

Настольные лазерноплазменные ускорители электронов и их применение

А.Б.Савельев

МГУ имени М.В.Ломоносова, физический факультет

План

- Что дает лазерное ускорение?
- Ускорение с использованием взрывающейся тонкой пленки
- Ускорение в газовой струе с использованием ударной волны
- Фотоядерные реакции
- Когерентное переходное излучение электронного пучка

8 GeV monoenergetic

35 fs, 31 J, 850 TW, $a_0=2.2$ 20 cm acceleration length in capillary

8 GeV monoenergetic

Rutherford Appleton Laboratory

7.5

Diamond light source £300 million 3 GeV 4 football pitches

Astra-Gemini laser £5 million 2 GeV 1 squash court

All-in-one laser Compton source

Ta Phuoc, K., Corde, S., Thaury, C. et al. All-optical Compton gamma-ray source. Nature Photon 6, 308–311 (2012)

Формирование коллимированных электронных пучков с большим зарядом в режиме DLA

Белым показана электронная концентрация; нет электронов с энергиями >4mc²

 x/λ_0

Схема с инжекцией в плазменный канал за счет распада волн параметрических неустойчивостей в тонком слое более плотной плазмы

Plasma Phys. Control. Fusion. 2019. Vol. 61, № 7. P. 075016 *Plasma Phys. Control. Fusion*. 2021. Vol. 62, № 2. P. 02201 *Physical Review E* 2020, 102(6), 063206

e⁻ bunch generation with ablated tape target

Double-pulsed interaction with thin tape target

He3 counter with moderator

~15 micron thick rewindable tape

Ablation of tape target

Ablation of tape target

e⁻ bunch generation with ablated tape target

Double-pulsed interaction with thin tape target

/29

Characterization of the e⁻ beam

Divergence and stability

Charge measurement

Full charge > 0.5 nC (10 nC/J)

3D PIC simulations

Acceleration mechanisms

Work via different mechanisms:

 $W_i = -e$

 $E_j v_j dt$

Energy scaling

Energy scaling

e⁻ bunch generation with gas target

Gas target characterization

2000

x, cm

Electron energy spectrum

PIC simulation of dephasing reduction

Electron beam dephasing

Фотоядерные реакции

21

Neutron generation

 $<\sigma_{\gamma n}> = 2,5 \pm 0.5$ mbarn

*Ishkhanov, B. S., et al. "Photonuclear reactions and astrophysics." *The Universe Evolution: Astrophysical and Nuclear Aspects" (Nova Science Publishers, New York, 2013)*

**Arnold C. W. et al. Cross-section measurement of 9 Be (γ , n) 8 Be and implications for α + α + n \rightarrow 9 Be in the r process //Physical Review C. – 2012. – T. 85. – No. 4. – C. 044605.

Physics of Atomic Nuclei, 2017 80 397

Experimental setup for the THz measurements

 $\label{eq:ITi:Sa} I_{\text{Ti:Sa}} \sim 5 \cdot 10^{18} \, \text{W/cm}^2$ $I_{\text{Nd:YAG}} \sim 10^{12} \, \text{W/cm}^2$

Detectors:

- LANEX screen
- Electron spectrometer
- 10 He³ counters
- CCD cameras
- Golay Cell

Electron beam characteristics + THz radiation

Q~50-100 pC for E>1.7 MeV

T~2-2.5 MeV

D Gorlova et al 2022 Laser Phys. Lett. 19 075401

THz radiation spectrum

D Gorlova et al 2022 Laser Phys. Lett. 19 075401

Coherent Transition Radiation (CTR)

From Van Tilborg, 2006, PhD thesis

Sharp boundary?

Coherency?

CTR calculations

Frequency-angular distribution of CTR radiation

PIC simulations

К.Иванов, И.Цымбалов, Д.Горлова, А.Заворотный, Р.Волков, С.Шуляпов, Е.Стародубцева

+ ФИАН, ИЯИ РАН, ИПМ РАН

Спасибо за внимание!