} [(2x^3 + x)(1 + x^2)^{1/2} - \sinh^{-1}(x)]$$

Где $x = k_F/m_ec$, $\epsilon_0 = \frac{m_e^4 c^5}{\pi^2 \hbar^3}$ Плотность энергии для мюонов рассчитывается аналогично. Массовая плотность, которая будет применяться для расчёта массы звезды:

$$\rho(n) = \frac{\epsilon(n)}{c^2} \tag{1.38}$$

Также можно рассчитать скорость звука в ядерной среде:

$$\left(\frac{v}{c}\right)^2 = \frac{dp}{d\epsilon} = \frac{dp}{dn}\frac{dn}{d\epsilon},\tag{1.39}$$

И несжимаемость:

$$K_{inf} = 9n^2 \frac{\partial^2 \varepsilon}{\partial n^2} \tag{1.40}$$

Помимо плотного ядра, которое состоит из ядерной материи и может описываться с помощью взаимодействия Скирма, в нейтронной звезде присутствует кора, состоящая из ядер и фрагментов ядерной материи. Это область значительно отличается от внутренней, и поэтому необходимо использовать отдельное уравнение состояния для описания области малых плотностей. В данной работе для этого используется уравнение состояния, построенное с помощью уравнения Бейма-Петика [18], широко используемого в литературе.

1.3. Нейтронные звёзды

Для расчёта характеристик нейтронной звезды мы проводим численное интегрирование уравнения Толмана-Оппенгеймера-Волкова [7, 19]:

$$\frac{dP}{dr} = \frac{G}{r^2} \frac{\left[\rho(r) + P(r)/c^2\right] \left[m(r) + (4\pi r^3 P(r)/c^2)\right]}{1 - (2Gm(r)/rc^2)}$$
(1.41)

$$\frac{dm}{dr} = 4\pi r^2 \rho(r) \tag{1.42}$$

В этом выражении r – радиальная переменная, отсчитываемая от центра звезды, P(r) и $\rho(r)$ – давление и плотность материи на расстоянии r от центра, G – гравитационная постоянная.

$$m(r) = \int_{0}^{r} 4\pi r^{2} \rho(r) dr \qquad (1.43)$$

Величина m(r) может быть интерпретирована, как масса внутри сферы радиуса r, а полная масса звезды вычисляется как

$$M = m(R) = \int_{0}^{R} 4\pi r^{2} \rho dr$$
 (1.44)

В этом выражении R - полный радиус звезды. Вкупе с уравнением состояния уравнение Оппенгеймера-Волкова полностью определяет структуру сферически симметричной равновесной невращающейся звезды. В качестве уравнения состояния будем использовать выражения для P(n) и $\rho(n)$ (1.30,1.38)

Основной вклад в уравнение Оппенгеймера-Волкова можно вывести из простейших соображений Ньютоновской механики. Для сферическисимметричного распределения вещества масса определяется из выражения 1.43. Будем считать что $\rho(r) \approx const$. Рассмотрим элемент звезды площадью dS и толщиной dr. Для достижения равновесия сила давления на него должна компенсировать силу гравитационного сжатия. Сила притяжения между m(r) и $dm = \rho dS dr$ следующая.

$$F_{g} = \frac{Gm(r)}{r^{2}}dm = \frac{Gm(r)\rho dS}{r^{2}}dr$$
 (1.45)

Разница давлений даёт вклад:

$$F_p = dS(P(r) - P(r + dr)) = dSdr\frac{dP}{dr}$$
(1.46)

Для достижения равновесия необходимо:

$$F_p = F_g \tag{1.47}$$

$$dSdr\frac{dP}{dr} = \frac{Gm(r)\rho dS}{r^2}dr \tag{1.48}$$

$$\frac{dP}{dr} = \frac{Gm(r)\rho}{r^2} \tag{1.49}$$

Выражение 1.49 отражает основной вклад в уравнение Оппенгеймера-Волкова.

2. Нуклонная материя

Данная часть работы посвящена изучению нейтронных звёзд, состоящих исключительно из нуклонной материи. Несмотря на то, что при высоких плотностях в материи должны появляться гипероны, гиперон-нуклонное взаимодействие естественным образом изучено хуже, чем нуклон-нуклонное. Таким образом учёт только нуклонных и лептонных степеней свободы позволяет установить наиболее надёжные закономерности. В этой части работы мы исследуем связь между свойствами ядерной материи и характеристиками нейтронных звёзд. Одной из важнейших характеристик материи нейтронных звёзд является энергия симметрии. Она отражает тенденцию к стабильности ядер и материи с N=Z.

Ранее взаимосвязь между свойствами ядерной материи и некоторыми характеристиками нейтронных звезд была рассмотрена в работе [11]. Авторы использовали свыше 80 различных параметризаций скирмовского типа уравнения состояния ядерной материи, уделяя особое внимание зависимости энергии симметрии от плотности, предсказываемой этими параметризациями. Некоторые параметризации дают монотонный рост энергии симметрии с плотностью, в других же энергия симметрии достигает максимума при некотором значении $n > n_0$, а затем начинает убывать. Было показано, что в первом случае доли протонов и нейтронов в материи нейтронных звёзд постепенно приближаются друг к другу в согласии с большим количеством предшествующих работ, но во втором случае протоны могут исчезнуть при больших плотностях, и материя становится чисто нейтронной. На рисунке 1 и рисунке 2 на примере параметризаций SkO [20] и SkX [21] показаны примеры зависимости энергии симметрии от плотности и соответствующих зависимостей протонных и лептонных заселенностей для двух групп взаимодействий.

Рис. 1: Зависимость энергии симметрии a_s от плотности n для параметризаций SkO(слева) и SkX(справа)

Рис. 2: Зависимость заселённостей *Y* от плотности *n* для параметризаций SkO(слева) и SkX(справа)

Также в работе [11] отмечается, что только взаимодействия первой группы позволяют удовлетворительно описать экспериментальные оценки масс и радиусов нейтронных звезд, в связи с чем данная группа параметров признана наиболее реалистичной. Однако в дальнейшем в работе [9] был проведен анализ 240 наборов параметров Скирма на основе развернутого набора критериев и в состав отобранных параметризаций также вошли взаимодействия, предсказывающие наличие максимума в зависимости энергии симметрии от плотности.

В ходе нашей работы было протестировано 42 различные параметризации Скирма, включая взаимодействия, отобранные в работе [9], при этом использовались только те наборы параметров, которые удовлетворяют стандартному виду потенциала Скирма. Для выбранных взаимодействий были рассчитаны зависимости массы от радиуса нейтронной звезды и рассмотрены корреляции этих характеристик с характеристиками ядерной материи. Что касается параметризаций второй группы, были отобраны только те наборы параметров, для которых прогнозируемая максимальная масса нейтронной звезды превосходит массу в 1.4 M_{\odot} . Также в целях максимально объективной оценки величины корреляций использовалось минимальное количество параметризаций, относящихся к одному семейству.

Для численной оценки величины корреляций использовался коэффициент корреляции Пирсона. Значение коэффициента может варьироваться от 1 до –1 и определяет величину линейной корреляции между двумя величинами, при этом знак указывает на наличие прямой или обратной зависимости. В таблице 1 представлены коэффициенты Пирсона для корреляций между различными характеристиками материи и нейтронных звёзд.

Таблица 1: Коэффиценты корреляц	ии Пирсона между	свойствами	ядерной
материи и характеристиками нейтр	онных звёзд.		

	$n(1, 4M_{\odot})$	$R(1, 4M_{\odot})$	$A(1, 4M_s)$	$n(M_{max})$	M_{max}	$R(M_{max})$
E_0	0.18	-0.09	0.30	.24	-0.30	-0.49
K_{inf}	-0.46	0.55	-0.62	-0.63	0.64	0.58
a_s	-0.35	0.39	-0.52	-0.38	0.29	0.65
L	-0.63	0.82	-0.76	-0.68	0.53	0.72
K_{sym}	-0.73	0.88	-0.72	-0.76	0.65	0.75
Q_{sym}	0.45	-0.71	0.66	0.51	-0.33	-0.46
$K_{\tau,v}$	0.34	-0.55	0.71	0.48	-0.33	-0.52
m*	0.28	-0.37	0.31	0.43	-0.48	-0.29

Наиболее наблюдаются корреляции сильные между характеристиками нейтронных звёзд и характеристиками материи, (L K_{sum}). Также зависящими ОТ изоспиновой асимметрии И наблюдаются существенно меньшие корреляции для несжимаемости

 (K_{∞}) и эффективной массы (m*). Взаимосвязь между L, K_{∞}, K_{sym} и характеристиками нейтронных звёзд проиллюстрирована на рис. 3.

Рис. 3: Корреляции между характеристиками нейтронных звёзд (максимальная масса и соответствующий ей радиус $(M_{max}, R(M_{max}))$ и радиус при массе в 1.4 массы Солнца $(R(1.4M_{\odot})))$ и свойствами ядерной материи (несжимаемость (K_{∞}) и производные от энергии симметрии(L и $K_{sym})$)

Все реалистические уравнения состояния согласуются с энергией и плотностью насыщения симметричной ядерной материи. Однако характеристики нейтронных звезд сильно зависят от поведения уравнения состояния при больших плотностях. Обычно мягкость или жесткость уравнения состояния ассоциируется с несжимаемостью симметричной ядерной материи K_{∞} . Однако материя нейтронной звезды далека от изоспиновой симметрии (Y_p =0.5). Хорошо известно, что сильное влияние на характеристики нейтронных звёзд оказывает производная энергии симметрии L. Обращает на себя внимание то, что из других характеристик наибольшая роль принадлежит K_{sym} и Q_{sym} — величинам, определяющим наряду с L зависимость энергии симметрии от плотности, в то время как влияние K_{∞} слабее. Последняя величина лишь косвенно связана с жесткостью уравнения состояния материи нейтронных звезд.

Также были рассмотрены результаты некоторых вычислений характеристик нейтронных звезд в релятивистской теории среднего поля [22]. На рис. 4 показаны корреляции между радиусом нейтронной звезды при массе в $1.4M_{\odot}$ и второй производной от энергии симметрии K_{sym} для расчётов релятивистской теории среднего поля и параметризаций Скирма. Видно, что корреляции в обоих подходах носят схожий характер. Это указывает на то, что установленные взаимосвязи являются модельно независимыми и отражают объективные физические закономерности.

Рис. 4: Корреляции между радиусом нейтронной звезды при массе в 1.4 массы Солнца $R(1.4M_{\odot})$) и второй производной от энергии симметрии K_{sym} для расчётов с использованием релятивистской модели среднего поля (белым цветом) и параметризаций Скирма (черным цветом)

С помощью уравнения 1.41 была рассчитана зависимость массы нейтронной звезды от радиуса для различных параметризаций нуклоннуклонного взаимодействия. Полученная зависимость представлена на рисунке 5.

Рис. 5: Зависимость массы нейтронной звезды от радиуса для различных параметризаций нуклон-нуклонного взаимодействия

Данная зависимость показывает, что используемая модель адекватно описывает такие важные характеристики нейтронной звезды, как масса и радиус. Среди рассмотренных параметризаций к наибольшей максимальной массе приводит параметризация SkI3 [23], что будет учтено в дальнейшем.

Достаточно сильное влияние на характеристики нейтронной звезды оказывает её кора, состоящая из ядер тяжелее железа и фрагментов ядерной материи. Кора даёт небольшой вклад в максимальную массу нейтронной звезды и достаточно ощутимый вклад в её радиус. Данная особенность отражена в таблице 2, где приведены характеристики нейтронных звёзд для набора параметризаций рассчитанные с корой и без неё.

Таблица 2: Массы и радиусы нейтронных звёзд в расчётах с использованием приближения для коры и без него

Характеристики		SkM*	Sly230a	SkI3	SkO
M _{max}	С корой	1,61	2,08	$2,\!17$	1,96
	Без коры	1,6	$2,\!07$	$2,\!15$	$1,\!94$
$R(M_{max})$	С корой	8,87	10,17	11,02	$10,\!17$
	Без коры	8,45	$9,\!83$	$10,\!43$	$9,\!63$

Таким образом, модель, не включающая описание коры, позволяет относительно адекватно описывать максимальную массу звезды, но непригодна для описания характеристик при меньших плотностях.

3. Гиперон-нуклонная материя

Во этой части работы мы изучаем материю с Λ -гиперонами и исследуем, как их присутствие влияет на характеристики нейтронных звёзд.

Хотя состав внутреннего ядра нейтронной звезды точно неизвестен, большинство существующих моделей включает в состав нейтронной звезды гипероны. При больших плотностях химический потенциал нейтрона превосходит массу Λ-гиперона, что ведёт к появлению гиперонов в материи. Условие появления Λ-гиперонов выглядит следующим образом:

$$\mu_{\Lambda}(Y_{\Lambda}=0) = \mu_n + m_n - m_{\Lambda} \tag{3.1}$$

Однако, несмотря на то, что появление гиперонов в нейтронной звезде кажется, на сегодняшний день, наиболее вероятным вариантом, оно ведёт к возникновению проблемы под названием "hyperon puzzle". Она заключается в том, что модели, описывающие нейтронные звёзды с гиперонами предсказывают меньшую максимальную массу звезды, чем массы, наблюдаемые в эксперименте. Эта проблема связана с тем, что появление гиперонов сильно смягчает уравнение состояния. Основным направлением поиска решений этой проблемы является более глубокое исследование гиперон-нуклонного и гиперон-гиперонного взаимодействий и поиск более жестких уравнений состояния [24,25].

работе мы концентрируем внимание на В данной гипероннуклонном взаимодействии и исследуем, как его особенности влияют на характеристики нейтронных звёзд. Эти свойства относительно хорошо изучены гиперядер, однако в нейтронных звёздах ДЛЯ возможно возникновение некоторых эффектов, влияющих на характеристики нейтронных звёзд.

В ходе работы были протестированы различные комбинации ряда параметризаций для гиперон-нуклонного (YBZ2, YBZ6 [26], SLL4' [27], LYI [16], YMR [28]) и гиперон-гиперонного взаимодействий (SLL1', SLL3' [29], SLL2 [15]). В качестве параметризации нуклон-нуклонного взаимодействия используется преимущественно параметризация SkI3, поскольку она приводит к наиболее жесткому уравнению состояния и к наибольшей максимальной массе звезды.

Рассмотрим, как меняется состав материи при появлении гиперонов. На рисунке 6 изображена зависимость заселённостей различных компонент материи от плотности для двух комбинаций NN- и ΛN -параметризаций.

Рис. 6: Заселеннности (Y) компонент материи в зависимости от плотности для двух различных комбинаций параметризаций NN- и ΛN - взаимодействия

С ростом плотности количество А-гиперонов в материи резко возрастает и гипероны занимают значительную часть материи. В определённых случаях гиперонная заселённость при высокой плотности может превосходить нейтронную.

Таким образом, при появлении гиперонов, в материи появляется новая массивная частица, которая при этом взаимодействует с нуклонами в среде. На рисунке 7 изображена зависимость массы нейтронной звезды от радиуса для различных уравнений состояния: исключительно нуклонная материя (чёрным цветом), материя с гиперонами, не взаимодействующими с нуклонами (красным), материя с гиперонами и ΛN -взаимодействием (зелёным) и материя с гиперонами, ΛN - и $\Lambda \Lambda$ -взаимодействием.

Рис. 7: Зависимость массы нейтронной звезды от радиуса для различных уравнений состояния

Видно что результат для материи с невзаимодействующими гиперонами значительно отличается от материи с ΛN -взаимодействием. Таким образом, несмотря на то, что ΛN -взаимодействие слабее нуклоннуклонного, оно оказывает значительное влияние на характеристики нейтронных звёзд.

Далее изучается влияние свойств гиперон-нуклонного взаимодействие на характеристики звезды, в частности разница в описании звёзд с помощью тройных сил (1.6) и зависимости от плотности (1.7), а также зависимость от показателя степени γ в выражении 1.7. На рисунке 8 изображена зависимость давления в материи от плотности для исключительно нуклонного уравнения состояния и двух уравнений состояния с наличием гиперонов ($\gamma = 1$ и $\gamma = 1/3$).

Видно, что любое включение гиперонов смягчает уравнение состояния, поскольку возникает дополнительная степень свободы. Однако параметризация ΛN -взаимодействия с $\gamma = 1$ приводит к более жесткому уравнению состояния, чем параметризация с $\gamma = 1/3$.

Мы исследовали влияние свойств гиперон-нуклонного

Рис. 8: Зависимость давления от плотности для различных комбинаций параметризаций NN- и ΛN -взаимодействий

взаимодействия на характеристики нейтронных звёзд, сравнивая зависимости масса-радиус, полученные для различных параметризаций ΛN -взаимодействия при фиксированных параметризациях $\Lambda \Lambda$ взаимодействия. Пример такой зависимости можно увидеть на рисунке 9. Зависимости для других $\Lambda \Lambda$ -взаимодействий выглядят аналогичным образом.

Рис. 9: Зависимость массы от радиуса для нейтронных звёзд с различными параметризациями ΛN -взаимодействия

Добавление гиперонов значительно смягчает уравнение состояния и уменьшает максимальную массу нейтронной звезды по сравнению со случаем, когда в состав звезды входят только нуклоны и лептоны. Однако, из рисунка 9 видно, что параметризации с $\gamma = 1$ (YBZ2, YBZ6 и SLL4') приводят к более жесткому уравнению состояния и большей максимальной массе, чем параметризации с $\gamma < 1$ (LYI,YMR). Таким образом, можно говорить о том, что группа параметризаций с $\gamma = 1$ более предпочтительна для описания характеристик нейтронных звёзд с точки зрения отбора по максимальной массе.

На рисунке 10 изображена аналогичная зависимость для фиксированной параметризации ΛN-взаимодействия и различных параметризаций ΛΛвзаимодействия. Также на этом рисунке пунктирной линией изображены данные, полученные с использованием тройных сил, а сплошной линией зависимости от плотности.

Рис. 10: Зависимость массы от радиуса для нейтронных звёзд с различными параметризациями Λλ-взаимодействия. Пунктирной линией изображены кривые построенные с тройными силами, сплошной линией с зависимостью от плотности

В отличии от гиперядер, в нейтронных звёздах эти два случая неэквивалентны, хотя этот эффект и является более тонким, чем зависимость от значения показателя степени γ . Тройные силы всегда приводят к меньшей максимальной массе звезды, чем зависимость от плотности, что, по-видимому, можно объяснить следующим образом: в случае тройных сил в материи с большим количеством нейтронов сильнее работает принцип Паули, два нуклона могут образовываться только в синглетном, а не триплетном состоянии, что приводит к уменьшению тройных сил по сравнению с зависимостью от плотности. Тройные силы положительные и соответствуют отталкиванию между частицами, поэтому их уменьшение ведёт к уменьшению отталкивания и, следовательно, к смягчению уравнения состояния.

Что касается зависимости от выбора $\Lambda\Lambda$ -взаимодействия, на рисунке 10 видно, что он довольно сильно влияет и на максимальную массу нейтронной звезды и на соответствующий радиус. Однако, естественным образом, $\Lambda\Lambda$ -взаимодействие изучено достаточно слабо, все существующие параметризации основаны на только на данных по основным состояниям $\Lambda\Lambda$ -гиперядер и опираются на маленькую экспериментальную базу. Поэтому эта область остаётся малоизученной и сложной для анализа.

Поскольку используемая в этой работе модель Скирма является нерелятивистской, в ней возможно возникновение ситуации, когда скорость звука в среде превосходит скорость света. Эта ситуация, очевидно, является нефизической и значительно ограничивает область применения данной модели. Однако включение в модель гиперонов и смягчение уравнения состояния значительно увеличивает плотность, при которой скорость звука достигает скорости света и расширяет границы применимости модели.

На рисунке 11 приведена зависимость отношения скорости звука к скорости света от плотности, на которой видно, что при наличии гиперонов скорость звука превышает скорость света при плотностях, более чем в девять раз превышающих плотность насыщения ядерной материи, которые, как правило, не достигаются в нейтронных звёздах.

Рис. 11: Зависимость отношения скорости звука к скорости света от плотности для различных комбинаций параметризаций

Таким образом, добавление гиперонов существенно увеличивает диапазон плотностей, в котором может быть применена модель Скирма.

ЗАКЛЮЧЕНИЕ

В данной работе рассмотрена состоящая из нейтронов, протонов, электронов, мюонов и Λ -гиперонов ядерная материя в сильном гравитационном поле, как структурный элемент нейтронных звёзд. Для построения модели нейтронной звезды использовалось уравнение состояния, основанное на потенциале Скирма и уравнение Толмана-Оппенгеймера- Волкова. Были рассчитаны следующие характеристики материи: энергия на нуклон, давление, химические потенциалы, энергия симметрии и её производные. Также были рассчитаны массы, радиусы и число барионов для нейтронных звёзд.

В первой части работы рассматривалась нуклонная материя и её свойства, в частности энергия симметрии. Были рассчитаны корреляции между свойствами ядерной материи и характеристиками нейтронных звёзд. Основным выводом этого исследования является то, что наиболее сильное влияние на характеристики нейтронных звезд оказывают первая, вторая и третья производные энергии симметрии ядерной материи по плотности, в то время как влиянии несжимаемости материи заметно меньше. Также изучалась возможность описания наблюдаемых характеристик нейтронных звёзд с использованием взаимодействия Скирма и была отобрана параметризация SkI3, как приводящая к наибольшей максимальной массе звезды.

Во второй части работы рассмотрена материя содержащая Λ гипероны. Изучались свойства гиперон-нуклонного и гиперон-гиперонного взаимодействия и влияние их особенностей на характеристики нейтронных звёзд, в частности влияние коэффициента γ в зависимости от нуклонной плотности в ΛN -потенциале Скирма. Было получено, что наиболее подходящими для описания нейтронных звёзд являются параметризации

с $\gamma = 1$. Также изучалась разница в описании трёхчастичного гипероннуклонного взаимодействия в нейтронных звёздах с помощью тройных сил и зависимости от нуклонной плотности. Хотя добавление в материю гиперонов, как известно, значительно смягчает уравнение состояния, усложняя задачу достижения в модели максимальной массы в 2 M_{\odot} , в то же время оно расширяет границы применимости модели Скирма при высоких плотностях.

Результаты работы были представлены на конференциях «Ядро-2020», «Концентрированные потоки энергии в космической технике, электронике, экологии и медицине 2021», «Ломоносов-2020» и «Ломоносов-2022». Также результаты были опубликованы в журнале «Физика элементарных частиц и атомного ядра» [30]. Автор выражает благодарность Т. Ю. Третьяковой за прекрасное осуществление научного руководства, Д. Е. Ланскому за полезные консультации и обсуждения, а также Артуру Насакину за активное участие в дискуссиях.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Шапиро С.Л, Тьюколски С.А, Смородинский Я.А. Черные дыры, белые карлики и нейтронные звезды часть 2. 1985.
- Потехин А.Ю. Физика нейтронных звёзд // Усп. физ. наук. 2010. Vol. 180, по. 12. — Р. 1279–1304.
- 3. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral / Abbott B. P., Abbott R., Abbott T. D., Acernese F., Ackley K., Adams C., Adams T., Addesso P., and Adhikari // Phys. Rev. Lett. - 2017. - Oct. - Vol. 119. - P. 161101.
- 4. Identification of strontium in the merger of two neutron stars / Watson Darach, Hansen Camilla J., Selsing Jonatan, Koch Andreas, Malesani Daniele B., Andersen Anja C., Fynbo Johan P. U., Arcones Almudena, Bauswein Andreas, Covino Stefano, and et al. // Nature. - 2019. - Oct. - Vol. 574, no. 7779. - P. 497-500.
- 5. Relativistic Shapiro delay measurements of an extremely massive millisecond pulsar / Cromartie H. T., Fonseca E., Ransom S. M., Demorest P. B., Arzoumanian Z., Blumer H., Brook P. R., DeCesar M. E., Dolch T., Ellis J. A., and et al. // Nature Astronomy. – 2019. – Sep. – Vol. 4, no. 1. – P. 72–76.
- 6. Фортов В.Е. Физика высоких плотностей энергии. 2013.
- Oppenheimer J. R., Volkoff G. M. On Massive Neutron Cores // Phys. Rev. - 1939. - Feb. - Vol. 55. - P. 374-381.
- 8. Skyrme T.H.R. The effective nuclear potential // Nuclear Physics. 1958. Vol. 9, no. 4. P. 615-634.

- 9. Skyrme interaction and nuclear matter constraints / Dutra M., Lourenç o O., Martins J. S. Sá, Delfino A., Stone J. R., and Stevenson P. D. // Physical Review C. - 2012. - mar. - Vol. 85, no. 3.
- 10. Mornas, L. Neutron stars in a Skyrme model with hyperons // Eur. Phys. J. A. -2005. Vol. 24, no. 2. P. 293–312.
- Nuclear matter and neutron-star properties calculated with the Skyrme interaction / Rikovska Stone J., Miller J. C., Koncewicz R., Stevenson P. D., and Strayer M. R. // Phys. Rev. C. - 2003. - Sep. - Vol. 68. - P. 034324.
- 12. A Skyrme parametrization from subnuclear to neutron star densities / Chabanat E., Bonche P., Haensel P., Meyer J., and Schaeffer R. // Nuclear Physics A. – 1997. – Vol. 627, no. 4. – P. 710–746.
- Vautherin D., Brink D. M. Hartree-Fock Calculations with Skyrme's Interaction. I. Spherical Nuclei // Phys. Rev. C. - 1972. - Mar. - Vol. 5. -P. 626-647.
- 14. Rayet M. Skyrme parametrization of an effective Λ -nucleon interaction.
- Lanskoy D. E. Double-Λ hypernuclei in the Skyrme-Hartree-Fock approach and nuclear core polarization // Phys. Rev. C. – 1998. – Dec. – Vol. 58. – P. 3351–3358.
- 16. Lanskoy D. E., Yamamoto Y. Skyrme-Hartree-Fock treatment of Lambda and Lambda Lambda hypernuclei with G-matrix motivated interactions // Phys. Rev. C. - 1997. - Vol. 55. - P. 2330-2339.
- Silbar Richard R., Reddy Sanjay. Neutron stars for undergraduates // American Journal of Physics. - 2004. - Vol. 72, no. 7. - P. 892–905.
- Baym Gordon, Pethick Christopher, Sutherland Peter. The Ground State of Matter at High Densities: Equation of State and Stellar Models // The Astrophysical Journal. — 1971. — Dec. — Vol. 170. — P. 299.
- Tolman Richard C. Static Solutions of Einstein's Field Equations for Spheres of Fluid // Phys. Rev. - 1939. - Feb. - Vol. 55. - P. 364-373.

- 20. Shape coexistence and the effective nucleon-nucleon interaction / Reinhard P.-G., Dean D. J., Nazarewicz W., Dobaczewski J., Maruhn J. A., and Strayer M. R. // Physical Review C. — 1999. — jun. — Vol. 60, no. 1.
- 21. Alex Brown B. New Skyrme interaction for normal and exotic nuclei // Phys. Rev. C. -1998. Jul. Vol. 58. P. 220–231.
- 22. Dutra Mariana, Lourenço Odilon, Menezes Débora P. Stellar properties and nuclear matter constraints // Phys. Rev. C. - 2016. - Feb. - Vol. 93. -P. 025806.
- Reinhard P.-G., Flocard H. Nuclear effective forces and isotope shifts // Nuclear Physics A. - 1995. - Vol. 584, no. 3. - P. 467-488.
- 24. Bombaci Ignazio. The Hyperon Puzzle in Neutron Stars // Journal of the Physical Society of Japan. -2017.
- 25. Friedman E., Gal A. Constraints from Λ hypernuclei on the ΛNN content of the Λ -nucleus potential and the 'hyperon puzzle'. -2022.
- 26. Yamamoto Yasuo, Bandō Hiroharu, Žofka J. On the -Hypernuclear Single Particle Energies // Progress of Theoretical Physics. — 1988. — 11. — Vol. 80, no. 5. — P. 757–761.
- 27. Schulze H.-J., Hiyama E. Skyrme force for light and heavy hypernuclei // Phys. Rev. C. 2014. Oct. Vol. 90. P. 047301.
- Rijken Thomas, Nagels M., Yamamoto Yasuo. Baryon-Baryon Interactions Nijmegen Extended-Soft-Core Models // Progress of Theoretical Physics Supplement - PROG THEOR PHYS SUPPL. - 2010. - 05. - Vol. 185. -P. 14-71.
- 29. Minato F., Chiba S. Fission barrier of actinide nuclei with double- particles within the Skyrme–Hartree–Fock method // Nuclear Physics A. – 2011. – Vol. 856, no. 1. – P. 55–67.
- 30. Mikheev S.A., Lanskoy D.E., Tretyakova T.Y. Correlations between Properties of Nuclear Matter and Characteristics of Neutron Stars // Phys. Part. Nuclei. - 2022. - Vol. 58. - P. 409-414.

ПРИЛОЖЕНИЕ 1. РАСЧЁТ ПЛОТНОСТИ ЭНЕРГИИ

Получим плотность энергии из потенциала на примере потенциала нуклон-нуклонного взаимодействия, следуя работе [13]. Энергия в материи рассчитывается следующим образом:

$$E = \langle \phi | T + V | \phi \rangle = \sum_{i} \langle i | T_{i} | i \rangle + \frac{1}{2} \sum_{i,j} \langle ij | V_{ij} | ij \rangle + \frac{1}{6} \sum_{i,j,k} \langle ijk | V_{ijk} | ijk \rangle = \int H dr$$
(3.2)

В выражении 3.2 первое слагаемое определяет кинетическую энергию, второе - вклад в потенциальную энергию от потенциала двухчастичного взаимодействия, третье - вклад тройных сил, *H* – плотность энергии.

Потенциал 1.1 можно записать через следующую сумму:

$$V_{NN} = \sum_{k} v_k$$

Индекс k соответствует индексу параметров t в выражении 1.1.

Вклад каждого слагаемого v_k в потенциальную энергию системы определяется выражением:

$$U_k = \frac{1}{2} \sum_{ij} \langle ij | v_k (1 - P_M P_\sigma P_\tau) | ij \rangle = \int H_k dr, \qquad (3.3)$$

где множитель $(1 - P_M P_\sigma P_\tau)$ соответствует антисимметризации волновых функций. P_M -Майорановский обменный оператор, P_σ -спиновый, P_{τ} -изоспиновый.

Существует известное соотношение, связывающие волновую функцию (ϕ) и плотность материи (n).

$$\sum_{i,\sigma} |\phi_i(\overrightarrow{r},\sigma,q)|^2 = n_q \tag{3.4}$$

В этом выражении q обозначает третью проекцию изоспина.

Запишем некоторые другие соотношения, связывающие волновые функции и характеристики материи, которые понадобятся нам в дальнейшем.

$$\sum_{i} |\nabla \phi_i|^2 = \tau \tag{3.5}$$

$$\sum_{i} \phi_i^* \nabla \phi_i = \frac{1}{2} \nabla n \tag{3.6}$$

Распишем также выражение для $\nabla^2 n$:

$$\nabla^2 n = \nabla^2 \sum_i |\phi_i|^2 = \nabla \left(\sum_i \nabla \phi_i^* \phi_i + \sum_i \phi_i^* \nabla \phi_i\right) =$$

$$= 2 \sum_i \phi_i^* \nabla^2 \phi_i + 2 \sum_i |\nabla \phi_i|^2 = 2 \sum_i \phi_i^* \nabla^2 \phi_i + 2\tau$$
(3.7)

Теперь можно отдельно рассчитать вклад каждого слагаемого v_k в потенциальную энергию. Для v_0 он выглядит следующим образом:

$$U_0 = \frac{1}{2} \sum_{ij} \langle ij | t_0 \delta(\overrightarrow{r}) (1 + x_0 P_\sigma) (1 - P_M P_\sigma P_\tau) | ij \rangle$$
(3.8)

Здесь и далее под $\delta(\vec{r})$ подразумевается $\delta(\vec{r_1} - \vec{r_2})$. В данном случае δ -силы действуют только на S-волну, поэтому $P_M=1$. Кроме того, предполагается что зарядовые состояния Хартри-Фока не смешиваются, поэтому оператор обмена изоспином соответствует множителю $P_{\tau} = \delta_{q_i q_j}$, где q_i - проекция изоспина одночастичного состояния i.

Распишем произведение

$$(1 + x_0 P_{\sigma})(1 - \delta_{q_i q_j} P_{\sigma}) = 1 - x_0 \delta_{q_i q_j} + \frac{1}{2} (1 + \overrightarrow{\sigma_1} \overrightarrow{\sigma_2})(x_0 - \delta_{q_i q_j})$$
(3.9)

Подставим его в выражение для U₀

$$U_{0} = \frac{1}{2} \sum_{ij} \int dr \phi_{i}^{*} \phi_{j}^{*} (1 - x_{0} \delta_{q_{i}q_{j}} + \frac{1}{2} (1 + \overrightarrow{\sigma_{1}} \overrightarrow{\sigma_{2}}) (x_{0} - \delta_{q_{i}q_{j}})) \phi_{i} \phi_{j} \qquad (3.10)$$

Учтём, что $\sum_{i} \phi_i^* \overrightarrow{\sigma} \phi_i = 0$ и тогда слагаемые с $\overrightarrow{\sigma_1} \overrightarrow{\sigma_2}$ тоже равны нулю. Стоит сразу отметить, что $\overrightarrow{\sigma_1} \overrightarrow{\sigma_2}$ может давать вклад в потенциальную энергию, например при комбинации $(\overrightarrow{\nabla_1}\overrightarrow{\nabla_2})(\overrightarrow{\sigma_1}\overrightarrow{\sigma_2})$, но эти члены будут зависеть от спиновой плотности (J) и равны нулю в однородной неполяризованной материи, которая рассматривается в данной работе. Учитывая также выражение 3.4 получим следующее выражения для U_0 .

$$U_{0} = \frac{1}{2} \sum_{ij} \int dr \phi_{i}^{*} \phi_{j}^{*} (1 + \frac{x_{0}}{2} - \delta_{q_{i}q_{j}}(x_{0} + \frac{1}{2})) \phi_{i} \phi_{j} = (3.11)$$
$$= \frac{1}{2} t_{0} \int dr (n^{2} (1 + \frac{x_{0}}{2}) - (x_{0} + \frac{1}{2})(n_{n}^{2} + n_{p}^{2}))$$

Соответственно, выражение для плотности энергии:

$$H_0 = \frac{1}{4}t_0(n^2(2+x_0) - (2x_0+1)(n_n^2+n_p^2))$$
(3.12)

Распишем теперь член, пропорциональный t_1 .

$$U_1 = \frac{1}{2} \sum_{ij} \langle ij | \frac{1}{2} t_1(\overrightarrow{P'}^2 \delta(\overrightarrow{r'}) + \delta(\overrightarrow{r'}) \overrightarrow{P'}^2) (1 + x_1 P_\sigma) (1 - P_m P_\sigma P_\tau) | ij \rangle \quad (3.13)$$

Учитывая, что, также как и в предыдущем случае, $P_M = 1, P_{\tau} = \delta_{q_i q_j}$ и оператор \overrightarrow{P}' - комплексно сопряженный к \overrightarrow{P} , можно переписать выражение 3.13 в следующем виде:

$$U_1 = \frac{1}{4} t_1 \sum_{ij} \langle ij | (\delta(\overrightarrow{r}) \overrightarrow{P}^2) (1 + x_1 P_\sigma) (1 - \delta_{q_i q_j} P_\sigma) | ij \rangle + H.C.$$
(3.14)

Здесь Н.С. – слагаемое комплексно сопряженное к первому.

Учтём также, что в нашем случае слагаемое с $\sigma_1 \sigma_2$ не даёт вклада в энергию и запишем для произведения, входящего в матричный элемент:

$$(1 + x_1 P_{\sigma})(1 - \delta_{q_i q_j} P_{\sigma}) = 1 + x_1 P_{\sigma} - \delta_{q_i q_j} (P_{\sigma} + x_1) = (3.15)$$
$$= \frac{1}{2} (2 + x_1 - \delta_{q_i q_j} (1 + 2x_1))$$

Оператор P^2 выглядит следующим образом:

$$P^{2} = \frac{1}{4} (2\nabla_{1}\nabla_{2} - \nabla_{1}^{2} - \nabla_{2}^{2})$$
(3.16)

Запишем оператор $\delta(r)P^2$ в обкладках волновых функций и учтём

выражения 3.4-3.8

$$\phi_{i}^{*}(r_{1})\phi_{j}^{*}(r_{2})\delta(r)P^{2}\phi_{i}(r_{1})\phi_{j}(r_{2}) =$$

$$= \frac{1}{4}(\phi_{i}^{*}\phi_{j}^{*}\nabla\phi_{i}\nabla\phi_{j} - \phi_{i}^{*}\phi_{j}^{*}\phi_{j}\nabla^{2}\phi_{i} - \phi_{i}^{*}\phi_{j}^{*}\phi_{i}\nabla^{2}\phi_{j}) =$$

$$= \frac{1}{4}(\frac{1}{2}(\nabla n)^{2} - 2n(\frac{1}{2}\nabla^{2}n - \tau)) = \frac{1}{2}(\frac{3}{4}(\nabla n)^{2} + \tau n)$$
(3.17)

Здесь в последней строчке учтено, что $n\nabla^2 n = -(\nabla n)^2$. Теперь подставим все полученные выражения в интеграл для U_1 .

$$U_{1} = \frac{1}{4}t_{1} \int dr \frac{1}{2} (\frac{3}{4}(\nabla n)^{2} + \tau n) \frac{1}{2} (2 + x_{1} - \delta_{q_{i}q_{j}}(1 + 2x_{1})) + H.C. = (3.18)$$

$$= \int dr (\frac{1}{8}t_{1}[(2 + x_{1})n\tau - (1 + x_{2})(n_{n}\tau_{n} + n_{p}\tau_{p})] + \frac{3}{32}t_{1}[[(2 + x_{1})(\nabla n)^{2} - (1 + x_{2})((\nabla n_{n})^{2} + (\nabla n_{p})^{2})])$$

Соответствующая плотность энергии:

$$H_{1} = \frac{1}{8} t_{1} [(2+x_{1})n\tau - (1+x_{2})(n_{n}\tau_{n} + n_{p}\tau_{p})] + \frac{3}{32} t_{1} [[(2+x_{1})(\nabla n)^{2} - (1+x_{2})((\nabla n_{n})^{2} + (\nabla n_{p})^{2})]$$
(3.19)

Выражение для U_2 рассчитывается схожим способом, но член v_2 действует на Р-волну, поэтому Майорановский обменный оператор $P_M = -1$.

$$U_{2} = \frac{1}{2} \sum_{ij} \langle ij | t_{2}(1 + x_{2}P_{\sigma}) \overrightarrow{P}' \delta(\overrightarrow{r}) \overrightarrow{P} (1 - P_{M}P_{\sigma}P_{\tau}) | ij \rangle =$$
(3.20)
$$= \frac{1}{8} \sum_{ij} \langle ij | t_{2}(1 + x_{2}P_{\sigma}) (\nabla_{1}' - \nabla_{2}') \delta(\overrightarrow{r}) (\nabla_{1} - \nabla_{2}) (1 + P_{\sigma}\delta_{q_{i}q_{j}}) | ij \rangle$$

Используя свойства симметрии можем записать:

$$(\nabla_1' - \nabla_2')\delta(\overrightarrow{r})(\nabla_1 - \nabla_2) = \nabla_1'\delta(\overrightarrow{r})\nabla_1 - \nabla_1'\delta(\overrightarrow{r})\nabla_2 - \nabla_2'\delta(\overrightarrow{r})\nabla_1 \quad (3.21)$$
$$+ \nabla_2'\delta(\overrightarrow{r})\nabla_2 = 2\nabla_1'\delta(\overrightarrow{r})\nabla_1 - 2\nabla_2'\delta(\overrightarrow{r})\nabla_1$$

Запишем этот оператор в обкладках функций:

$$\phi_i^*(r_1)\phi_j^*(r_2)\overrightarrow{P}'\delta(\overrightarrow{r})\overrightarrow{P}\phi_i(r_1)\phi_j(r_2) =$$

$$= 2(\nabla\phi_i^*(r_1)\phi_j^*(r_2)\delta(\overrightarrow{r})\nabla\phi_i(r_1)\phi_j(r_2) - \phi_i^*(r_1)\nabla\phi_j^*(r_2)\delta(\overrightarrow{r})\nabla\phi_i(r_1)\phi_j(r_2))$$

$$= 2(\nabla\phi_i^*(r)\phi_j^*(r)\nabla\phi_i(r)\phi_j(r) - \phi_i^*(r)\nabla\phi_j^*(r)\nabla\phi_i(r)\phi_j(r)) =$$

$$= 2\tau n - \frac{1}{2}(\nabla n)^2$$
(3.22)

Подставим всё это в интеграл и получим выражение для U₂.

$$U_{2} = \frac{1}{8}t_{2}\int dr((2\tau n - \frac{1}{2}(\nabla n)^{2})(1 + x_{2}P_{\sigma})(1 + P_{\sigma}\delta_{q_{i}q_{j}})) = (3.23)$$

$$= \frac{1}{8}t_{2}\int dr((2\tau n - \frac{1}{2}(\nabla n)^{2})\frac{1}{2}(2 + x_{2} + \delta_{q_{i}q_{j}}(1 + 2x_{2}))) =$$

$$= \int dr(\frac{1}{8}t_{2}[\tau n(2 + x_{2}) + (\tau_{p}n_{p} + \tau_{n}n_{n})(1 + 2x_{2})]$$

$$- \frac{1}{32}t_{2}[(\nabla n)^{2}(2 + x_{2}) + ((\nabla n_{n})^{2} + (\nabla n_{p})^{2})(1 + 2x_{2})])$$

$$H_{2} = \frac{1}{8} t_{2} [\tau n (2 + x_{2}) + (\tau_{p} n_{p} + \tau_{n} n_{n}) (1 + 2x_{2})]$$

$$- \frac{1}{32} t_{2} [(\nabla n)^{2} (2 + x_{2}) + ((\nabla n_{n})^{2} + (\nabla n_{p})^{2}) (1 + 2x_{2})]$$
(3.24)

Рассчитаем также вклады от выражений 1.4 и 1.5, то есть от потенциалов описывающих многочастичные эффекты.

В случае зависимости от плотности плотность энергии рассчитывается аналогично описанным ранее случаям.

$$U_{3} = \frac{1}{2} \sum_{ij} \langle ij | \frac{1}{6} t_{3} (1 + x_{3} P_{\sigma}) (1 - P_{M} P_{\sigma} P_{\tau}) n^{\sigma} \delta(\overrightarrow{r}) | ij \rangle \qquad (3.25)$$

$$= \frac{1}{2} \sum_{ij} \int \phi_{i}^{*} \phi_{j}^{*} dr \frac{1}{6} t_{3} (1 + x_{3} P_{\sigma}) (1 - \delta_{q_{i}q_{j}} P_{\sigma}) n^{\sigma} \delta(\overrightarrow{r}) \phi_{i} \phi_{j}$$

$$= \frac{1}{12} t_{3} \sum_{ij} \int \phi_{i}^{*} \phi_{j}^{*} dr (1 + \frac{1}{2} x_{3} - \delta_{q_{i}q_{j}} (x_{3} + \frac{1}{2})) n^{\sigma} \phi_{i} \phi_{j}$$

$$= \frac{1}{12} t_{3} \int dr ((1 + \frac{1}{2} x_{3}) n^{2} - (x_{3} + \frac{1}{2}) (n_{n}^{2} + n_{p}^{2})) n^{\sigma} \qquad (3.26)$$

$$H_3 = \frac{1}{12}t_3(1 + \frac{1}{2}x_3)n^2 - (x_3 + \frac{1}{2})(n_n^2 + n_p^2)n^{\sigma}$$
(3.27)

Для случая тройных сил вклад в энергию рассчитывается следующим образом:

$$U_3 = \frac{1}{6} \sum_{ijk} \langle ijk|v_{123}|ijk\rangle \tag{3.28}$$

Учитывая все обменные операторы, а также то, что из-за присутствия двух дельта-функций для любой пары частиц $P_M = 1$, запишем выражение для v_{123}

$$v_{123} = t_3 \delta(\overrightarrow{r_1} - \overrightarrow{r_2}) \delta(\overrightarrow{r_2} - \overrightarrow{r_3}) [1 + P_{\sigma}(12) P_{\sigma}(23) P_{\tau}(12) P_{\tau}(23) + P_{\sigma}(13) P_{\sigma}(23) P_{\tau}(13) P_{\tau}(23) - P_{\sigma}(12) P_{\tau}(12) - P_{\sigma}(23) P_{\tau}(23) - P_{\sigma}(31) P_{\tau}(31)]$$
(3.29)

В этом выражении второй второе и третье слагаемые дают одинаковый вклад, также как и последние три слагаемых. Учитывая это и то, что члены с $\overrightarrow{\sigma}$ не дают вклада в энергию можем записать:

$$v_{123} = t_3 \delta(\overrightarrow{r_1} - \overrightarrow{r_2}) \delta(\overrightarrow{r_2} - \overrightarrow{r_3}) (1 + \frac{1}{2} P_\tau(12) P_\tau(23) - \frac{3}{2} P_\tau(12))$$
(3.30)

Тогда можем записать выражение для U_3 и соответствующей плотности энергии.

$$U_{3} = \frac{1}{6} t_{3} \sum_{ijk} \int dr \phi_{i}^{*} \phi_{j}^{*} \phi_{k}^{*} (1 + \frac{1}{2} \delta_{q_{i}q_{j}} \delta_{q_{j}q_{k}} - \frac{3}{2} \delta_{q_{i}q_{j}}) \phi_{i} \phi_{j} \phi_{k}$$
(3.31)

$$H_3 = \frac{1}{6}t_3(n^3 + \frac{1}{2}(n_n^3 + n_p^3) - \frac{3}{2}n(n_n^2 + n_p^2))$$
(3.32)

Выражения 3.27 и 3.32 эквивалентны при условии $x_3 = 1$ и $\sigma = 1$.

Таким образом, мы можем записать выражение для плотности энергии. Сразу учтём при этом, что в рассматриваемой в этой работе

материи $\overrightarrow{\nabla} n = \overrightarrow{\nabla} \cdot \overrightarrow{J} = 0.$

$$H_{NN} = K + \frac{1}{4} t_0 [(2+x_0)n^2 - (2x_0+1)(n_p^2 + n_n^2)]$$

$$+ \frac{1}{24} t_3 n^{\sigma} [(2+x_3)n^2 - (2x_3+1)(n_p^2 + n_n^2)]$$

$$+ \frac{1}{8} [t_1(2+x_1) + t_2(2+x_2)]\tau n$$

$$+ \frac{1}{8} [t_2(2x_2+1) - t_1(2x_1+1)](\tau_p n_p + \tau_n n_n)$$
(3.33)

Здесь $n = n_n + n_p$ – барионная плотность материи, а $\tau = \tau_n + \tau_p$ – плотность кинетической энергии. $K = (\frac{\hbar^2}{2m})\tau_N$ – член, зависящий от кинетической энергии.

ПРИЛОЖЕНИЕ 2. АЛГОРИТМ РАСЧЕТА УРАВНЕНИЯ СОСТОЯНИЯ

Для расчёта уравнения состояния равновесной материи необходимо получить значения заселённостей для каждого значения плотности, поскольку остальные характеристики, такие как давление, энергия на нуклон и химические потенциалы являются функциями плотности и заселённостей (1.30,1.15,1.20). Процесс расчёта уравнения состояния делится на два этапа: до появления мюонов, после появления мюонов, но до появления гиперонов и после появления гиперонов.

1. До появления мюонов из системы 1.19 необходимо обеспечить выполнение только первого условия. Перепишем его чуть в другом виде:

$$\mu_p(Y_p, n) + \mu_e(Y_e, n) - \mu_n(Y_p, n) = 0$$
(3.34)

Так как без мюонов выполняется $Y_e = Y_p$ это уравнение включает в себя только одну переменную, Y_p . Таким образом, последовательно двигаясь по плотности с шагом в 0.001 fm^{-3} , на каждом шаге решается уравнение 3.34 и находится соответствующее значение Y_p . Решение этого уравнение реализуется при помощи стандартного библиотечного метода zeroin, предназначенного для поиска нулей функции. Достижение точки появления мюонов определяется условием достижения химическим потенциалом электрона массы мюона.

$$\mu_e = m_m \tag{3.35}$$

2. После появления мюонов в системе 1.19 играют роль оба уравнения и необходимо решать систему из двух уравнений с двумя переменными.

Второе уравнение системы можно записать в виде

$$\mu_e(Ye, n) - \mu_\mu(Ye, Yp, n) \tag{3.36}$$

Для решения этой системы используется метод деления отрезка пополам. В качестве изначального отрезка взят отрезок по Y_p от 10^{-6} до 0.5. Так как метод деления отрезка пополам предполагает постепенное сужение отрезка, на котором находится корень, на каждом шаге этого метода мы имеем фиксированное значение Y_p на краях и в середине отрезка. Таким образом уравнение 3.36 становится уравнением одной переменной и решается с помощью уже упомянутой функции zeroin. Решение ищется в границах от 10^{-6} до Y_p . Резюмируя вышесказанное, решение системы сводится к решению уравнения 3.34 относительно Y_p методом деления отрезка пополам, где значение Y_e в каждой точке находится путем решения уравнения 3.36 с помощью метода zeroin. Параллельно проверяется выполнение условия

$$\mu_{\Lambda}(Y_{\Lambda}=0) > m_n + \mu_n - m_{\Lambda}. \tag{3.37}$$

При прекращении выполнения этого условия в материи появляются **Л**-гипероны и программа переходит к следующему этапу.

 После появления Λ-гиперонов необходимо решать уже систему 1.18 из трёх уравнений для трёх переменных. Запишем её ещё раз.

$$\begin{cases} \mu_p(Y_p, Y_\Lambda) + \mu_e(Y_e) = \mu_n(Y_p, Y_\Lambda) \\ \mu_\mu(Y_p, Y_e) = \mu_e(Y_e) \\ \mu_\Lambda(Y_p, Y_\Lambda) + m_\Lambda = \mu_n(Y_p, Y_\Lambda) + m_n \end{cases}$$
(3.38)

Второе уравнение в системе не зависит от Y_{Λ} , а третье не зависит от Y_e . Поэтому систему можно решить аналогично предыдущему случаю. Первое выражение в системе решается методом деления отрезка пополам относительно Y_p в границах от $a = Y_{p-1} - 0.1$ до $b = Y_{p-1} + 0.1$, где Y_{p-1} - значение протонной заселенности на предыдущем шаге по плотности. Необходимые значения Y_e и Y_{Λ} находятся из второго и третьего уравнений системы соответственно с помощью функции zeroin

при соответствующих значениях Y_p . Границы для поиска Y_e такие же как на предыдущем шаге, а границы для поиска Y_{Λ} : от $Y_{\Lambda-1} - 0.1$ (если это значение меньше 0.00001, то от 0.00001) до $Y_{\Lambda-1} + 0.1$, где $Y_{\Lambda-1}$ значение заселенности гиперонов на предыдущем шаге по плотности. Расчёт прекращается при достижении заданного значения плотности.

ПРИЛОЖЕНИЕ 3. АЛГОРИТМ РАСЧЕТА УРАВНЕНИЯ ТОУ

Уравнение Оппенгеймера-Волкова (1.41) решается следующим образом.

- 1. Выбирается начальное значение центральной плотности. Исходя из этого по формулам 1.30 и 1.43 находятся начальные значения для массы и давления. Начальное значение *r* соответствует шагу по *r*.
- 2. Решается уравнение 1.41 относительно давления методом Рунге-Кутты. Классический метод Рунге-Кутты для уравнения y' = f(x, y)заключается в следующем:

Рассчитываются выражения

$$k_{1} = f(x_{n}, y_{n})$$

$$k_{2} = f(x_{n} + \frac{h}{2}, y_{n} + \frac{h}{2})k_{1}$$

$$k_{2} = f(x_{n} + \frac{h}{2}, y_{n} + \frac{h}{2})k_{2}$$

$$k_{2} = f(x_{n} + h, y_{n} + hk_{3})$$

где h - это шаг. Значение y_{n+1} определяется как

$$y_{n+1} = y_n + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

В нашем случае роль y выполняет P, роль x - r, а роль f(x, y) - правая часть уравнения TOV. Таким образом после решения этого уравнения мы получим значение давление при r = r + h.

3. Значение барионной плотности при r = r + h находится из массива значений P и соответствующих им значений n, сформированного при расчете уравнения состояния. Массовая плотность рассчитывается по формуле 1.38.

- 4. На каждом шаге методом средних считается промежуточное значение m(r) из интеграла 1.43.
- 5. С новыми значениями m, ρ и r повторяются пункты 2-4. Цикл прерывается после обнуления давления, что свидетельствует о достижении края звезды. Соответствующие m и r являются массой и радиусом нейтронной звезды.

Для поиска максимальных массы и радиуса и построения зависимости массы от радиуса цикл 1-5 повторяется для большого диапазона центральных плотностей (от 0.1 до 1.5 fm^{-3})