

ОЭПВАЯ НИИЯФ МГУ имени М.В. Ломоносова и кафедра Общей ядерной физики физического факультета МГУ

Семинар памяти профессора Б.С. Ишханова Фотоядерные исследования. Методы и приложения

Ядерные данные для производства медицинских изотопов на ускорителях электронов

Н.Ю. Фурсова

Физический факультет Московского государственного университета имени М.В. Ломоносова, Научно-исследовательский институт ядерной физики имени Д.В. Скобельцына Московского государственного университета имени М.В. Ломоносова

24 октября 2024

Причины поиска альтернативных методов наработки медицинских изотопов

- ➤ Закрытие исследовательских и промышленных реакторов, на которых традиционно нарабатывались изотопы. 90% ^{99m}Tc (однофотонная эмиссионная компьютерная томография) нарабатывается на пяти реакторах, три из них или уже закрыты или планируется их закрытие.
- ≻ Современные производственные мощности намного меньше потенциальной потребности в радионуклиде. Годовая потребность ⁶⁷Си (радиоиммунотерапия опухолей) составляет 12000 Ки.

National Research Universal reactor (Канада)

Safari-1 (ЮАР)

Преимущества фотоядерного метода:

- ✓ относительная безопасность линейных ускорителей по сравнению с реакторами, более низкие эксплуатационные расходы, отсутствие большого количества радиоактивных отходов и трудностей, связанных с ними при выводе из эксплуатации установок;
- ✓ возможность использования компактных ускорителей электронов в непосредственной близости от медицинских центров;
- в ряде случаев, простая химия разделения макроколичеств мишени и микроколичеств целевого нуклида;
- альтернатива при производстве тех радионуклидов, которые находятся далеко от линии стабильности на N-Z диаграмме и не могут быть получены простыми путями.

Внешний вид (а) и схема конструкции (б) р.м. на энергию 55 МэВ. 1 – электронная пушка; 2 – магнит инжекции; 3 – соленоидальная линза; 4 – ускоряющая структура; 5, 6 – поворотные магниты *M*1 и *M*2 соответственно; 7 – квадрупольные линзы; 8 – магнит вывода; 9 – сильфоны; 10 – сильфонные узлы с датчиками тока пучка; 11 – корректоры пучка; 12 – орбита пучка с энергией 5 МэВ; 13 – первая орбита; 14 – орбита вывода пучка.

Пути получения медицинских изотов на ускорителях электронов (γ ,p) (γ ,n) β^+ (γ ,p) (γ ,n) β^+ (γ ,p) (γ ,n) β^+

Для оценки возможности наработки медицинских количеств радионуклидов, в первую очередь, нужно знать выходы и сечения всех реакций, приводящих к образованию не только целевого, но и побочных нуклидов.

Нуклид	T _{1/2}	Применение	Путь получения	Содержание мишени
⁴⁷ Sc	3.35 d	Терапия	$^{48}\text{Ti}(\gamma,p)^{47}\text{Sc}$	73.7
⁶⁷ Cu	2.58 d	Терапия	68 Zn(γ ,p) 67 Cu	18.8
^{99m} Tc	6 h	Диагностика	$^{100}Mo(\gamma,n)^{99}Mo \rightarrow ^{99m}Tc$	9.66
¹⁶¹ Tb	6.88 d	Терапия	162 Dy(γ ,p) 161 Tb	25.5
¹⁶⁶ Ho	26.808 h	Терапия	167 Er(γ ,p) 166 Ho	22.869
¹⁶⁷ Tm	9.25 d	Терапия	168 Yb(γ ,p) 167 Tm	0.13
			168 Yb(γ ,n) 167 Yb \rightarrow 167 Tm	
¹⁷⁷ Lu	6.73 d	Терапия	178 Hf(γ ,p) 177 Lu	27.3
¹⁹⁸ Au	2.70 d	Терапия	199 Hg(γ ,p) 198 Au	16.87

Ядерные данные для наработки ⁴⁷Sc

Медицинское применение:

- оптимальный период полураспада (T_{1/2} = 3.349 дн.) и мягкое β-излучение позволяют использовать ⁴⁷Sc для эндорадиотерапии;
- ≻ мягкое γ-излучение (159 кэВ, 68.3%) может использоваться для сцинтиграфии и мониторинга радионуклидной терапии;
- У ⁴⁷Sc может быть частью тераностической пары в сочетании с ⁴⁴Sc или ⁴³Sc.

Методы производства ⁴⁷Sc

Способы наработки:

▶ облучение тепловыми нейтронами: ⁴⁶Ca(n,γ) ⁴⁷Ca →⁴⁷Sc;
▶ облучение мишени из обогащенного ⁴⁷Ti потоком

нейтронов, то есть (n,p) реакция;

- ▶ реакция ⁴⁸Ca(p,2n) ⁴⁷Sc. Максимальное сечение для реакции достигается при 20 МэВ, но необходимо поддерживать энергию пучка ниже, чтобы избежать образования ⁴⁶Sc;
- ▶ реакции ⁴⁸Ti(p,2p) ⁴⁷Sc; ⁴⁹Ti(p,2pn) ⁴⁷Sc, ⁵⁰Ti(p,α) ⁴⁷Sc, из которых первая является основным каналом;
- ▶ фотоядерные реакции ⁴⁸Ti(γ ,1p) ⁴⁷Sc, ^{nat}Ti(γ ,1pxn) ⁴⁷Sc.

Данные о сечениях фотопротонных реакций на титане были получены только в одной работе. Образцы металлического титана облучались пучком тормозного излучения (Canberra electron synchrotron) в диапазоне от 14 МэВ до 31 МэВ с шагом 1 МэВ. В качестве мишеней использовались 9 фольг толщиной 0.0254 см с поверхностной плотностью 1.04 г/см². Время облучения составляло 3 часа.

Сечения реакции ⁴⁸Ti(γ, p)⁴⁷Sc+⁴⁹Ti(γ, np)⁴⁷Sc, измеренные в работе Sherwood и рассчитанные теоретически в рамках различных моделей

- Комбинированная модель фотонуклонных реакций (КМФР) - вычислительная модель для описания сечений парциальных реакций и энергетических спектров вылетающих частиц в фотоядерных реакциях в области энергий ГДР. Автор модели: В.Н. Орлин (НИИЯФ МГУ).
- ▶ В рамках КМФР предполагается разделение ядерной реакции на две независимые стадии: образование составной системы и распад этой системы на продукты реакции.
- Основные компоненты глобальной структуры сечения фотопоглощения, учитываемые в КМФР: ГДР, КР и их субкомпоненты, обертон ГДР, квазидейтронный механизм поглощения фотона.

Параметры эксперимента:

- титановая фольга размером 1×1 см, толщиной 54 мкм
- ▶ вольфрамовый конвертор толщиной 0.2 мм
- ▶ средний ток 100 нА
- ▶ время облучения 1 час

Спектр остаточной активности мишени из титана сразу после окончания облучения. Время измерения ~1 час

- ток электронного ускорителя измерялся с помощью цилиндра Фарадея;
- спектры γ-квантов измерялись в диапазоне энергий от 35 кэВ до 3.7 МэВ на детекторе из сверхчистого германия Canberra GC3019 с цифровым многоканальным анализатором InSpector 1250.

Схема у-активационного эксперимента

Радиохимические выходы изотопов *Y*(*E^m*) (кБк/(мкА·ч·г/см²)) определялись с помощью следующего соотношения:

$$Y(E^m) = \frac{A}{Q\rho(1-e^{-\lambda t})},$$

где λ – постоянная распада, А – активность изотопа на момент окончания облучения, Q - заряд пучка, прошедшего через тормозную мишень, ρ – поверхностная плотность мишени, t – время облучения.

Заряд, прошедший через мишень, был определен на основе сравнения экспериментально измеренного и теоретически рассчитанного выходов ${}^{65}Cu(\gamma,n){}^{64}Cu$.

Фотоядерный метод		Реакторный или циклотронный метод		
Реакция Выход		Реакция	Е, МэВ	Выход
	297 ± 17 кБк/(мкА·ч·г/см ²)	⁴⁸ Ca(p,2n) ⁴⁷ Sc	18→12	103 МБк/(мкА·ч)
$^{48}\mathrm{Ti}(\gamma,\mathrm{p})^{47}\mathrm{Sc}$		$^{44}Ca(\alpha,p)^{47}Sc$	28	780 кБк/(мкА·ч)
		^{nat} Ti(p,x) ⁴⁷ Sc	33→22	12 МБк/(мкА·ч)

Неизбежными примесями при наработке фотоядерным методом на натуральной смеси изотопов титана являются ⁴⁶Sc и ⁴⁸Sc (1.5% и 9.1% от активности ⁴⁷Sc на момент окончания облучения соответственно). Процедура разделения занимает около двух часов, радиохимическая эффективность составляет > 97%.

Для получения радиохимических выходов изотопов $Y(E^m)$ (кБк/мкА·ч) в рамках комбинированной модели фотонуклонных реакций использовалось следующее соотношение:

$$Y(E^m) = \frac{\lambda}{q_e} \cdot \frac{\eta \rho N_A \cdot \beta}{M} \int_{E_{thresh}}^{E^m} \sigma(E) \cdot \sigma_{35}(E, E^m) dE,$$

где λ - постоянная распада, q_e - заряд электрона в мкА·ч, N_A - постоянная Авогадро, ρ – поверхностная плотность мишени, M – молярная масса мишени, η – процентное содержание изотопа мишени в природной смеси, β -количество ядер тормозной мишени на 1 см², E_{thresh} - порог соответствующей реакции, E^m - максимальная энергия спектра тормозного излучения, $\sigma(E)$ - сечение исследуемой фотоядерной реакции, $\sigma_{35}(E, E^m)$ - сечения образования тормозных фотонов, рассчитанные по таблицам Зельтцера-Бергера.

Активности изотопов (кБк), наработанные за 24 часа, рассчитывались по формуле:

$$A = \frac{Y(E^m) \cdot I \cdot (1 - e^{-\lambda t})}{\lambda},$$

где I – ток ускорителя, t – время наработки, λ - постоянная распада (1/ч), $Y(E^m)$ – радиохимический выход.

В рамках комбинированной модели фотонуклонных реакций были рассчитаны радиохимические выходы и активность целевого и основного долгоживущего изотопа, наработанная на ускорителе к током 1мА за 24 часа.

Оптимальной для наработки считается энергия, при которой активность целевого изотопа более 1ГБк, а активность побочного изотопа меньше целевой минимум на 3 порядка. В случае наработки на обогащенной мишени ⁴⁸Ті оптимальными являются энергии от 15 до 28 МэВ.

Радиохимические выходы целевого 47 Sc и побочного изотопа 46 Sc, рассчитанные в рамках КМФР на обогащенной мишени 48 Ti

Активности целевого изотопа ⁴⁷Sc, полученные на обогащенной мишени ⁴⁸Ti и на мишени натурального изотопного состава

F MaR	Активность ⁴⁷ Sc, ГБк			
Lywyd	Ha ⁴⁸ Ti	Ha ^{nat} Ti		
15	3.09	2.28		
17	20.28	14.95		
19	59.82	44.10		
21	113.21	83.46		
23	174.11	128.39		
25	237.49	175.48		
27	285.86	211.86		
29	318.19	236.41		
31	341.13	253.93		

⁶⁷Cu (t_{1/2}: 61.83 h; Q: 561.7 keV)

Ядерные данные для наработки 67Си

- Низкая средняя энергия β- частиц (141 кэВ) позволяет использовать ⁶⁷Cu для радиоиммунотерапии опухолей небольшого размера (средний пробег в тканях β-частиц ⁶⁷Cu ≈ 0.2 мм).
- ≻ Мягкое γ-излучение (184.6 кэВ, 48.7%) позволяет визуализировать распределение радионуклида в организме и рассчитать получаемую пациентом дозу.
- Период полураспада 2.58 сут. и отсутствие жесткого гаммаизлучения позволяют уменьшить нежелательную дозовую нагрузку на пациента и персонал.

Способы наработки:

- Перспективной является реакция, протекающая под действием протонов ⁶⁸Zn(p,2p) ⁶⁷Cu. Чтобы избежать образования стабильной примеси ⁶⁵Cu по каналу ⁶⁸Zn(p,α) и получить продукт с высокой удельной активностью нужно использовать протоны с энергиями 30 МэВ.
- Реакторный метод (⁶⁷Zn(n,p)) не позволяет получить ⁶⁷Cu в терапевтических количествах.
- ▶ Фотоядерная реакция ${}^{68}Zn(\gamma,p) {}^{67}Cu$.

Наблюдается хорошее согласие сечения, рассчитанного в рамках КМФР, и экспериментального сечения по интегральным характеристикам.

Сечение, рассчитанное по программе TALYS, сильно занижает выход, в то время как выходы, рассчитанные по сечению из библиотеки KAERI, завышают выход при энергиях облучения выше 50 МэВ.

Спектры наведенной активности облученной цинковой мишени сразу после окончания облучения и после радиохимического выделения ⁶⁷Cu

Параметры эксперимента:

- Исследуемая мишень: металлическая цинковая мишень (0.7 г/см²) или оксид цинка в контейнере (0.194 г/см²).
- ≻ Тормозная мишень: вольфрам, 2.1 мм.
- ≻ Ток: 350 нА.
- > Медный монитор.
- > Время облучения: 2 часа.

Значение активности ⁶⁷Си, полученное фотоядерным методом сопоставимо со средним значением, полученным с использованием реакции (p,2p) для мишеней с обогащением ⁶⁸Zn(99.7%), в то время как содержание ⁶⁸Zn в ^{nat}Zn составляет 18.8%.

Фотоядерный метод		Реакторный или циклотронный метод		
Реакция	Выход	Реакция	Е, МэВ	Выход
^{nat} Zn(γ,1pxn) ⁶⁷ Cu	234 ± 7 кБк/(мкА·ч·г/см ²)	⁶⁸ Zn(p,2p) ⁶⁷ Cu	128	1.08 МБк/(мкА·ч·г)
		64 Ni(α ,p) 67 Cu	24→0	544 кБк/(мкА·ч)
		70 Zn(p, α) 67 Cu	18→8	2.4 МБк/(мкА·ч)

```
^{161}Tb (T<sub>1/2</sub>=6.89 d)
```


Ядерные данные для наработки ¹⁶¹Тb

В настоящее время ¹⁶¹Тb рассматривается как возможная альтернатива ¹⁷⁷Lu, используемому в медицине. Преимущество использования ¹⁶¹Тb заключается в высоком проценте испускаемых конверсионных и ожеэлектронов с энергией ≤ 50 кэВ, которые могут быть использованы для терапии микрометастазов и отдельных клеток.

Способы наработки ¹⁶¹Тb:

¹⁶⁴**D**v ¹⁶⁰**D**v ¹⁶¹**D**v ¹⁶²**D**v ¹⁶³**D**v ¹⁵⁹**D**v stable stable stable stable stable 144.4 дн 2.34% 25.51% 24.90% 28.18% 18.91% -3 ¹⁶¹Tb ¹⁶²Tb ¹⁶⁰Tb ¹⁶³Tb 159Tb 158Tb 6.906 дн 72.3 дн 7.60 м 19.5 м stable 180 л 100% (1)(2)¹⁶⁰Gd ¹⁵⁷Gd 158Gd ¹⁶¹Gd ¹⁵⁹Gd ¹⁶²Gd stable stable stable 18.479 ч 3.66 м 8.4 м 24.84% 21.86% 15.65%

1. Реакторный метод: ${}^{160}\text{Gd}(n,\gamma){}^{161}\text{Gd} \rightarrow {}^{161}\text{Tb}$. Присутствие стабильного изотопа ${}^{158}\text{Gd}$ в мишени приводит к накоплению стабильного ${}^{159}\text{Tb}$, что снижает удельную активность ${}^{161}\text{Tb}$. 2. Циклотронный метод: ${}^{160}\text{Gd}(d,n){}^{161}\text{Tb}$, ${}^{160}\text{Gd}(d,p){}^{161}\text{Gd} \rightarrow {}^{161}\text{Tb}$.

При использовании дейтронов до 40 МэВ на мишенях ^{nat}Gd радионуклидная примесь будет высокой. При использовании высокообогащенного ¹⁶⁰Gd будут произведены только ¹⁶⁰Tb и ¹⁶¹Tb.

3. Фотоядерный метод: 162 Dy(γ , p) 161 Tb, 163 Dy(γ , pn) 161 Tb.

Спектр гамма-излучения образца ¹⁶¹Тb, измеренный через 5 дней после окончания облучения. Время измерения: 18 часов. Звездочкой отмечены пики, соответствующие естественному фону.

Изотопы	T _{1/2}	Пути образования	Активность, Бк	Выход, кБк/(мкА·ч·г _{Dy2O3} /см ²)
¹⁵⁵ Dy	9.9 h	¹⁵⁶ Dy(γ,n) ¹⁵⁸ Dy(γ,3n)	940 ± 170	25 ± 4
¹⁵⁷ Dy	8.14 h	158 Dy(γ ,n) 160 Dy(γ ,3n)	8800 ± 500	249 ± 15
¹⁶⁰ Tb	72.3 d	$161 Dy(\gamma,p)$ $162 Dy(\gamma,pn)$ $163 Dy(\gamma,p2n)$	48.5 ± 3.2	1.0 ± 0.1
¹⁶¹ Tb	6.89 d	$162 Dy(\gamma,p)$ $163 Dy(\gamma,pn)$ $164 Dy(\gamma,p2n)$	668 ± 15	14.4 ± 0.3
¹⁶³ Tb	19.5 m	¹⁶⁴ Dy(γ,p)	7000 ± 900	2200 ± 300

- ➤ Побочными продуктами реакций на обогащенной мишени ¹⁶³Dy являются ¹⁶⁰Tb и ¹⁶²Tb, а на ¹⁶²Dy только ¹⁶⁰Tb. Изотопы диспрозия можно не учитывать, так как нуклиды, полученные в результате фотонейтронных реакций, можно выделить из материала мишени химическими методами.
- ▶ ¹⁶²Тb не является основным побочным продуктом фотоядерных реакций на ¹⁶³Dy, поскольку имеет период полураспада гораздо меньший (7.6 минуты), чем у целевого изотопа ¹⁶¹Tb. Следовательно, по прошествии нескольких периодов полураспада активность ¹⁶²Tb значительно уменьшится, и можно будет начать получение ¹⁶¹Tb, активность которого за это время практически не изменится.

Е, МэВ	A(¹⁶² Dy(γ, 1p) ¹⁶¹ Tb), ΜΓκ	A(¹⁶² Dy(γ, 1p1n) ¹⁶⁰ Tb), ΜΕκ	A(¹⁶³ Dy(γ, 1p1n) ¹⁶¹ Tb), ΜΕκ	A(¹⁶³ Dy(γ, 1p2n) ¹⁶⁰ Tb), ΜБκ
		MIDK	MDK	WIDK
18	132.38	$9.52 \cdot 10^{-7}$	$4.44 \cdot 10^{-4}$	-
20	471.27	3.87 · 10 ⁻³	0.63	-
22	1131.43	0.65	20.84	-
24	2138.35	6.88	137.53	$7.03 \cdot 10^{-7}$
26	3282.35	20.75	359.58	$2.86 \cdot 10^{-4}$
28	4422.65	39.88	640.53	$3.92 \cdot 10^{-2}$
30	5459.22	61.96	943.53	0.52
35	7504.24	119.29	1689.37	8.73
40	8994.04	174.76	2380.66	31.32

Анализируя выходы и активности целевого и побочных изотопов, можно сделать вывод, что для наработки ¹⁶¹Tb в медицинских целях следует использовать мишень из моноизотопа ¹⁶²Dy при энергиях электронного пучка 21-22 МэВ или мишень из моноизотопа ¹⁶³Dy при энергиях пучка электронов 29-30 МэВ.

Выходы фотоядерных реакций на моноизотопах ¹⁶²Dy и ¹⁶³Dy, приводящих к образованию ¹⁶⁰Tb и ¹⁶¹Tb, а также их отношение при энергии пучка электронов от 1 до 60 МэВ

Ядерные данные для наработки ¹⁶⁶Но

- Радионуклид ¹⁶⁶Но испускает бета-частицы высокой энергии (1774.32 кэВ; выход 48.8% и 1854.9 кэВ; выход 49.9%) и гаммаизлучение (80.57 кэВ; выход 6.7% и 1379.40 кэВ; выход 0.9%).
- Бета-частицы высокой энергии обеспечивают терапевтический эффект, а гамма-излучение с энергией 80.57 кэВ может быть использовано для ядерной визуализации.
- Парамагнитные эффекты гольмия позволяют использовать его в магнитно-резонансной томографии.
- ▶ ¹⁶⁶Но рассматривается как альтернатива ⁹⁰Ү для лечения рака печени, основанного на радиоэмболизации.
 - Радиоэмболизация форма терапии, при которой крошечные частицы, так называемые «микросферы», содержащие ¹⁶⁶Но, доставляются непосредственно к месту опухоли через катетер.
- Хитозан, меченный ¹⁶⁶Но, используется при гепатоцеллюлярной карциноме (ГЦК) Поскольку период полураспада ¹⁶⁶Но составляет 26.8 ч, то более 90% выводится менее чем за 4 дня.

¹⁶⁵ Er 10.34 h	¹⁶⁶ Er stable 33.503%	¹⁶⁷ Er stable 22.869%	¹⁶⁸ Er stable 29.978%	¹⁶⁹ Er 9.392 d	¹⁷⁰ Er stable 14.910%
¹⁶⁴ Ho 29 min	¹⁶⁵ Ho ^{(n.} stable 100%	γ) 166Ho 26.824 h	¹⁶⁷ Ho 3.003 h β	¹⁶⁸ Ho 2.99 min	¹⁶⁹ Ho 4.72 min
¹⁶³ Dy stable 24.90%	¹⁶⁴ Dy stable 18.18% ($\sum_{\substack{2.334 \text{ h} \\ n, \gamma \end{pmatrix}}^{165} \text{Dy}$	¹⁶⁶ Dy 81.6 h γ)	¹⁶⁷ Dy 6.20 min	¹⁶⁸ Dy 8.7 min

1. Наиболее распространенным методом получения ¹⁶⁶Но является *облучение* ¹⁶⁵Но (100% в природной смеси) тепловыми нейтронами в реакторе. Единственный побочный продукт - ^{166т}Но, примерно в 7·10⁶ раз меньше, чем ¹⁶⁶Но. Однако сечение захвата нейтронов для ¹⁶⁵Но довольно низкое (61.2 барн), поэтому получить радионуклид с высокой удельной активностью этим методом невозможно.

2. ¹⁶⁶Но без носителя может быть получен путем *облучения* ¹⁶⁴Dy *тепловыми нейтронами в реакторе*. При этом происходит последовательный захват двух нейтронов ($\sigma_{th}(^{164}Dy)=2720$ барн, $\sigma_{th}(^{165}Dy)=3900$ барн) с образованием ¹⁶⁶Dy ($T_{1/2} = 81.6$ ч) и последующий его бета-распад. В высокопоточных реакторах может быть достигнута активность ¹⁶⁶Dy, составляющая около 5 Ки/мг. Для этого требуются высокопоточные реакторы, количество которых в мире ограничено.

3. **Фотоядерный метод:** реакции ¹⁷⁰Er(γ, 3n1p), ¹⁶⁸Er(γ, 1n1p), ¹⁶⁷Er(γ, 1p).

Реакции под действием легких заряженных частиц (p, d, 3He, α) не могут быть использованы для получения ¹⁶⁶Но или ¹⁶⁶Dy из-за отсутствия подходящих мишеней.

Единственные имеющиеся экспериментальные данные о полном сечении фотопоглощения на изотопе ¹⁶⁸Er хорошо согласуются с расчетами в рамках КМФР и по программе TALYS в области энергий до 17 МэВ.

Спектр остаточной активности облученной мишени из натуральной смеси изотопов эрбия через час после первого облучения

Изотоп	T _{1/2}	Е _γ , кэВ (%)	Y, 1/e	Ү, кБк/(мкА·ч·г/см ²)
¹⁶¹ Er	3.21 h	201.47 (1.12), 211.15 (12.2), 592.6 (3.7), 826.6	$(6.11 \pm 0.54) \cdot 10^{-8}$	85.94 ± 7.56
		(64), 864.9 (1.29), 931.7 (1.82)		
¹⁶³ Er	75 min	439.9 (0.028)	$(1.03 \pm 0.20) \cdot 10^{-7}$	3722.95 ± 725.35
¹⁶⁹ Er	9.392 d	109.78 (0.0013)	$(3.93 \pm 0.91) \cdot 10^{-6}$	78.77 ± 18.25
^{162m} Ho	67 min	937.2 (10.8), 1220.0 (22.5)	$(1.14 \pm 0.13) \cdot 10^{-9}$	4.61 ± 0.53
¹⁶⁶ Ho	26.824 h	80.576 (6.56), 1379.437 (0.922)	$(5.47 \pm 0.23) \cdot 10^{-8}$	9.21 ± 0.39
¹⁶⁷ Ho	3.1 h	207.8 (5.0), 237.9 (5.1), 321.3 (14), 346.5 (57),	$(5.47 \pm 0.15) \cdot 10^{-8}$	78.26 ± 8.83
		386.2 (3.4), 403.0 (3.3), 460.0 (2.1)		
¹⁶⁸ Ho	2.99 min	741.3 (36), 821.09 (34)	$(8.47 \pm 0.72) \cdot 10^{-9}$	767.14 ± 65.31
¹⁶⁹ Ho	4.72 min	760.8 (10), 778.4 (10.1), 788.4 (21.2), 853.0 (11.2)	$(2.09 \pm 0.18) \cdot 10^{-8}$	$1\overline{196.36} \pm 103.29$

Экспериментальные радиохимические выходы указывают на возможность получения ¹⁶⁶Но на обогащенной мишени из ¹⁶⁷Er, поскольку в таком случае будет отсутствовать побочный изотоп ¹⁶⁷Но.

В рамках КМФР рассчитаны активности ¹⁶⁶Но, наработанные на ускорителе с током 1мА за 24 часа:

- ▶ 9 ГБк при энергии 15 МэВ
- ▶ 438 ГБк при энергии 18 МэВ
- ▶ 1821 ГБК при энергии 20 МэВ
- ▶ 8579 ГБк при энергии 24 МэВ
- ▶ 17026 ГБк при энергии 28 МэВ

Спасибо за внимание!