Методы расчёта и численного моделирования выходных параметров рентгеновского излучения комптоновских источников

И.А.Артюков, Н.Л.Попов, Р.М.Фещенко

Физический институт им.П.Н.Лебедева РАН

Обратное комптоновское рассеяние

Модель 1 и её приближения

- Отсутствие квантовых и нелинейных эффектов в лазерноэлектронных взаимодействиях
- Диаметры электронного и лазерного пучков относительно велики, *d* » λ. Волновые эффекты незначительны.
- Непрерывные пространственные и временные распределения фотонов и электронов в пучках.
- Профили электронного пучка и поперечного импульса электронов являются гауссовыми и определяются значениями эмиттанса и бета-функции.
- Лазерный импульс и электронный сгусток имеют гауссовы профили в продольном направлении.
- Энергетический спектр электронов описывается функцией Гаусса некоторой ширины.
- Лазерный и электронный лучи распространяются практически в противоположных направлениях («лобовое столкновение»).

Расчёт спектральной яркости и потоков (Р.М.Фещенко)

Семинар НИИЯФ МГУ

26.10.2023

 $I_{\Omega,\omega}(\mathbf{n},\omega) =$

$$\frac{\nu N_e N_{ph}}{s} G \int_{V_{\mathbf{p}_{\perp}}} D\sigma_{\gamma}(\mathbf{p}_{\perp}) \exp\left\{-\left(\frac{p_{\perp,x}}{\Delta p_{\perp,x}}\right)^2 - \left(\frac{p_{\perp,y}}{\Delta p_{\perp,y}}\right)^2\right\} \frac{dp_{\perp}^2}{\pi \Delta p_{\perp,x} \Delta p_{\perp,x}}.$$

Компьютерная реализация в программном коде TSource (TSourceX, ...)

Feshchenko, R.; Vinogradov, A.; Artyukov, I. Influence of the electron beam emittance on the polarization of a laser-electron x-ray generator. Phys. Rev. Accel. Beams **2016**, 19, 114702

Спектральная яркость КИ как функции энергии рентгеновских фотонов (слева) и угла наблюдения (справа) для электронного сгустка с зарядом 0,1 нКл. Цифры на графиках соответствуют разным углам наблюдения: 1 – 0 мрад, 2 – 2 мрад и 3 – 4 мрад (слева) и разным энергиям рентгеновских фотонов: 1 – 413 кэВ и 2 – 408 кэВ (справа)

Модель 2- метод Монте-Карло (Н.Л.Попов)

основан на представлении электронного пучка как дискретного ансамбля независимо излучающих электронов

Блок-схема модели 2

ЛСО – лабораторная система отчета СОЭ – система отчета покоящегося электрона

Практически любое распределение электронов в фазовом пространстве, может быть привязана к данным по моделированию электронного пучка в ускорителе и накопительном кольце

Web интерфейса программы fiber

NUMERICAL LABORATORY		
Home About		
E-mail	nlpopov@yandex.ru	
Electron reduced energy (gamma) Electron delta gamma Electron normalized emittance (cm*rad) Aspect ratio of emittance (y/x) Electron bata function (cm/rad)	293.54 0.64 483e-4 2.1e-4 8.7	
Aspect ratio of beta function (y/x) Electron beam length (cm) Electron's path	0.954 0.138 Выберите файл не выбран	
O Gauss Model Ellipsoid Model		
Photon beam length (cm) Photon beam radius (cm) Photon energy (Ev) Photon pulse energy (mJ)	0.003 1.204 1	
Collision angle (in yz plane) (rad) Electron count Time shift (cm)	0.052 6.25e9 0	
Energy step (Ev) Tangent step Coordinate step (cm) Repeat count One scatter	1000 5e-4 5e-4 1	
submit		

10

Моделирование спектра КИ методом Монте-Карло

Сравнение результатов расчётов спктра по моделям 1 и 2

Примеры расчётов по программе TSource

линейный ускоритель

Параметр	Величина
Энергия электронов	1 ГэВ
Заряд электронного сгустка	1 нКл
Относительный разброс энергии	1 %
электронов	1 /0
Длительность сгустка	10 пс
Нормализованный эмиттанс (ε_x =	
ε _y)	т мм · мрад
Бета функция ($\beta_x = \beta_y$)	100 MM
Диаметр пучка ($2\sigma_x = 2\sigma_y$)	14 мкм
Частота	1 Гц

накопительное кольцо

Параметр	Величина
Энергия электронов	2 ГэВ
Заряд электронного сгустка	10 нКл
Относительный разброс энергий электронов	0,25%
Длительность сгустка	100 пс
Нормализованный эмиттанс ($\epsilon_{\rm x}/\epsilon_{\rm y}$)	120 мм · мрад/ 1,2 мм∙ мрад
Бета функция ($\beta_x = \beta_y$)	3000 мм
Диаметр пучка (2 $\sigma_{ m x}/(2\sigma_{ m y})$	600 мкм/60 мкм
Частота	10 МГц

	Линейный ускоритель	Накопительное кольцо
Максимум энергии фотонов, МэВ	18,2	73,5
Ср. поток в угол 2*1/ү , фотон/с	4·10 ⁸	$1,3.10^{11}$
Частота импульсов, Гц	1	10 ⁶

1E+12 1E+12 1E+11 1E+111 1E+10 1E+09 1

Спектральная яркость ИКИ в схеме линейного ускорителя 1 ГэВ

26.10.2023

Семинар НИИЯФ МГУ

Спектральная яркость ИКИ в схеме накопительного кольца 2 ГэВ (для сравнения серым пунктиром показана кривая для ИКИ с низким эмиттансом 1 мм·мрад)

Линейный ускоритель 1 Гэв

Спектральная яркость ИКИ в схеме линейного ускорителя для двух величин нормализованного эмиттанса ε

Линейный ускоритель 1 Гэв

Моделирование ограничивающей квадратной щели 5 мм х 5 мм на расстоянии 50 м от ИКИ (угловой размер 0,05 мрад х 0,05 мрад): спектральная плотность, попадающие на площадь апертуры. Общий поток в угол щели: 1,7·10^{7.} фотон/с. Цвет фотона соответствует его энергии

Накопительное кольцо 0.903 ГэВ

Electron central energy	0.903 GeV
Total charge	7 nC
Normalized emittance	11 mm∙mrad
Beta function	10 m
Relative energy spread	0.001
Duration	130 ps
Repetition rate	17 MHz
Derived quantities (for	
checking):	
Lorentz gamma factor	1768
Number of electrons	4.38e ¹⁰
Geometric emittance	6.2e ⁻⁹
Spot size (sigma)*	250 µm
Longitudinal size	0.04 m

Laser pulse energy	30 J
Wavelength (20)	0.515 m
Photon energy	2.408 eV
Electron-laser beam collision	o ^o (head-on
angle	collision)
Spot size (sigma)*	250 m
Rayleigh length	95 mm
Pulse duration	10 ps
Repetition rate (w optical cavity)	17 MHz
Polarization	linear

Угол раствора	0.15 х 0.15 мрад
Поток	2.7·10 ⁹ photon/s

Mean, eV	StDev	StDev*2.35
2.92E+007	4.75E+005	1.12E+006

Угол раствора (коллимация)	0.02 мрад ²
Поток	1.7·10 ⁷ photon/s

Mean, eV	StDev	StDev*2.35
2.99E+007	5.03E+004	1.18E+005

Моделирование рентгенооптического канала ИКИ

Vinogradov, A., Feshchenko, R., Shvedunov, V., & Artyukov, I. (2023). Ray Tracing Simulation of X-ray Microdiffraction Beamline on the Inverse Compton Source. *Symmetry*, *15*(5), 1068.

Заключение

- В ФИАН разработаны программы для численного моделирования как основных выходных параметров излучения ИКИ, так и параметров рабочего пучка после линии формирования (тракта) пучка
- Спектр и интенсивность выходного излучения сильно от параметров электронного пучка (особенно, эмиттанса).
- Для получения полезных и надёжных результатов требуется максимально точная информация об электронных и лазерных пучках в точке их взаимодействия, а также верификация используемых моделей в простых экспериментах.

Sklearn model random forest regressor was chosen as Machine learning system