Использование нелинейного эффекта Комптона в узкополосных источниках гамма-квантов

Сергей Рыкованов (Сколтех)
Александр Федотов (МИФИ)
Игорь Костюков (ИПФ РАН)

Typical schematics of the ICS source

HiGS @ Duke uni (ring)
LynceanTech (ring)
MEGa-ray (linac)

1. Сколько фотонов?

2. Какая ширина линии источника?

Формулы для расчетов полного выхода фотонов

$$
\begin{gathered}
N_{\gamma}=\frac{\sigma_{T} N_{e} N_{p} F(x)}{\sqrt{2 \pi} \sigma_{l} \sqrt{\sigma_{e, 0}^{2}+\sigma_{p, 0}^{2}}} \frac{1}{\sqrt{\frac{\sigma_{e, 0}^{2}}{\beta_{e}^{\star 2}}+\frac{\sigma_{p, 0}^{2}}{\beta_{p}^{\star 2}}}}, \\
x=\frac{\sqrt{2}}{\sigma_{l}} \sqrt{\frac{\sigma_{e, 0}^{2}+\sigma_{p, 0}^{2}}{\frac{\sigma_{e, 0}^{2}}{\beta_{e}^{\star 2}+\frac{\sigma_{p, 0}^{2}}{\beta_{p}^{\star 2}}}},} \\
n_{e}=\frac{N_{e}}{(2 \pi)^{3 / 2} \sigma_{\perp, e}^{2}(z) \sigma_{l, e}} e^{\left(-\frac{\mathbf{r}_{\perp}^{2}}{2 \sigma_{\perp, e}^{2}(z)}-\frac{\left(z-c t-z_{0, e}\right)^{2}}{2 \sigma_{l, e}^{2}}\right)}
\end{gathered} \begin{aligned}
& \begin{array}{l}
\text { Пучки гауссовы, продольные и } \\
\text { поперечные размеры заданы по } \\
\text { формулам. Численно можно учесть }
\end{array} \\
& N_{p}=\frac{\begin{array}{l}
\text { ошибки (промахи, задержки итд) }
\end{array}}{(2 \pi)^{3 / 2} \sigma_{\perp, p}^{2}(z) \sigma_{l, p}} e^{\left(-\frac{\left(\mathbf{r}_{\perp}-\Delta \mathbf{R}\right)^{2}}{2 \sigma_{\perp, p}^{2}}-\frac{\left(z+c t-z_{0, p}\right)^{2}}{2 \sigma_{l, p}^{2}}\right)},
\end{aligned}
$$

Оптимум при $\quad \sigma_{l} \approx 2 \beta_{p}^{*}$, то есть продольный размер лазерного импульса равен двум длинам Рэлея

Результаты. Полный выход фотонов для лазера 3 Дж

При фокусировке менее 50 микрон получаем от 2*10^8 до 10^9 фотонов за выстрел (в 4рі).
Длительность лазера при этом равна:

Inverse Compton scattering

Вклад нелинейности в ширину полосы

Лазерный импульс с гауссовой огибающей

Nonlinear Compton Scattering can increase photon yield by several orders of magnitude

\rightarrow All contemporary sources are based on linear Compton Scattering (1 electron scattered on 1 photon)
\rightarrow "Weak" laser pulses are used $\mathrm{a}_{0}<=0.01$
\rightarrow Nonlinear Compton Scattering ($\mathrm{a}_{0} \sim 1$) (theoretically) allows to increase photon yield by several orders of magnitude
\rightarrow Next we will discuss Nonlinear Compton Scattering and methods to significantly increase the photon yield independent of accelerator system

Nonlinear ICS

no restriction on a_{0}
electron is „dressed" by the laser pulse

Linear: $\quad \hbar \omega_{L}+\varepsilon_{e}=\hbar \omega_{X}+\varepsilon_{e}^{\prime}$
Non-Linear: $n \hbar \omega_{L}+\tilde{\varepsilon}_{e}=\hbar \omega_{X}+\tilde{\varepsilon}_{e}^{\prime}$

Energy-momentum conservation

Energy-momentum conservation + angular momentum conservation

- Generation of harmonics (same as in magnetic undulator)
- Harmonics can carry well-defined Orbital Angular Momentum (OAM)

Nonlinear ICS

no restriction on a_{0}
electron is „dressed" by the laser pulse

$$
\hbar \omega_{X}=\frac{4 \gamma^{2} \hbar \omega_{L}}{1+\gamma^{2} \theta^{2}+a_{0}^{2}}
$$

Total photon yield in natural bandwidth:

$$
N_{X}=N_{e} \pi \alpha \frac{a_{0}^{2}}{1+a_{0}^{2}}
$$

Nonlinear ICS

no restriction on a_{0}
electron is „dressed" by the laser pulse

$$
\hbar \omega_{X}=\frac{4 \gamma^{2} \hbar \omega_{L}}{1+\gamma^{2} \theta^{2}+a^{2}(t)}
$$

Total photon yield in natural bandwidth:

$$
N_{X}=N_{e} \pi \alpha \frac{a_{0}^{2}}{1+a_{0}^{2}}
$$

MPIPKS (atto07)

- Laser pulses ramp on and off smoothly --> time-dependent laser pressure
- Lorentz gamma factor becomes a function of time $\gamma(t)$
- Generated frequency: $\quad \omega_{X}(t)=4 \gamma^{2}(t) \omega_{L}$

Ponderomotive broadening

$$
\omega_{n}(\eta)=\frac{4 \gamma^{2} n \omega_{0}}{1+a(\eta)^{2} / 2}
$$

Ponderomotive broadening destroys the monochromaticity of Compton photon source and severely limits its applicability

Analytics:
VY Kharin, D Seipt, SG Rykovanov
Physical Review A 93 (6), 063801

Proper nonlinear chirping

If laser frequency is constant, the generated frequency is given by:

$$
\omega(\eta)=\frac{4 \gamma^{2} \omega_{L}}{1+a^{2}(\eta)}
$$

Why don't we chirp the pulse to exactly compensate the ponderomotive broadening:

$$
\omega(\eta)=\frac{4 \gamma^{2} \omega_{L}(\eta)}{1+a^{2}(\eta)}=\frac{4 \gamma^{2} \omega_{0}\left(1+a^{2}(\eta)\right)}{1+a^{2}(\eta)}
$$

ఒ backscattered spectrum
S.G. Rykovanov, et al, PRAB 19, 030701 (2016)

Two oppositely chirped laser pulses

Seipt, Kharin, Rykovanov, Phys. Rev. Lett. 122, 204802 (2019)

Увеличение выхода фотонов

- Весьма нехитрыми (линейными) манипуляциями* со спектром лазерных импульсов мультитераваттных и петаваттных систем можно на несколько порядков увеличить выход комптоновских фотонов по сравнению с линейным режимом
- Минус: малая скважность (repetition rate)
- Плюс: большая яркость в одном выстреле
* Мы разработали еще несколько методов борьбы с пондеромоторным уширением, которые за неимением времени не удалось рассказать в этом докладе

НЕЛИНЕЙНОЕ КОМПТОНОВСКОЕ РАССЕЯНИЕ: ОСНОВНЫЕ ПАРАМЕТРЫ

$a_{0}=\frac{e E}{m c \omega_{L}} \propto \sqrt{I_{L}}$ нормированная напряженность лазерного поля

$e^{-}+n \hbar \omega \rightarrow e^{-}+\gamma$
излучение фотонов (комптоновское рассеяние)
$\gamma+n \hbar \omega \rightarrow e^{-}+e^{+}$
фоторождение пар
$a_{0}>1(n \gg 1)$ - нелинейный режим комптоновского рассеяния

$$
\chi_{e, p h}=\frac{1}{a_{S}} \sqrt{\left(\varepsilon_{e, p h} \mathbf{E}+\mathbf{p}_{e, p h} \times \mathbf{B}\right)^{2}-\left(\mathbf{p}_{e, p h} \cdot \mathbf{E}\right)^{2}}
$$

$\chi>1$ - квантовый режим (эффект отдачи и зависимость от спина)

Выводы и предложения

Один из проектов КИ предусматривает 3 лазерные станции. Одну из станций можно оснастить мощной лазерной системой (мульти-ТВт или субПВт) для исследования нелинейного режима комптоновского рассеяния.

1-й этап: исследование методов значительного увеличения выхода фотонов
2-й этап: исследование эффектов реакции излучения, исследование границ применимости приближений плоской волны и постоянного скрещенного поля
3-й этап: сильно-полевая КЭД, генерация электрон-позитронных пар, (200 ТВт система)

Приложения сильно-нелинейного режима комптоновского источника: генерация короткого импульса гамма-квантов с высокой яркостью и широким спектром для исследования быстропротекающих процессов в oneshot режиме.

Theory of singularities of differentiable projection maps

(catastrophe theory)

V. Yu. Kharin, et al. PRL 120.4 (2018): 044802

$$
\frac{d^{2} I}{d \omega d \Omega}=\kappa \frac{\omega^{2}}{4 \pi^{2}}\left|\int_{-\infty}^{\infty} d \phi \mathbf{n} \times[\mathbf{n} \times \mathbf{u}] e^{i \omega(\phi+z-\mathbf{n} \cdot \mathbf{r})}\right|^{2}
$$

Apply catastrophe theory to the stationary phase picture.

Narrow spectral peaks could be found in the vicinity of spectral caustics.

V. Yu. Kharin, et al. PRL 120.4 (2018): 044802

Caustics and catastrophes

Caustics and catastrophes

Caustics and catastrophes

Caustics and catastrophes

Caustics and catastrophes

Caustics and catastrophes

Helmholtz-Institut Jena

Caustics and catastrophes

Generation of harmonics

- Linear $(a 0 \ll 1)$ Compton scattering is a source of narrow bandwidth gamma-rays
- One can significantly increase photon yield by increasing a_{0} for rectangular pulses
- Temporally shaped laser pulses lead to ponderomotive broadening in the spectrum
- Linear polarization leads to harmonics on axis, circular - no harmonics on axis (backscatter)
- Nonlinear chirping can compensate broadening, but hard to do experimentally
- Linear chirping is "easy" to implement

Polarization gating technique

Polarization gating technique in surface harmonics

S.G. Rykovanov, et al, New Journal of Physics 10, 025025 (2008)

Mark Yeung, J Bierbach, E Eckner, S Rykovanov, S Kuschel, A Sävert, M Förster, C Rödel, GG Paulus, S Cousens, M Coughlan, B Dromey, M Zepf, Phys. Rev. Lett. 115, 193903 (2015)

|GEMEINSCHAFT

PG technique in Compton Scattering

- Circular - no harmonics (at beginning and the end of the pulse)
- Linear - harmonics (near the middle of the pulse depending on the delay)
- Polarization gating - harmonics are only generated near the middle of two pulses where the polarization is linear

instantaneous intensity

Linear polarization area

Polarization gating technique

S. G. Rykovanov, et al, New Journal of Physics 10, 025025 (2008)

$$
\begin{gathered}
\phi=t-z \quad \delta=\pi n \\
\mathbf{A}_{\perp}=\frac{a_{0}}{2} e^{i \phi}\left(g\left(\phi-\frac{\delta}{2}\right) \varepsilon_{+}+g\left(\phi+\frac{\delta}{2}\right) \varepsilon_{-}\right)+c . c .
\end{gathered}
$$

Laser pulse with time-varying ellipticity a simple method to avoid ponderomotive broadening in harmonics spectrum

- For high intensities harmonics start to overlap into complete disarray
- On-axis harmonics are not emitted for circular polarization

Gamma comb

Choosing optimal delay between the circular pulses leads to a nice comb in gamma region (observed in angular distribution as well). Properties of this comb are governed by strength and length of the incident pulse.

Photon yield

- Plane wave with gaussian temporal envelope ($a_{0}=3, \tau=$ 8π),
- one electron $\gamma=529$,

Due to collimation angle even harmonics are also present

- Laser pulse ($a_{0}=2, \tau=30 \pi$),
- realistic electron beam (10^{8} electrons, $\gamma=$ $529, \epsilon_{n} \approx 0.15 \mathrm{~mm} \mathrm{mrad}, \sigma_{r} \approx 1.4 \mu \mathrm{~m}, \sigma_{\theta} \approx$ $0.19 \mathrm{mrad}, \delta E \approx 1 \%$),
- $\theta_{\text {col }}=0.2 / \gamma$

The effect could be observed experimentally

Optimal linear chirp in the spectral domain

$$
\tilde{A}(\omega)=\sqrt{2 \pi} a_{0} \tau \exp \left[-\frac{\tau^{2}}{2}\left(\omega-\omega_{0}\right)^{2}(1-i \beta)\right]
$$

Увеличение выхода фотонов

- Весьма нехитрыми (линейными) манипуляциями со спектром лазерных импульсов мультитераваттных и петаваттных систем можно на несколько порядков увеличить выход комптоновских фотонов по сравнению с линейным режимом
- Минус: малая скважность (repetition rate)
- Плюс: большая яркость в одном выстреле

НЕЛИНЕЙНОЕ КОМПТОНОВСКОЕ РАССЕЯНИЕ: ОСНОВНЫЕ ПАРАМЕТРЫ
$a_{0}=\frac{e E}{m c \omega_{L}} \propto \sqrt{I_{L}}$ нормированная напряженность лазерного поля

$$
e^{-}+n \hbar \omega \rightarrow e^{-}+\gamma
$$

излучение фотонов (комптоновское рассеяние)
$\gamma+n \hbar \omega \rightarrow e^{-}+e^{+}$
фоторождение пар
$a_{0}>1(n \gg 1)$ - нелинейный режим комптоновского рассеяния

$$
\chi_{e, p h}=\frac{1}{a_{S}} \sqrt{\left(\varepsilon_{e, p h} \mathbf{E}+\mathbf{p}_{e, p h} \times \mathbf{B}\right)^{2}-\left(\mathbf{p}_{e, p h} \cdot \mathbf{E}\right)^{2}}
$$

$\chi>1$ - квантовый режим (эффект отдачи и зависимость от спина)

НЕЛИНЕЙНОЕ КОМПТОНОВСКОЕ РАССЕЯНИЕ: ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ

 SLAC E144 ЭКСПЕРИМЕНТPositron Production in Multiphoton Light-by-Light Scattering
D. L. Burke, R. C. Field, G. Horton-Smith, J.E. Spencer, and D. Walz Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309

A signal of $\sim 10^{6}$ positrons above background has been observed in collisions of a low-emittance 46.6 GeV electron beam with terawatt pulses from a Nd:glass laser at 527 nm wavelength in an experiment at the Final Focus Test Beam at SLAC.

Laser:
$\lambda=0.527 \mu \mathrm{~m}$
$I \approx 1.3 \times 10^{18} \mathrm{~W} / \mathrm{cm}^{2} \quad \varepsilon_{\gamma}=29.2 \mathrm{GeV}$
$N_{e^{+}} /$lasershot ≈ 0.2
D.L.Burke, et al., Phys. Rev. Lett. 79, 1626 (1997).
$a_{o} \sim<1$, слабонелинейный
C.Bamber, et al., Phys. Rev. D 60, 092004(1999).

режсим

ЛАЗЕРНО-ПЛАЗМЕННАЯ СХЕМА

PHYSICAL REVIEW X 8, 031004 (2018)

Experimental Signatures of the Quantum Nature of Radiation Reaction in the Field of an Ultraintense Laser

(a)
D. J. Corvan ${ }^{3}$. Tamburini, ${ }^{2}$ G. Sarri, ${ }^{3}$ A. Di Piazza, ${ }^{2}$ S. Kuschel, ${ }^{4}{ }^{4}$ C. D. Baird, ${ }^{6}$ K. Behm, S. Bohlen, J. M. Cole, ${ }^{1}$

$\boldsymbol{a}_{\text {o }}$ ~ 7, нелинейный режсим, низкая точность измерений

SLAC E320 ПРОЕКТ

E-320: Probing Strong-field QED at FACET-II

FACET-II PAC Meeting
October 28, 2020

Sebastian Meuren (for the E-320 collaboration) (0) ENERGY

Current simulations: Nielsen Initial simulations: Tamburini \& Vranic Perturbative (E-144 code): Holtzapple

- 2021 (spring): calibrate detectors, measure backgrounds, access perturbative regime: $\mathrm{a}_{0} \leq 1\left(\sim 10^{18} \mathrm{~W} / \mathrm{cm}^{2}\right)$
- 2021 (summer): observe the transition to nonperturbative laser-electron interactions: $a_{0} \gtrsim 5\left(\gtrsim 10^{19} \mathrm{~W} / \mathrm{cm}^{2}\right)$

- 2022 (spring): LCFA breakdown requires Compton / pair spectrometer (Naranjo \& Rosenzweig)

$\hbar \omega^{\prime}[\mathrm{GeV}]$

- 2021 (winter): quantum radiation reaction (electrons emitting $n \geqq 5$ photons)
- 2021 (winter): QED vacuum breakdown: $\mathrm{a}_{0} \gtrsim 10$ ($\gtrsim 2 \times 10^{20} \mathrm{~W} / \mathrm{cm}^{2}$)

Sebastian Meuren (for the E-320 collaboration)

LUXE ПРОЕКТ

The European
Physical Journal
Special Topics

Conceptual design report for the LUXE experiment

H. Abramowicz ${ }^{1}$, U. Acosta ${ }^{2,3}$, M. Altarelli ${ }^{4}$, R. Aßmann ${ }^{5}$, Z. Bai ${ }^{6,7}$, T. Behnke ${ }^{5}$, Y. Benhammou ${ }^{1}$,
T. Blackburn ${ }^{8}$, S. Boogert ${ }^{9}$, O. Borysov ${ }^{5}$, M. Borysova ${ }^{5,10}$, R. Brinkmann ${ }^{5}$, M. Bruschi ${ }^{11}$, F. Burkart ${ }^{5}$,

Abstract This Conceptual Design Report describes LUXE (Laser Und XFEL Experiment), an experimental campaign that aims to combine the high-quality and high-energy electron beam of the European XFEL with a powerful laser to explore the uncharted terrain of quantum electrodynamics characterised by both high energy and high intensity. We will reach this hitherto inaccessible regime of quantum physics by analysing high-energy electron-photon and photon-photon interactions in the extreme environment provided by an intense laser focus. The physics background and its relevance are presented

SHINE ПРОЕКТ (КИТАЙ)

Выводы и предложения

Один из проектов КИ предусматривает 3 лазерные станции. Одну из станций можно оснастить мощной лазерной системой (мульти-ТВт или субПВт) для исследования нелинейного режима комптоновского рассеяния.

1-й этап: исследование методов значительного увеличения выхода фотонов
2-й этап: исследование эффектов реакции излучения, исследование границ применимости приближений плоской волны и постоянного скрещенного поля
3-й этап: сильно-полевая КЭД, генерация электрон-позитронных пар, (200 ТВт система)

Приложения сильно-нелинейного режима комптоновского источника: генерация короткого импульса гамма-квантов с высокой яркостью и широким спектром для исследования быстропротекающих процессов в oneshot режиме.

