

Семинар памяти профессора Б.С. Ишханова «Фотоядерные исследования. Состояния и перспективы»

ПОЛУЧЕНИЕ МЕДИЦИНСКИХ РАДИОИЗОТОПОВ НА УСКОРИТЕЛЕ ЭЛЕКТРОНОВ

П.Д. Ремизов

<u>План доклада:</u>

- 1) Обзор ⁸⁹Zr, ¹⁷⁷Lu, ^{186, 188, 189}Re
- 2) Требования к наработке медицинских радиоизотопов
- 3) О фотоядерных реакциях
- 4) Экспериментальная методика
- 5) Обработка результатов
- 6) Сечения реакций (γ, 1*pXn*) и (γ, 1*αXn*) в области ядер Z = 40, 41, 42
- 7) Анализ способов наработки ⁸⁹Zr на ускорителях электронов
- 8) Анализ способов наработки ¹⁷⁷Lu на ускорителях электронов
- 9) Анализ способов наработки ^{186, 188, 189} Re на ускорителях электронов

Обзор ⁸⁹Zr, ¹⁷⁷Lu, ^{186, 188, 189}Re

• ⁸⁹Zr

$T_{1/2}$ = 78,4 ч, $E_{\beta +}$ = 0,4 МэВ (23 %), E_{γ} = 0,4 МэВ (23 %) $^{89}{\rm Y}({\rm p,n})^{89}{\rm Zr}$

• ¹⁷⁷Lu

 $T_{1/2}$ = 6,7 сут, E_{β_-} = 0,1 МэВ, E_{γ} = 0,21 МэВ (11 %) ¹⁷⁶Lu(n, γ)¹⁷⁷Lu носитель, ¹⁷⁶Yb(n, γ)¹⁷⁷Yb→¹⁷⁷Lu сложная радиохимия

• ¹⁸⁶Re

$$T_{1/2} = 3,7$$
 сут, $E_{\beta} = 0,35$ МэВ, $E_{\gamma} = 0,14$ МэВ (9,5 %) 185 Re(n, γ) 186 Re *носитель*

• ¹⁸⁸Re

 $T_{1/2}$ = 17 ч, $E_{\beta_{-}}$ = 0,76 МэВ, E_{γ} = 0,15 МэВ (15 %) ¹⁸⁶W(n, γ)¹⁸⁷W(n, γ)¹⁸⁸W→¹⁸⁸Re двойной нейтронный захват • 189**Re**

 $T_{1/2}$ = 24,3 ч, E_{β} = 0,31 МэВ, E_{γ} = 0,22 МэВ (10 %) аналог ¹⁸⁶Re и ¹⁸⁸Re, можно получать фотоядерным способом

Требования к наработке медицинских радиоизотопов

- Радионуклидная чистота > 99,9 %: вклад активности других радиоизотопов < 0,1 %
- Отсутствие носителя: отсутствие стабильных ядер того же химического элемента
- Умеренная стоимость мишени: добыча некоторых материалов дорогостоящая, обогащение – всегда дорого
- Адекватные условия наработки: время облучения, масса мишени и т.д.

Реакции на ускорителях электронов:

 $\begin{array}{l} {}^{A}_{Z}X+\gamma \rightarrow {}^{A-1}_{Z}X+n \\ \\ {}^{A}_{Z}X+\gamma \rightarrow {}^{A-1}_{Z-1}Y+p \\ \\ {}^{A}_{Z}X+\gamma \rightarrow {}^{A-2}_{Z-2}Y+\alpha \end{array}$

Реакции (ү, n) хорошо изучены, но не позволяют достичь достаточной для медицины удельной активности

В фотоядерных реакциях с испусканием заряженных частиц образуются изотопы химических элементов, отличных от материала облучаемой мишени. Возможно химическое выделение

Изоспиновое расщепление ГДР

 $T_{>}=T_{0}+1$ В основном состоянии изоспин ядра $T_0 = \frac{N-Z}{2}$ При поглощении фотона *E*1 возбуждаются 2 состояния ядра: $T_{<} = T_{0}$ и $T_{>} = T_{0} + 1$ $T_{<}=T_{0}$ Расщепление по энергии: $\Delta E = E(T_{>}) - E(T_{<}) = \frac{60(T_{0}+1)}{4}$ МэВ Вероятности возбуждения: $\frac{P(T_{>})}{P(T_{<})} = \frac{1}{T_0} \left(\frac{1 - 1.5T_0 A^{-2/3}}{1 + 1.5A^{-2/3}} \right) *$ $T_0 = (N - Z)/2$

Традиционный статистический подход (TALYS) не учитывает изоспиновое расщепление. Комбинированная модель фотонуклонных реакций (КМФР) учитывает изоспиновые эффекты путем модификации полной и экситонной плотностей состояний [1].

В работе [2] отмечено, что ^{*} можно отнести к связи средневзвешенных сечений (ү, 1*p*) и (ү, 1*n*) реакций. Метод преобразования средневзвешенных сечений [3]:

Связь:

[1] Ishkhanov B.S., Orlin V.N. Combined model of photonucleon reactions // Physics of Atomic Nuclei. 2011. Vol. 74, № 1. P. 19–39.

[2] Ishkhanov B.S., Kapitonov I.M. Giant dipole resonance of atomic nuclei. Prediction, discovery, and research // Physics-Uspekhi. 2021. Vol. 64, № 2. P. 141–156.

Модифицированный порог реакции (*γ*, 1*p*): мол

$$E_{(\gamma,1p)}^{MOA} = E(\gamma,1p) + \Delta E$$

[3] Zheltonozhsky V.A., Savrasov A.M. Investigation of (γ,p)reactions on zirconium and molybdenium nuclei // The European Physical Journal A. 2022. Vol. 58, Nº 7. P. 118.

Метод преобразования интегральных сечений

 $\sigma_{(\gamma,1p)}(\text{общее}) = \sigma_{(\gamma,1p)}(\text{стат.} \equiv T_{<}) + \sigma_{(\gamma,1p)}(T_{>})$

Экспериментальная методика

20 МэВ: Линейный ускоритель

электронов Varian Trilogy ФМБЦ

им. Бурназяна (т. мишень – W)

55 МэВ: Разрезной микротрон НИИЯФ МГУ (т. мишень – 2.1 мм W)

Мишени: Mo, Nb, Zr, Hf, Ta, Os, Ir

γ-спектры облученных мишеней измерялись на **полупроводниковых спектрометрах с детекторами из сверхчистого германия** Canberra и Ortec с разрешением 2 кэВ по линии 1332 кэВ ⁶⁰Co. Калибровка по эффективности проводилась с использованием стандартных эталонных источников ¹⁵²Eu, ²²⁶Ra, ¹⁸²Ta, ¹³⁷Cs

Пучок ускоренных электронов Тормозная мишень Коллиматор Тормозное излучение Сборка исследуемых мишеней 10^{5} 20 МэВ -40 МэВ **-** 55 МэВ 10Поток у-квантов 10^{5} 10^{4} 50 10 30 20 40 E_{ν} (M \ni B) Спектры тормозного излучения

ускорителей

Схема экспериментов

C

Средневзвешенные сечения

Средневзвешенные сечения мониторных реакций ¹⁰⁰Мо(γ , 1*n*)⁹⁹Мо и ¹⁸¹Та(γ , 1*n*)¹⁸⁰Та [мб]:

$$<\sigma_{\text{MOH}}>=rac{\sum\sigma_i\varphi_i(E_{\text{nop}}; E_{\text{rp}})}{\sum\varphi_i(E_{\text{nop}}; E_{\text{rp}})}$$

σ_{i}	Сечение реакции, мб
ϕ_{i}	Вес фотонов данной энергии в пучке
λ	Постоянная распада, 1/с
S	Площадь пика в спектре
Ι	Ток пучка электронов, мкА
т	Масса мишени, г
р	Доля изотопа-мишени в природной смеси
N _A	Число Авогадро
t _{обл}	Время облучения мишени, с
t _{охл}	Время охлаждения облученной мишени, с
$t_{_{\rm H3M}}$	Время измерения спектра облученной мишени, с
θ	Отношение живого времени спектра к реальному
η	Квантовый выход ү-линии изотопа
3	Эффективность регистрации ү-линии детектором
k	Коэффициент самопоглощения ү-линии мишенью

Выходы изотопов

1) Активность радиоизотопов с $T_{1/2}$ >> 1 ч

$$A = YmIt$$
, где Y – выход активности $\left[\frac{b\kappa}{M\kappa A 4 \times r}\right]$, получаемый из эксперимента:
 $Y = rac{\lambda S}{Im \theta \eta \varepsilon k t_{obr} e^{-\lambda t_{oxr}} (1 - e^{-\lambda t_{M3M}})}$

2) Активность радиоизотопов с $T_{1/2} \sim 1$ ч

$$A = A_{yd}^{\text{hac}} m I (1 - e^{-\lambda t})$$
, где A_{yd}^{hac} – удельная активность насыщения $\left[\frac{5\kappa}{M\kappa A \times r}\right]$, получаемая из эксперимента:
$$A_{yd}^{\text{hac}} = \frac{\lambda S}{Im \theta \eta \varepsilon k (1 - e^{-\lambda t_{\text{обл}}}) e^{-\lambda t_{\text{охл}}} (1 - e^{-\lambda t_{\text{ИЗМ}}})}$$

3) Количество ядер стабильных изотопов:

$$N^{\text{стаб}} = \frac{\langle \sigma_{\text{теор}} \rangle pmFN_A}{(N+Z)} t$$

, где $\langle \sigma_{
m reop}
angle$ – теоретическое средневзвешенное сечение:

$$<\sigma_{\rm reop}>=\frac{\sum\sigma_i\varphi_i(E_{\rm nop}; E_{\rm rp})}{\sum\varphi_i(E_{\rm nop}; E_{\rm rp})}$$

Экспериментальные результаты и их обсуждение

NT	D	Энергия,		Реакции (ү, 1 <i>р</i>)											
N	Реакция, энергия	МэВ	<σ _{эксп} >, мо												
(1)	92 Mo(γ , 1 p) 91m Nb	20	23±2	-		- 4		_			Э	кспери	мент	6	
(2)	92 Mo(γ , 1 p) 91m Nb	40	25±2	-							— Т. К	ΑLΥSI ΜΦΡ	.96	δ 8	= 77 % = 49 %
(3)	92 Mo(γ , 1 p) 91m Nb	55	16±2	10 -							Π	реобр.	средне	взв. <mark>б</mark>	= 46 %
(4)	⁹⁶ Mo(γ, 1 <i>p</i>) ⁹⁵ Nb	20	2.8±0.3								П	реобр.	интегра	ал. <u>б</u>	= 36 %
(5)	⁹⁶ Mo(γ, 1 <i>p</i>) ⁹⁵ Nb +	40	3.2±0.4	9					г	I 🗆					I
	⁹⁷ Mo(γ,1 <i>p</i> 1 <i>n</i>) ⁹⁵ Nb			×.								I		_	
(6)	⁹⁶ Mo(γ, 1 <i>p</i>) ⁹⁵ Nb +	55	2.4±0.3	⁶ ∀ 1 -								1	I.	i	
	⁹⁷ Mo(γ,1 <i>p</i> 1 <i>n</i>) ⁹⁵ Nb			-											
(7)	⁹⁷ Mo(γ, 1 <i>p</i>) ⁹⁶ Nb	20	1.7±0.2	-											
(8)	⁹⁷ Mo(γ, 1 <i>p</i>) ⁹⁶ Nb +	55	0.9±0.1												
	⁹⁸ Mo(γ,1 <i>p</i> 1 <i>n</i>) ⁹⁶ Nb			0.1											
(9)	⁹⁸ Mo(γ, 1 <i>p</i>) ⁹⁷ Nb	20	1.4±0.2	0,1 -	(1)	(2))	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
(10)	⁹⁸ Mo(γ, 1 <i>p</i>) ⁹⁷ Nb	55	2.8±0.2							Реак	ции				10

Реакции (ү, 1р). Обсуждение

<u>Ядра ^{96,97,98}Мо:</u>

- Сечения реакций (ү, 1*p*) в области ГДР, рассчитанные согласно статистической модели, значительно занижены по сравнению с экспериментальными.
- Интерпретация: статистическая модель недооценивает выход неравновесных протонов из состояния *T*_>.

<u>Ядро ⁹²Мо:</u>

- Среди стабильных изотопов молибдена оно обладает наименьшим *N*. Энергия отделения нейтрона ~ 13 МэВ, а энергия **отделения протона 7.5 МэВ**.
- Выход протонов «аномально» высок, но достаточно **точно** описывается статистической моделью распада возбужденного ядра.
- Изоспиновое расщепление ГДР, вероятно, имеет место. Но в данном случае абсолютный выход неравновесных фотопротонов из состояния T_> мал по сравнению с выходом испарительных фотопротонов.

Реакции (γ, 1αХп) при энергии 20 МэВ

Реакция	⁹² Mo(γ,1α) ⁸⁸ Zr	⁹⁴ Mo(γ,1α1 <i>n</i>) ⁸⁹ Zr	¹⁰⁰ Mo(γ,1α1 <i>n</i>) ⁹⁵ Zr	⁹³ Nb(γ,1α1 <i>n</i>) ⁸⁸ Y	⁹⁰ Zr(γ,1α1 <i>n</i>) ⁸⁵ Sr	91 Zr(γ ,1 α) 87m Sr	⁹⁶ Zr(γ,1α) ⁹² Sr	96 Zr(γ ,1 α 1 n) 91 Sr
Е _{пор} +В _{кул} , МэВ	~ 23	~ 32	~ 28	~ 30	~ 35	~ 22	~ 21	~ 30
	0.09	1.01	0.05	1.01	0.03	0.007	0.006	0.015
$< 0_{3KC\Pi} >$,	±0.01	±0.07	±0.01	±0.07	±0.01	±0.001	±0.001	±0.005
MO (CIAI.)	(0.05)	(0)	(0)	(0)	(0)	(0.001)	(0.001)	(0)
Спектр излуче облуче мишен	1 р ү- ения енной и ^{nat} Nb: 1 1 1	$\begin{array}{c} 0^{5} \\ 0^{4} \\ 0^{3} \\ 0^{2} \\ 0^{1} \\ 0 \\ 0 \\ 0 \\ 500 \end{array}$	93Nb(γ,1α1) 898.0 и 1836.0 кэЕ 1000 1500 <i>E</i> _γ (кэВ)	2000 88 Спек излу облу миш (обога	2 трγ- чения ченной ени ⁹⁴ Мо ащ. 98 %)	94 Mo (1 99 M 99 M 99 M	$y, 1 \alpha 1 n 3^{89} \mathbf{Z} \mathbf{r}$ 0 $\frac{1}{800} 8^{50}$ $E_{\gamma} (\kappa 3 \mathbf{B})$	900 950 12

Реакции (γ, 1αХп) в области ГДР. Обсуждение

- Реакции происходят в области ГДР, несмотря на существование кулоновского барьера
- Сечения реакций (γ,1α1n) на ядрах ⁹⁴Мо и ⁹³Nb на 1 – 2 порядка выше, чем на других исследованных ядрах (см. нейтронную структуру)
- Сечения реакций (γ,1αХn) на ядрах молибдена (Z = 42) выше, чем на ядрах циркония (Z = 40) (см. протонную структуру)

Реакции (γ, 1αХп) при энергиях 40 и 55 МэВ

40 МэВ:

101102.													
Реакция	⁹² Mo(γ ⁸⁸ Zr	ν, 1α)	⁹² Mo(γ, 1 ⁸⁷ Zr	lα1n)	⁹⁴ Mo(γ, 1α ⁹⁵ Mo(γ, 1α	l <i>n</i>) ⁸⁹ Zr + (2 <i>n</i>) ⁸⁹ Zr	¹⁰⁰ Mo(γ, 1 ⁹⁵ Zr	α1 <i>n</i>)	⁹³ Nb(γ, 1α1 <i>n</i>) ⁸⁸ Y	⁹³ Nb(γ, 1α2 <i>n</i>) ⁸⁷ Y			
$<\sigma_{ m _{ЭКСП}}>$, мб	0.21	±0.02	0.14±	0.03	0.27±0.02		0.022±0.003		0.24±0.02	0.18±0.02			
(стат.)	(0	.17)	(0.0	3)	(0.04	4)	(0.00	06)	(0.05)	(0.005)			
55 MəB:													
Реакция		⁹² Mo(γ,	1α) ⁸⁸ Zr	⁹² Μο(γ	ν, 1α1 <i>n</i>) ⁸⁷ Zr	⁹² Μο(γ, 1	$(\alpha 2n)^{86}$ Zr	⁹⁴ Μο(γ,	$(1\alpha 1n)^{89}$ Zr + ⁹⁵ N	Mo(γ, 1α2 <i>n</i>) ⁸⁹ Zr			
	(cmom)	0.21:	±0.02	0.2	5±0.05	0.05:	±0.01	0.19±0.04					
< 0 _{эксп} >, мо (CTAT.J	(0.	(0.17)		0.05)	(0.	03)		(0.08)				
⁹³ Nb(γ, 1α	α2n) ⁸⁷	Y 388.5 и 4	484.8 кэВ (⁸⁷ Y)	98.0 и 1836.0) кэВ (⁸⁸ Y)		1	° ⁴] ∧	42.8 кэВ (⁸⁶ 2	Zr)			
Спектр ү-]	104			\ C	пектр ү-	1	⁹² Mo(γ, 1α2 <i>n</i>) ⁸⁶ Z					
излучения	eTbl				И	излучения			- ~				
облученной		10^{3}		Hulphan		блученн	ой б	-	~~~~~				
мишени ^{nat} l	Nb ,	10^2			М	ишени ^{na}	^{at} Mo	627.7	7 и				
(40 МэВ):]	10 ¹				55 МэВ):	1	1076	.6 кэВ (⁸⁶ Ү) _v	\sim			
		1 <u> </u>	500 1000	1500	2000			240	245 630	1080 14			
			E_{γ} (кэl	3)					<i>Е</i> _γ (кэВ)				

Ядро ⁹²Мо. Обсуждение

Реакции (ү, 1*pXn*)

Реакции (γ, 1αХn)

Реакция	E _e	<σ _{эксп} >, мб	<о _{стат} >, мб	Реакция	E _e	<σ _{эксп} >, мб	<о _{стат} >, мб
⁹² Mo(γ, 1 <i>p</i>) ^{91<i>m</i>} Nb	20 МэВ	23±2	19	92 Mo(γ , 1 α) ⁸⁸ Zr	20 МэВ	0.09±0.01	0.05
⁹² Mo(γ, 1 <i>p</i>) ^{91<i>m</i>} Nb	40 МэВ	25±2	23	⁹² Mo(γ, 1α) ⁸⁸ Zr	40 МэВ	0.21±0.02	0.17
⁹² Mo(γ, 1 <i>p</i>) ^{91<i>m</i>} Nb	55 МэВ	16±2	19	⁹² Mo(γ, 1α) ⁸⁸ Zr	55 МэВ	0.21±0.02	0.17
⁹² Mo(γ, 1 <i>p</i> 1 <i>n</i>) ⁹⁰ Nb	55 МэВ	3.5±0.6	5.9	92 Mo(γ , 1 α 1 n) 87 Zr	40 МэВ	0.14±0.03	0.03
92 Mo(γ, 1 <i>p</i> 2 <i>n</i>) ^{89<i>g</i>} Nb + 92 Mo(γ, 3 <i>n</i>) ⁸⁹ Mo→ 89g Nb	55 МэВ	2.4±0.2	1.9	⁹² Mo(γ, 1α1 <i>n</i>) ⁸⁷ Zr	55 МэВ	0.25±0.05	0.05
⁹² Mo(γ, 1 <i>p</i> 2 <i>n</i>) ^{89<i>m</i>} Nb	55 МэВ	1.0±0.1	0.7	92 Mo(γ , 1 α 2 n) 86 Zr	55 МэВ	0.05±0.01	0.03

Анализ способов наработки ⁸⁹Zr на ускорителях электронов

Реакция	Мишень	E _e	$Y\left(\frac{\kappa \kappa \kappa}{M\kappa A \Psi \times r}\right) / A_{yd}^{Hac}\left(\frac{\kappa \kappa}{M\kappa A \times r}\right)$	Время для достижения 37 МБк* ⁸⁹ Zr (<i>m</i> = 5 г, <i>I</i> = 0.4 мА)	Изотопная чистота ⁸⁹ Zr **	Радио- нуклидная чистота ⁸⁹ Zr **	Примеси
⁹⁴ Mo(γ, 1α1 <i>n</i>) ⁸⁹ Zr	^{nat} Mo	20 МэВ	0.73±0.04	~ 25 ч	< 20 %	~ 94 %	⁸⁸ Zr, ⁹⁰ Zr, ⁹¹ Zr,
⁹⁴ Mo(γ, 1α1 <i>n</i>) ⁸⁹ Zr	99% ⁹⁴ Mo	20 МэВ	8.1±0.5	~ 2.3 ч	< 60 %	99.9 %	⁹⁰ Zr
⁹⁴ Mo(γ, 1α1 <i>n</i>) ⁸⁹ Zr + ⁹⁵ Mo(γ, 1α2 <i>n</i>) ⁸⁹ Zr	^{nat} Mo	55 МэВ	70±4	~ 15 мин	< 10 %	~ 90 %	⁸⁸ Zr, ⁹⁰ Zr, ⁹¹ Zr,
⁹⁴ Mo(γ, 1α1 <i>n</i>) ⁸⁹ Zr + ⁹⁵ Mo(γ, 1α2 <i>n</i>) ⁸⁹ Zr	36% ⁹⁴ Mo, 63% ⁹⁵ Mo	55 МэВ	280±15	~ 4 мин	< 33 %	99 %	⁹⁰ Zr, ⁹¹ Zr, ⁸⁸ Zr
⁹² Mo(γ, 1 <i>p</i> 2 <i>n</i>) ^{89<i>m</i>} Nb + ⁹² Mo(γ, <i>X</i>) ^{89<i>g</i>} Nb → ⁸⁹ Zr	^{nat} Mo	55 МэВ	(8.5±0.5)×10 ³ (18.0±0.9) ×10 ³	~ 30 мин облучение + 30 мин охлаждение	~ 90 %	99.9 %	⁹⁰ Zr

* 37 МБк – минимальная диагностическая активность ⁸⁹Zr ** после химического выделения

Изомерное отношение $^{177m/g}$ Lu равно 0.0055 ± 0.0011

Оценено, что одновременно с 177 Lu образуется не более 0.3 % 175 Lu и не более 1% 176 Lu

Анализ способов наработки ^{186, 188, 189} Re на ускорителях электронов (55 МэВ)

Реакции	Продукт	< <i>σ</i> _{эксп} >, мб	$<\sigma_{ m TALYS}>$, мб	< <i>σ</i> _{изосп.} >, мб
¹⁸⁷ Os(ү, 1 <i>p</i>)+ ¹⁸⁸ Os(ү, 1 <i>p</i> 1 <i>n</i>)+ ¹⁸⁹ Os(ү, 1 <i>p</i> 2 <i>n</i>)+ ¹⁹⁰ Os(ү, 1 <i>p</i> 3 <i>n</i>) вклад (ү, 1 <i>p</i>) < 5 %	¹⁸⁶ Re	0.082±0.008	0.064	_
¹⁸⁹ Os(ү, 1 <i>p</i>)+ ¹⁹⁰ Os(ү, 1 <i>p</i> 1 <i>n</i>)+ ¹⁹² Os(ү, 1 <i>p</i> 3 <i>n</i>) вклад (ү, 1 <i>p</i>) ~ 25%	¹⁸⁸ Re	0.24±0.02	0.16	_
¹⁹⁰ Os(ү, 1 <i>p</i>)+ ¹⁹² Os(ү, 1 <i>p</i> 2 <i>n</i>) вклад (ү, 1 <i>p</i>) ~ 80%	¹⁸⁹ Re	0.88±0.09	0.13	0.65

m(Os) = 10 г, I = 0.1 мА, $A(^{186}\text{Re} или \, ^{188}\text{Re}) = 3$ ГБк, t = 7 или 2 ч

Работа поддержана грантами:

- РФФИ № 20-32-90124 «Получение циркония-89 с помощью ускорителей электронов»
- РНФ № 22-22-20119 «Исследование возможности получения медицинского изотопа лютеция-177 с помощью ускорителей электронов»
- РНФ № 24-25-00249 «Исследование фотоядерных реакций с вылетом заряженных частиц на осмии и иридии»

По направлению опубликовано 20+ статей (с учетом переводных)

Спасибо за внимание

Реакция ${}^{92}Mo(\gamma, 1p2n){}^{89}Nb \rightarrow {}^{89}Zr$

Активность ⁸⁹Zr, образующегося из ⁸⁹Nb:

$$A_{89Zr} = \sum_{i=1;2} A_{yd(i)}^{\text{Hac}} m I (1 - e^{-\lambda_i t_{\text{OGA}}}) \frac{\lambda_{89Zr}}{\lambda_{89Zr} - \lambda_i} (e^{-\lambda_i t_{\text{OXA}}} - e^{-\lambda_{89Zr} t_{\text{OXA}}})$$

$$, \text{ rge } A_{yd(i)}^{\text{Hac}} = \frac{(8.5 \pm 0.5) \times 10^3 \frac{\text{K}\text{Б}\text{K}}{\text{M}\text{K}\text{A} \times \text{F}}}{(18.0 \pm 0.9) \times 10^3 \frac{\text{K}\text{B}\text{K}}{\text{M}\text{K}\text{A} \times \text{F}}} (89m \text{Nb})$$

Количество ⁹⁰Zr, образующегося из ⁹⁰Nb:

$$N_{90Zr} = \frac{Y_{90Nb}mIt_{\text{обл}}}{\lambda_{90Nb}} \left(1 - e^{-\lambda_{90Nb}t_{\text{охл}}}\right) \quad \text{, где } Y_{90Nb} = (3.0 \pm 0.2) \times 10^6 \frac{\text{кБк}}{\text{мкАч} \times \text{г}}$$

Основные преимущества предлагаемого метода:

- сравнительная простота ускорителей электронов
- *т* может быть порядка 10¹⁻² г и более
- использование необогащенной мишени

Апробация результатов

- Remizov P.D., Zheltonozhskaya M.V., Chernyaev A.P., et. al. Measurements of the flux-weighted yields for (γ, αXn) reactions on molybdenum and niobium // European Physical Journal A. 2023. Vol. 59, no. 141. (Q1, SJR 0.97)
- 2. Zheltonozhskaya M.V., **Remizov P.D.**, Chernyaev A.P. Study of Photonuclear Reactions with the Alpha Particles' Emission on Zirconium, Niobium, and Molybdenum // Applied Radiation and Isotopes. 2023. Vol. 199, no. 110871. (**Q3**, SJR 0.42)
- **3.** Ремизов П.Д., Желтоножская М.В., Черняев А.П. и др. Фотопротонные реакции на молибдене // Известия Российской академии наук. Серия физическая. 2023. Т. 87, №8. С. 1092–1098. Remizov P.D., Zheltonozhskaya M.V., Chernyaev A.P. et al. Photoproton reactions on molybdenum // Bulletin of the Russian

Academy of Sciences: Physics. 2023. Vol. 87, no.8. P. 1112–1117. (**Q3**, SJR 0.21)

- **4.** Желтоножский В. А., Желтоножская М. В., **Ремизов П. Д.** и др. Исследование реакций с вылетом протонов на 179, 180Hf // Известия Российской академии наук. Серия физическая. 2022. Т. 86, № 9. С. 1305–1309.V. A. Zheltonozhskiy, M. V. Zheltonozhskaya, P. D. Remizov et al. Study of reactions with the emission of protons on 179, 180Hf // Bulletin of the Russian Academy of Sciences: Physics. 2022. Vol. 86, no. 9. P. 1309–1314. (**Q3**, SJR 0.21)
- **5.** Ремизов П. Д., Желтоножская М. В., Черняев А. П. и др. (γ, pxn)-реакции на естественном молибдене // Ядерная физика. 2023. Т. 86, № 1. С. 99–103.

P. D. Remizov, M. V. Zheltonozhskaya, A. P. Chernyaev et al. (γ, pxn) reactions on natural molybdenum // Physics of Atomic Nuclei. 2022. Vol. 85, no. 6. P. 818–822. (**Q3**, SJR 0.24)

6. Ремизов П. Д. Современные медицинские радионуклиды для иммуно-ПЭТ // Медицинская радиология и радиационная безопасность. 2022. Т. 67, № 3. С. 67–74.
 Remizov P. D. Novel Immuno-PET Medical Radionuclides // Medical Radiology and Radiation Safety. 2022. Vol. 67, No. 3. P. 67–74.
 (Q4, SJR 0.16)

Основные результаты и положения диссертации докладывались автором и обсуждались на **16** международных и всероссийских научных конференциях.

Работа поддержана грантом РФФИ №20-32-90124

88Mo	89Mo	90Mo	91Mo	92Mo	93Mo	94Mo	95Mo	96Mo	97Mo	98Mo	99Mo	100Mo
87Nb	88Nb	89Nb	90Nb	91Nb	92Nb	93Nb	94Nb	95Nb	96Nb	97Nb	98Nb	99Nb
86Zr	87Zr	88Zr	89Zr	90Zr	91Zr	92Zr	93Zr	94Zr	95Zr	96Zr	97Zr	98Zr
85Y	86Y	87Y	88Y	89Y	90Y	91Y	92Y	93Y	94Y	95Y	96Y	97Y
84Sr	85Sr	86Sr	87Sr	88Sr	89Sr	90Sr	91Sr	92Sr	93Sr	94Sr	95Sr	96Sr