

Анализ процессов электророждения странных мезонов на протоне из данных детектора CLAS

Выполнил: *Давыдов М.М.* Научный руководитель: к.ф.-м.н.,с.н.с. *Исупов Е.Л.*

25 мая 2023 г.

◆ロト ◆母 ト ◆臣 ト ◆臣 ト 三臣 - のへで

Результаты CLAS электророждения на протонах в области возбуждения N^*

Hadronic final state	Covered W-range, GeV	Covered Q ² - range, GeV ²	Measured observables
π *n	1.1-1.38 1.1-1.55 1.1-1.7 1.6-2.0	0.16-0.36 0.3-0.6 1.7-4.5 1.8-4.5	dσ/dΩ dσ/dΩ dσ/dΩ, Α _b dσ/dΩ
π ⁰p	1.1-1.38 1.1-1.68 1.1-1.39	0.16-0.36 0.4-1.8 3.0-6.0	$\begin{array}{c} d\sigma/d\Omega \\ d\sigma/d\Omega, A_{_{b}}, A_{_{b}}, A_{_{b}} \\ d\sigma/d\Omega \end{array}$
η ρ	1.5-2.3	0.2-3.1	dσ/dΩ
K⁺ Λ	thresh-2.6	1.40-3.90 0.70-5.40	dσ/dΩ Pº, P′
$K^+\Sigma^0$	thresh-2.6	1.40-3.90 0.70-5.40	dσ/dΩ P'
π * π ·p	1.3-1.6 1.4-2.1 1.4-2.0	0.2-0.6 0.5-1.5 2.0-5.0	Nine 1-fold differential cross sections

 $d\sigma/d\Omega$ - Угловые распределения

A_b,*A_t* - Продольные асимметрии

Almost full coverage of the final state hadron phase space

Измеренные наблюдаемые CLAS хранятся в CLAS Physics Database

Давыдов М.М. (МГУ)

Электророждение KΛ и KΣ⁰

25 мая 2023 г. 2/33

Sac

イロト イポト イヨト イヨト 一日

Амплитуды электровозбуждения по данным эксклюзивного электророждения мезонов с CLAS

Exclusive meson electroproduction channels	Excited proton states	Q ² -ranges for extracted γ,pN* electrocouplings, GeV ²
π ⁰p, π⁺n	∆(1232)3/2 ⁺	0.16-6.0
	N(1440)1/2+,N(1520)3/2-, N(1535)1/2-	0.30-4.16
π⁺n	N(1675)5/2 ⁻ , N(1680)5/2⁺ N(1710)1/2⁺	1.6-4.5
ηρ	N(1535)1/2-	0.2-2.9
<i>π</i> ⁺π p	N(1440)1/2⁺, N(1520)3/2 [·] ∆(1620)1/2 [·] , N(1650)1/2 [·] .	0.25-1.50 2.0-5.0 (preliminary)
	N(1680)5/2 ⁺ , Δ(1700)3/2 ⁻ , N(1720)3/2 ⁺ , N'(1720)3/2 ⁺	0.5-1.5

Давыдов М.М. (МГУ)

Электророждение $K\Lambda$ и $K\Sigma^0$

<ロト < 団ト < 三ト < 三ト < 三ト 三 のへで 25 мая 2023 г. 3/33

 V.I. Mokeev and I.G. Aznauryan., Int. J. Mod. Phys. Conf. Ser. 26. 146080 (2014)
 V.I. Mokeev et al.,

 Независимо для разных W-интервалов:
 PRC 93, 054016 (2016)

 $W \in [1.51, 1.61] \text{ GeV} \quad W \in [1.61, 1.71] \text{ GeV} \quad W \in [1.71, 1.81] \text{ GeV} \quad W \in [1.56, 1.66] \text{ GeV} \quad W \in [1.66, 1.76] \text{ GeV}$

- Значительная часть резонансов в диапазоне масс W > 1.6 ГэВ распадается преимущественно в конечные состояния $N\pi\pi$
- Электророждение $\pi^+\pi^- p$ является основным источником информации об амплитудах электровозбуждения $\Delta(1620)1/2^-$, $\Delta(1700)3/2^-$ и $N(1720)3/2^+$ резонансов, распадающихся преимущественно в конечные состояния $N\pi\pi$
- Ожидается, что исследования электророждения КУ предоставят независимую информацию об амплитудах электровозбуждения уурN*

Давыдов М.М. (МГУ)

Электророждение *Κ*Λ и *К*Σ⁰

Успехи в исследовании спектра N^*

State N(mass)J [₽]	PDG pre 2012	PDG 2020*
N(1710)1/2*	***	••••
N(1880)1/2*		***
N(1895)1/2 [.]		****
N(1900)3/2*	••	****
N(1875)3/2		
N(2100)1/2*	*	***
N(2120)3/2		
N(2000)5/2*	•	
N(2060)5/2		***
∆(1600)3/2°	***	****
Δ(1900)1/2 [.]	**	
Δ(2200)7/2 [.]	•	•••

Изучение данных электророждения КУ позволит нам укрепить доказательства существования новых барионных состояний

Давыдов М.М. (МГУ)

Электророждение $K\Lambda$ и $K\Sigma^0$

▷ ◆ ▷ ◆ ▷ ◆ ▷ ▷ ○ へ ○ 25 мая 2023 г. 5 / 33

Основные возможности инструмента и базы данных

(1) Используются экспериментальные результаты по эксклюзивным структурным функциям $\sigma_U(W,Q^2,cos\theta)$, $\sigma_{TT}(W,Q^2,cos\theta)$ и $\sigma_{LT}(W,Q^2,cos\theta)$ для оценки дифф. сечения

(2) Реализована трехмерная интерполяция измеренных наблюдаемых по W, Q^2 , $cos(\theta)$ и экстраполяция в пределах кинематических областей, где данные недоступны

(3) Будет использоваться для оценки структурной функции $\sigma_{LT'}(W,Q^2,cos\theta)$ из первых данных CLAS12 по BSA

$E_{beam} = 5.1$	$GeV Q^2 = 1.8 GeV^2$	

[Carman et al., PRC 87, 025204 (2013)]

Давыдов М.М. (МГУ)

Электророждение *K*Λ и *K*Σ⁰

6/33

Формализм

Эксклюзивное рождение $K^+\Lambda$ и $K^+\Sigma^0$

$$\frac{d\sigma_{\gamma}}{d\Omega_{K}^{*}} = \frac{d\sigma_{T}}{d\Omega} + \varepsilon \frac{d\sigma_{L}}{d\Omega} + \sqrt{\varepsilon(1+\varepsilon)} \frac{d\sigma_{LT}}{d\Omega} \cos\phi + \varepsilon \frac{d\sigma_{TT}}{d\Omega} \cos 2\phi + h\sqrt{\varepsilon(1-\varepsilon)} \frac{d\sigma_{LT'}}{d\Omega} \sin\phi$$

BSA:

$$A_{LT'} = \frac{\frac{d\sigma_{\gamma}}{d\Omega_{K}^{*}} - \frac{d\sigma_{\gamma}}{d\Omega_{K}^{*}}}{\frac{d\sigma_{\gamma}}{d\Omega_{K}^{*}} + \frac{d\sigma_{\gamma}}{d\Omega_{K}^{*}}} = \frac{\sqrt{\varepsilon(1-\varepsilon)}\frac{d\sigma_{LT'}}{d\Omega}}{\frac{d\sigma_{\gamma}}{d\Omega_{K}^{*}}}$$

Давыдов М.М. (МГУ)

Электророждение $K\Lambda$ и $K\Sigma^0$

<ロト < 団ト < 三ト < 三ト < 三ト 三 のへで 25 мая 2023 г. 7/33

Структурные функции $\frac{d\sigma_U}{d\Omega}$, $\frac{d\sigma_{LT}}{d\Omega}$, $\frac{d\sigma_{TT}}{d\Omega}$ Эксклюзивное рождение $K^+\Lambda$ и $K^+\Sigma^0$

 $K^+\Lambda$

 $K^+\Sigma^0$

< A > <

$$\frac{d\sigma_U}{d\Omega} = \frac{d\sigma_T}{d\Omega} + \varepsilon \frac{d\sigma_L}{d\Omega}$$

Давыдов М.М. (МГУ)

Электророждение КЛ и КΣ⁰

25 мая 2023 г. 8/33

3

План

Эксклюзивное рождение $K^+\Lambda$ и $K^+\Sigma^0$

- Аппроксимация данных для известных точек $\{W,Q^2\}$ вдоль оси $\cos\theta$
- \bullet 2D интерполяция данных по осям W и Q^2
- 2D экстраполяция данных по осям W и Q^2 Извлечение $\frac{d\sigma_{LT'}}{d\Omega}$

$$\frac{d\sigma_{LT'}}{d\Omega} = \frac{A_{LT'} \cdot \sigma_0}{\sqrt{\varepsilon(1-\varepsilon)}}$$

Оценка $d\sigma/d\Omega_T$ и $d\sigma/d\Omega_L$:

$$\frac{d\sigma_L}{d\Omega} : \frac{d\sigma_T}{d\Omega} = 0.2 \qquad \frac{d\sigma_U}{d\Omega} = \frac{d\sigma_T}{d\Omega} + \varepsilon \frac{d\sigma_L}{d\Omega}$$
$$\frac{d\sigma_T}{d\Omega} = \frac{\frac{d\sigma_U}{d\Omega}}{1 + 0.2 \cdot \varepsilon} \qquad \frac{d\sigma_L}{d\Omega} = \frac{\frac{d\sigma_U}{d\Omega}}{5 + \varepsilon}$$

Давыдов М.М. (МГУ)

Электророждение $K\Lambda$ и $K\Sigma^0$

< 口 > < 何 >

Полиномы Лежандра для $\cos \theta$

Для всех точек (W, Q^2):

$$\frac{d\sigma}{d\Omega_{i}} = A \cdot P_{0}(\cos\theta) + B \cdot P_{1}(\cos\theta) + C \cdot P_{2}(\cos\theta) + D \cdot P_{3}(\cos\theta) + E \cdot P_{4}(\cos\theta)$$

Рис.: Первые 5 членов системы для $K^+\Lambda$ (слева) и $K^+\Sigma^0$ (справа)

Давыдов М.М. (МГУ)

Электророждение КЛ и КΣ⁰

25 мая 2023 г. 10/33

3

 $\equiv \rightarrow$

< 口 > < 何 >

Sac

2D интерполяция данных по осям W и Q^2 Эксклюзивное рождение $K^+\Lambda$ и $K^+\Sigma^0$

Алгоритм:

- Поиск
 - 4 ближайших точек по осям W, Q^2
- Аппроксимация данных для каждого бина по оси соз θ
- Расчет значения функции
 и ее ошибки для заданного соз θ
- Билинейную интерполяция
 в четырех выбранных точках

Проверка интерполяции

 $\frac{d\sigma_T}{d\Omega}$, $\frac{d\sigma_L}{d\Omega}$ $\frac{d\sigma_{LT}}{d\Omega}$ и $\frac{d\sigma_{TT}}{d\Omega}$ структурные функции могут быть вычислены для любого значения соs θ в пределах области $\{W, Q^2\}$:

Рис.: $K^+\Lambda(слева); K^+\Sigma^0(справа)$

Давыдов М.М. (МГУ)

Электророждение $K\Lambda$ и $K\Sigma^{0}$

イロト イポト イヨト イヨト 二日

Идеи для экстраполяции Эксклюзивное рождение $K^+ \Lambda$ и $K^+ \Sigma^0$

Q^{2} :

- 0. Псевдоданные для высоких Q^2 повторяют W-распределение для $Q^2 = 1,8$ Гэ B^2
- Область малых Q²: интерполяция между фото- и электророждением где это возможно
- Область больших Q²: степенная экстраполяция функцией:

$$\sigma_i = A + \frac{B}{Q^2} + \frac{C}{Q^4}$$

3. Оценка σ_{TT} на основе среднего соотношения σ_{TT}/σ_{T}

Данные фоторождения

Дифференциальное сечение

$$\frac{d\sigma_{T}}{d\Omega}(W,Q^{2}=0,\cos\theta)=\frac{1}{2\pi}\frac{d\sigma_{\gamma}}{d\cos(\theta)}(W,\cos\theta)$$

[M. McCracken, M. Bellis, C.A. Meyer, M. Williams et al., PRC 81, 025201 (2010)]

Давыдов М.М. (МГУ)

Электророждение КЛ и КΣ⁰

 $\exists \rightarrow$ 25 мая 2023 г. 14/33

990

.

Данные фоторождения _{Σ асимметрия}

 $K^+ \Lambda: \ W \in [1.72, 2.18]$ ГэВ $K^+ \Sigma^0: \ W \in [1.78, 2.17]$ ГэВ

 $\sigma_{pol}(\phi, \phi_{\gamma}) = \sigma_0 \left[1 - P_{\gamma} \Sigma \cos\{2(\phi - \phi_{\gamma})\} \right]$

[Dave Ireland, g8 experiment]

Давыдов М.М. (МГУ)

Электророждение *K*Λ и *K*Σ⁰

Данные фоторождения $\frac{d\sigma_{TT}}{d\Omega}$ структурная функция

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Электророждение $K\Lambda$ и $K\Sigma^0$

Давыдов М.М. (МГУ)

Интерполяция в области малых Q^2

Рис.: W = 1.845 ГэВ

Рис.: *W* = 2.005 ГэВ

Давыдов М.М. (МГУ)

Электророждение ΚΛ и КΣ⁰

25 мая 2023 г. 17/33

3

Sac

Экстраполяция для $Q^2>3.45$ Гэ B^2

Рис.: W = 1.675 ГэВ

Рис.: *W* = 1.775 ГэВ

Давыдов М.М. (МГУ)

Электророждение *K*Λ и *K*Σ⁰

25 мая 2023 г. 18/33

3

Sac

Идеи для экстраполяции Эксклюзивное рождение $K^+ \Lambda$ и $K^+ \Sigma^0$

Q^{2} :

- 0. Псевдоданные для высоких Q^2 повторяют W-распределение для $Q^2 = 1,8$ Гэ B^2
- Область малых Q²: интерполяция между фото- и электророждением где это возможно
- Область больших Q²: степенная экстраполяция функцией:

$$\sigma_i = A + \frac{B}{Q^2} + \frac{C}{Q^4}$$

3. Оценка σ_{TT} на основе среднего соотношения σ_{TT}/σ_{T}

Слабо покрытая область фазового пространства

(1) Оценка отношений σ_{TT}/σ_{T} для всех бинов данных из CLAS с W>2.0 ГэВ (включая данные по фоторождению)

(2) Усреднение отношения по оси W для всех точек $(Q^2, cos\theta)$

(3) Оценка σ_{TT} с помощью полученной сетки отношений $(Q^2, \cos\theta)$ и интерполированных структурных функций σ_T

$$E_{beam} = 5.5 \ GeV \ Q^2 = 1.8 \ GeV^2$$

Давыдов М.М. (МГУ)

Электророждение $K\Lambda$ и $K\Sigma^0$

<□ ト < □ ト < □ ト < 亘 ト < 亘 ト < 亘 ト 三 の Q (?) 25 мая 2023 г. 20 / 33

Сетка ($Q^2, cos heta$) отношений σ_T/σ_{TT}

Для любого ($W, Q^2, cos \theta$) из "слабой" области фазового пространства:

- *σ*_T, *σ*_L и *σ*_{LT} интерполируются с использованием данных электро- и фоторождения
- Предполагается, что σ_L и σ_{LT} равны 0 при $Q^2 = 0$ ГэВ²
- \bullet При $Q^2 = 0$ ГэВ 2 σ_{TT}/σ_T трактуется как $-\Sigma$ асимметрия

Давыдов М.М. (МГУ)

Электророждение $K\Lambda$ и $K\Sigma^0$

25 мая 2023 г. 21/33

Дифференциальное сечение Эксклюзивное рождение К⁺Л

$$\sigma_0 = \frac{d\sigma_T}{d\Omega} + \varepsilon \frac{d\sigma_L}{d\Omega} + \sqrt{\varepsilon(1+\varepsilon)} \frac{d\sigma_{LT}}{d\Omega} \cos\phi + \varepsilon \frac{d\sigma_{TT}}{d\Omega} \cos 2\phi$$

Измеренные наблюдаемые CLAS хранятся в CLAS Physics Database

http://clas.sinp.msu.ru/cgi-bin/jlab/db.cgi

Давыдов М.М. (МГУ)

Электророждение $K\Lambda$ и $K\Sigma^0$

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 のへで 25 мая 2023 г. 22/33 Среднее сечение в бине Эксклюзивное рождение $K^+ \Lambda$ и $K^+ \Sigma^0$ для $E_{beam} = 4.056$ ГэВ

$$\frac{d\sigma}{d\Omega} = \frac{d\sigma_T}{d\Omega} + \varepsilon \frac{d\sigma_L}{d\Omega} + \sqrt{\varepsilon(1+\varepsilon)} \frac{d\sigma_{LT}}{d\Omega} \cos\phi + \varepsilon \frac{d\sigma_{TT}}{d\Omega} \cos 2\phi$$

Давыдов М.М. (МГУ)

Электророждение $K\Lambda$ и $K\Sigma^0$

25 мая 2023 г. 23/33

< 17 ▶

Sac

KY Cross Section/Structure Functions Evaluation Tool

KY electroproduction: $\frac{d\sigma_{\gamma^*}}{d\Omega_K} = \frac{d\sigma_T}{d\Omega_K} + \varepsilon \frac{d\sigma_L}{d\Omega_K} + \sqrt{\varepsilon(1+\varepsilon)} \frac{d\sigma_{LT}}{d\Omega_K} \cos \varphi + \varepsilon \frac{d\sigma_{TT}}{d\Omega_K} \cos 2\varphi$

Model configuration Channel: K+Λ ✓ Energy (GeV): o _{gys.ext.} for cos(θ): const ✓	
Channel: K+A ♥ □ 0 Energy (GeV): □ co o _{systematic} for cos(#): const: ♥	□ W axis
Energy (GeV):	$\label{eq:Q2} Q^2 (GeV^2) \underline{\mbox{Q2 value}} \Delta Q^2 (GeV^2) \underline{\mbox{AQ2 value}}$
σ _{sys. extr.} for cos(θ): const 🗸	$\Box \cos(\theta) \operatorname{axis} \cos(\theta) \cos(\theta) \operatorname{val} \Delta \cos(\theta) \Delta \cos(\theta) \operatorname{val}$
	φ ° φ value Δφ ° Δφ γ value

Давыдов М.М. (МГУ)

Электророждение КЛ и КΣ⁰

・ロト・日下・ モー・ モー うへの 25 мая 2023 г. 24 / 33

Заключение

- Оценка дифференциальных сечений с использованием экспериментальных результатов по $\sigma_U(W,Q^2,cos\theta)$, $\sigma_{TT}(W,Q^2,cos\theta)$ и $\sigma_{LT}(W,Q^2,cos\theta)$ эксклюзивным структурным функциям
- Реализована трехмерная интерполяция измеренных наблюдаемых по W, Q², cos(θ) и экстраполяция в пределах кинематических областей, где данные недоступны.

$$\begin{split} & \mathcal{W} \in [\mathcal{M}_{Y} + \mathcal{M}_{K}, 2.65] \; \mathsf{\Gamma} \mathfrak{s} \mathsf{B} \qquad \mathcal{Q}^{2} \in [0, 5] \; \mathsf{\Gamma} \mathfrak{s} \mathsf{B}^{2} \\ & \cos \theta \in [-1, 1] \qquad \qquad \phi \in [0, 360^{\circ}] \end{split}$$

Следующие шаги:

Оценки структурной функции *σ_{LT'}* по данным CLAS12
 https://github.com/Maksaska/Diff_cros_strange

Давыдов М.М. (МГУ)

Электророждение $K\Lambda$ и $K\Sigma^0$

Заключение

- Оценка дифференциальных сечений с использованием экспериментальных результатов по $\sigma_U(W,Q^2,cos\theta)$, $\sigma_{TT}(W,Q^2,cos\theta)$ и $\sigma_{LT}(W,Q^2,cos\theta)$ эксклюзивным структурным функциям
- Реализована трехмерная интерполяция измеренных наблюдаемых по W, Q², cos(θ) и экстраполяция в пределах кинематических областей, где данные недоступны.

$$egin{aligned} \mathcal{W} \in \left[\mathcal{M}_{Y} + \mathcal{M}_{K}, 2.65
ight]$$
 FəB $Q^{2} \in \left[0, 5
ight]$ FəB^{2} $\cos heta \in \left[-1, 1
ight]$ $\phi \in \left[0, 360^{\circ}
ight]$

Следующие шаги:

Оценки структурной функции σ_{LT}, по данным CLAS12
 Спасибо!

https://github.com/Maksaska/Diff_cros_strange

Давыдов	M.M.	(МГУ)
---------	------	-------

Электророждение *K*Λ и *K*Σ⁰

25 мая 2023 г. 26 / 33

▲ 王 ▶ 王 ∽ ९ ९ ९

Проверка интерполяции Эксклюзивное рождение $K^+ \Lambda$ и $K^+ \Sigma^0$

Давыдов М.М. (МГУ)

Электророждение KΛ и KΣ⁰

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 のへで 25 мая 2023 г. 27/33 Попытка расширить доступную область фазового пространства

Псевдоданные для более высоких Q^2 повторяют W-распределение для $Q^2 = 1.8$ ГэВ²

Отношение $\sigma_i(W_2, Q_2)/\sigma_i(W_1, Q_2)$ для каждого значения $cos(\theta)$ из набора данных такое же, как $\sigma_i(W_2, 1, 8 \ \Gamma \ni B^2)/\sigma_i(W_1, 1, 8 \ \Gamma \ni B^2)$

Давыдов М.М. (МГУ)

Электророждение КЛ и КΣ⁰

25 мая 2023 г. 28 / 33

Проверка Эксклюзивное рождение $K^+ \Lambda$ и $K^+ \Sigma^0$

Давыдов М.М. (МГУ)

Электророждение *K*Λ и *K*Σ⁰

 ペロト 《日 ト 《 ヨ ト 《 ヨ ト 《 ヨ ト) 25 мая 2023 г. 29/33

Сравнение

Квадратичная экстраполяция vs. подход с σ_{TT}/σ_{T} отношениями

Рис.: $cos\theta$ - распределения структурной функции σ_{TT} при W = 2,425 ГэВ. Чистая квадратичная экстраполяция из набора данных $Q^2 = 1.8$ ГэВ² слева. Подход с отношением σ_{TT}/σ_T справа

Давыдов М.М. (МГУ)

Электророждение $K\Lambda$ и $K\Sigma^{0}$

4回ト イヨト イヨト ヨーク 25 мая 2023 г. 30

Quadratic error interpolation with $y = ax^2 + bx + c$ Эксклюзивное рождение $K^+ \Lambda$ и $K^+ \Sigma^0$

Рис.: Fit with 5 leg. polynomials. Errors from fit parameters on the left, from quadratic interpolation on the right

a.
$$f_1 = "value + error_value"$$
 quad. interpolation
b. $f_2 = "value"$ quad. interpolation
c. Error result: $Err = f_1 - f_2$

Среднее сечение в бине

$$\sigma_{i} = \frac{d\sigma_{T}}{d\Omega} + \varepsilon \frac{d\sigma_{L}}{d\Omega} + \sqrt{\varepsilon(1+\varepsilon)} \frac{d\sigma_{LT}}{d\Omega} \cos \phi + \varepsilon \frac{d\sigma_{TT}}{d\Omega} \cos 2\phi$$
$$\overline{\sigma}_{N} = \sum_{i=0}^{N} \frac{\sigma_{i}}{N} \xrightarrow{N \to \infty} \overline{\sigma} \qquad \overline{\sigma}_{N+1} = \frac{N \cdot \overline{\sigma}_{N} + \sigma_{N+1}}{N+1}$$
$$\sum_{i=0}^{N} Err(\sigma_{i})$$

$$Err(\overline{\sigma}) = rac{\sum\limits_{i=0}^{N} Err(\sigma_i)}{N}$$

Давыдов М.М. (МГУ)

Электророждение $K\Lambda$ и $K\Sigma^0$

イロト イ団ト イミト イミト ミークへで 25 мая 2023 г. 32/33 Амлитуды электровозбуждения $N(1440)1/2^+$ из πN и $\pi^+\pi^-p$

Электророждение КЛ и КΣ⁰

▷ 《 트 ▷ 《 트 ▷ 트 의 익 ペ 25 мая 2023 г. 33/33