

МГУ им. М.В.ЛОМОНОСОВА ФИЗИЧЕСКИЙ ФАКУЛЬТЕТ НИИЯФ МГУ им. Д.В. СКОБЕЛЬЦЫНА

МΓУ

Близнюк У.А., Черняев А.П., Борщеговская П.Ю., Студеникин Ф.Р., Ипатова В.С., Золотов С.А., Хмелевский О.Ю., Зубрицкая Я.В.

Актуальность

По данным ФАО ООН ежегодно в мире теряется примерно треть всех произведенных продуктов питания (1,3 млрд. тонн)

Мировые потери продукции на всех этапах производства

Ежегодные пищевые отходы и потери в мире

Источник: Продовольственная и сельскохозяйственная организация ООН (FAO)

Микробиологическое загрязнение продуктов питания

Радиационная обработка

Стандарты ГОСТ по радиационной обработке

Разработка по облучению ряда продуктов питания

Дозиметрия при обработке пищевых продуктов гаммаизлучением, электронными пучками и рентгеновским (тормозным) излучением

Определение факта радиационной обработки продуктов питания методом электронного парамагнитного резонанса ряда FOCT 33339-2015 FOCT 33340-2015 FOCT 33271-2015 FOCT 33302-2015

ГОСТ Р ИСО/АСТМ 51204-2012 ГОСТ Р ИСО/АСТМ 51431-2012

FOCT P 52529-2006 **FOCT** P 53186-2008 **FOCT** P 52829-2007

Направления исследований

Исследование влияния характеристик ионизирующего излучения на микробиологические и химические показатели пищевой продукции и поиск технологических диапазонов радиационной обработки;

Поиск биохимических маркеров в продуктах питания и разработка новых методов выявления химических изменений в продуктах после радиационной обработки;

Повышение эффективности радиационной обработки объектов ускоренными электронами.

Сотрудничество

НИИ ядерной физики имени Д.В. Скобельцына МГУ

Всероссийский научно-исследовательский институт лекарственных и ароматических растений (ВИЛАР)

Химический факультет МГУ

Биологический факультет МГУ

Роспотребнадзор

Сибирский федеральный научный центр агробиотехнологий академии РАН

Исследование влияния характеристик ионизирующего излучения на микробиологические и химические показатели пищевой продукции и поиск технологических диапазонов радиационной обработки

Бактерии E.coli

Стандартные образцы Охлажденная мясная (говядина, свинина), рыбная (форель, семга)

продукция и мясо птицы (курица, индейка)

Объекты исследования

Картофель различных сортов

Семена пшеницы, льна, рапса

Источники ионизирующего излучения

Источник	Основные характеристики	Спектр
Ускоритель электронов УЭЛР-1-15-Т-001	 Энергия – 1 МэВ Ток – 5 нА - 500 нА Напряжение – 15 кВ 	Спектр излучения для усхорителя УЭЛР-1-25-Т-001
Ускоритель электронов УЭЛР-10-15-С-60	 Энергетические режимы – 5 МэВ, 6.5 МэВ, 8 МэВ, 10 МэВ Мощность пучка – 1 - 15 кВт Рабочая частота – 2856 МГц 	E (M3B)
Рентгеновский аппарат ДРОН-УМ2	 Энергия – 30 кэВ Ток – 25 мА - 50 мА Напряжение – 25 кВ - 60 кВ 	3 4 5 6 7 0 9 10 3 4 5 6 7 0 9 10 4 5 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7

Дозиметрический контроль

Тип	Формула	Погрешность измерения	Фото / схема облучения
Радиохромные пленки СО ПД(Э) – 1/10, СО ПД(Ф)Р – 5/50	$D = 8,1 \cdot \varDelta S^{0,981}$	5 %	
Ферросульфатный раствор Фрикке	$D = \frac{k \Delta S}{\rho G(Fe^{3+})\varepsilon l}$	10 %	
Моделирование GEANT4	$D = \left(\frac{Q_{exp}}{Q_{model}}\right) \cdot D_{model}$	2 %	

10

Микробиологический анализ (методика)

- Разведение образцов с физиологическим раствором в соотношении от 1:10 до 1:10000 и без разведения;
- Нанесение суспензии в чашки Петри на поверхность агаризованной тиогликолевой среды;
- **Расчет концентрации жизнеспособных клеток** в КОЕ/г методом Коха.

Влияние дозы облучения на выживаемость условно-патогенных бактерий E.coli

Влияние дозы облучения на микробиологические показатели пищевой продукции

Зависимость концентрации жизнеспособных клеток от дозы электронного облучения в мясе птицы

Зависимость концентрации жизнеспособных клеток от дозы рентгеновского и электронного облучения в мясе рыбы

13

Влияние характеристик излучения (тип излучения, мощность дозы) на микробиологические показатели пищевой продукции

Зависимость концентрации жизнеспособных клеток от дозы рентгеновского и электронного облучения

Зависимость концентрации жизнеспособных клеток от мощности дозы электронного облучения

Мониторинг микробиологических показателей продукта после радиационной обработки

Расчет количества жизнеспособных бактерий 1 день 4 день 8 день 11 день 15 день Т хранения 4 °С t, время *10⁶ KOE/r 240 · ···• контроль 220 ••• 0.24 кГр ·**4**··· 0,48 кГр ź 200 клет 4 2,8 кГр 180 Концентрация жизнеспособных 160 10 12 14 16 Время после облучения t, сутки

Зависимость общей концентрации жизнеспособных клеток в образцах рыбы, облученных ускоренными электронами в различных дозах, от времени после проведения обработки 15 Моделирование кинетики изменения микробиологических показателей продуктов питания в период хранения после проведения радиационной обработки

Зависимость времени после облучения, когда концентрация жизнеспособных бактерий превышает 10⁶ КОЕ/г от дозы

Модельные зависимости общей концентрации жизнеспособных клеток в образцах, облученных ускоренными электронами в различных дозах, от времени после проведения обработки

Выводы

Значение поглощенной дозы, соответствующей нижней границе эффективного диапазона доз радиационной обработки, зависит как от характеристик самого продукта (начальная обсемененность продукции, концентрация питательных веществ), так и от характеристик излучения (тип излучения, мощность дозы).

Предложена математическая **модель**, описывающая изменение **микробиологических показателей** продукции, позволяющая оценить **сроки хранения** продукции, прошедшей радиационную обработку в различных дозах.

Химический анализ

Газовый хромато-масс-спектрометр Shimadzu GCMS-QP2010 Ultra

Хроматограмма образцов индейки

ГХ-МС

«Газовая хромато-масс спектрометрия»

- 2 г образца помещали в виалу и добавляли 4 мл NaCl
 3% и герметично закрывали;
- Исследуемые образцы помещали в ультразвуковую ванну;
- Затем образцы термостатировали при T=95°;
- Для определения летучих соединений использовали ГХ-МС;
- Проводился сбор данных и обработки хроматограмм;
- Производилась идентификация компонентов.

Условная схема радикальных реакций жирных кислот

Идентифицируемые органические летучие соединения в пищевых продуктах методом ГХ-МС

Идентифицированное соединение	Класс	m/z	Идентифицированное соединение	Класс	m/z
Гексаналь		82	2 метил-1-бутанол		71
Пентаналь		58	1-пентен-3-ол		86
Гептаналь		81	Этанол	спирт	45
Нонаналь		98	2 - Пропанол		59
Этаналь	альдегид	44	1 гексанол		68
3 Метилбутаналь		86	Толуен		91
Пропаналь		58	Октен		85
Бутаналь		86	1 гептен		98
2 Метилпропаналь		72	Гексан		86
2,3 бутандион	KOTOLI	86	Гептан		71
Ацетон	кетон	58	и др.		

Результаты исследования влияния характеристик излучения на чистые органические летучие соединения

Экспериментально измеренные зависимости концентраций стандартных образцов пентаналя, пентанола, пентанона в физиологическом растворе от дозы облучения Во всех исследуемых образцах происходят два конкурирующих процесса: распад химического соединения и образование молекул данного соединения за счет распада других соединений.

Экспериментальные зависимости концентраций чистых соединений спирта гексанола и альдегида гексаналя от дозы облучения в растворе спирта гексанола. Сплошные линии - функции, рассчитанные по формулам (2)

$$\begin{cases} \frac{dC_1}{dD} = -a_0C_1 \\ \frac{dC_2}{dD} = -b_0C_2 + c_0C_1 \ (1) \\ C_1(0) = 1, \qquad C_2 \ (0) = 0 \end{cases}$$

$$\begin{cases} C_1 = e^{-a_0D}, \\ C_2 = \frac{c_0}{a_0 - b_0} \times \left(e^{-b_0D} - e^{-a_0D}\right) \ (2) \end{cases}$$

где C_1 – концентрация гексанола (мг/л), C_2 – концентрация гексаналя (мг/л), a_0 – константа распада гексанола(Гр⁻¹), b_0 – константа распада гексаналя (Гр⁻¹), c_0 – константа распада спирта гексанола в альдегид гексаналь в физиологическом растворе (Гр⁻¹).

21

Результаты исследования влияния характеристик излучения на органические летучие соединения пищевой продукции

$$C(D) = C_{\text{pach}}(D) + C_{\text{Hakonn}}(D) = a \times e^{-dD} + b \times (1 - e^{-cD}) + k \times D$$
(3)

Экспериментальные зависимости изменений концентраций спиртов(а), альдегидов(b) и кетонов(c) в образцах семги от дозы облучения и соответствующие им функции изменения концентраций с дозой облучения, рассчитанные по формуле (3).

Результаты исследования влияния характеристик излучения на органические летучие соединения пищевой продукции

4,0 3,5 -

3,0 2,5

2.0

.5

0,5

0,0

0,0

0.5

1.0

Доза, кГр

Концентрация, отн.ед.

электроны

y=a+b(1-e^{-cD})

 $y=e^{a+bD+cD^2+dD^3}$

1,5

вешества

ацетон

2,5

микроорганизмы

2,0

рентгеновское излучение

Изменение концентраций летучих веществ, ацетона (потенциального маркера), альдегидов и клеток микроорганизмов в индейке от дозы, создаваемой в продукте ускоренными электронами и рентгеновским излучением

Выводы

Установлена нелинейная зависимость концентрации органических летучих соединений в образцах продукции мясного и рыбного происхождения от дозы облучения продукции.

Предложена математическая модель, описывающая изменение концентрации летучих соединений с увеличением дозы облучения продукта, основанная на **двух конкурирующих процессах**: их **распаде** за счет воздействия излучения и накоплении за счет распада других соединений.

Значение поглощенной дозы, соответствующей **верхней границе** эффективного диапазона доз радиационной обработки, зависит как от характеристик самого продукта (состав органических соединений), так и от характеристик излучения (тип излучения, мощность дозы).

Поиск биохимических маркеров в продуктах питания и разработка новых методов выявления химических изменений в продуктах после радиационной обработки

Потенциальных биохимические маркеры радиационной обработки пищевой продукции Гексаналь, Нонаналь, Гептаналь, Октаналь, Ацетон Толуол Пентаналь Индейка Семга Семга, дорадо, индейка, курица Ацетон(Индейка) Нонаналь(индейка) Толуол Гексаналь(индейка) 50 · 0.030 -Гексаналь(семга) 1600 1500 1400 1200 1200 1000 900 1000 900 140 45 · 40 0.025 Концентрация, мг/л 22 15 Г/JW 0,020 п/лм Концентарция, -0'0010 -0'010 -120 -Концентрация, 100 - 80 - 60 -40 J A*(1-exp(-B*x))+C*x+D*exp -E*x) Toluene 0.3 0.00358 ± 0.00678 0 57821 + 1 12545 10 0.00221 + 9.65924E 0,2 0.00561 + 0.0012 0,005 2.26967 ± 0.7138 0.47431 5 0.1 0.98878 R-Souare(COD 0,96635 0 0,0 0.000

Увеличение концентрации примерно в **1,4 - 6 раз** при 10 кГр

Доза,кГр

10

0

Увеличение концентрации примерно в **30-40 раз** при 10 кГр

Доза,кГр

2

10

0

2

8

Увеличение концентрации примерно в **5-6 раз** при 10 кГр

6

Доза,кГр

10

8

Поиск маркеров

С увеличением дозы облучения пик накопления концентрации альдегидов в исследуемых образцах в сдвигается в сторону меньшего времени хранения

Зависимость концентрации пентаналя (а), гексаналя (б), гептаналя (в) в мясе курицы после облучения в различных дозах от времени хранения

Модельные зависимости концентрации пентаналя в образцах мяса курицы, облученных в дозах 0 кГр и 0.25 кГр (а), 0.5 кГр (б), 1 кГр и 2 кГр (в), 5 кГр и 10 кГр (г) от времени хранения

Выводы

Обнаружен **ряд летучих органических соединений** в образцах продуктов мясного и рыбного происхождения, прошедших радиационную обработку, концентрация которых **возрастает** с увеличением дозы **на первые сутки** после облучения.

Обнаружен пик возрастания концентрации альдегидов в образцах продукции мясного и рыбного происхождения после радиационной обработки в дозах свыше 250 Гр в течение первых 4 суток хранения продукции. Альдегиды – потенциальные маркеры радиационной обработки в первые 4 суток хранения.

Термолюминесцентная и фотолюменесцентная

спектрометрия

Продукты, содержащие кремний (морепродукты, картофель, лук, свекла и др.). ЭПР

XMC

TLи

PSL

TBARS

Метод электронного парамагнитного резонанса

Продукты растительного

происхождения; сухие смеси; орехи; продукты, содержащие кости (птица, мясо, рыба); продукты, содержащие целлюлозу, кристаллический сахар.

Новый метод

Охлажденная бескостная мясная и рыбная продукции, а также мясо птицы; корнеплоды

Газовая/жидкостная хромато-масс

спектрометрия

Широкий спектр химических соединений (белки, углеводы, нуклеиновые кислоты); Жиросодержащие продукты.

Поиск новых методов идентификации факта облучения продукта

Метод с применением тиобарбитуровой кислоты

Жиросодержащие продукты; продукты, содержащие влагу.

29

Метод «отпечатков пальцев»

Механизмы формирования аналитического сигнала с использованием карбоцианиновых красителей

30

Фото образцов с растворами экстракта картофеля, облученного в дозах 100 Гр, 1 кГр, 10 кГр, а также контрольных необлученных клубней с добавлением красителей, сделанные в ИК и ВИД диапазоне

Реакция Реакция окисления с окисления добавлением с добавлением красителя 2 красителя 2 (11 минут после (11 минут после добавления добавления красителя) красителя) Реакция Реакция агрегации с агрегации добавлением с добавлением красителя 1 красителя 1 100 Гр **10 кГр** І кГр контроль контроль 100 Гр **10 кГр** І кГр

Идентификация образцов картофеля двух сортов, облученного ускоренными электронами в различных дозах

Графики счетов дискриминантного анализа

Различение клубней 2 сортов с вероятностью 85%. Идентификация образцов картофеля одного сорта, облученных рентгеновским излучением в различных дозах

График счетов дискриминантного анализа

Для образцов, облученных рентгеновским излучением, достигается **95** % вероятность различения.

Выводы

Было достигнуто полное или частичное разделение образцов картофеля, облученных в дозах 100 Гр, 1 кГр, 10 кГр, и контрольных образцов.

Преимущество метода – **простота** (не требуется приборов, кроме фотокамер и светодиодного источника красного света).

Ограничение метода – необходимость анализа необлученных контрольных образцов известного состава наряду с неизвестными образцами, участвующими в исследовании.

3

Повышение правильности различения образцов продукции, прошедшей радиационную обработку, возможно **за счет новых индикаторных** реакций, более чувствительных к составу образцов продукции.

Поиск эффективных диапазонов доз радиационной обработки сельскохозяйственных культур

Поражение клубней картофеля грибами R. solani (ризоктониоз)

Поражение зерна пшеницы грибами Fusarium (фузариоз)

Фузариозное увядание картофеля и льна

Методика исследований

Объект

Склероции гриба R.Solani

Семена льна, пшеницы, сои, рапса с естественным заражением фитопатогеном

Клубни картофеля сорта Лина

и Розмари с естественным заражением фитопатогеном

Параметры облучения на ускорителе УЭЛР-1-25-Т-001

20 Гр – 38 кГр

5 Гр – 100 Гр

Ток пучка

- Ток пучка 50 нА 500 нА
- Одностороннее облучение

Одностороннее облучение

50 нА,

20 Гр – 200 Гр Ток пучка 50 нА, Двустороннее

облучение

Методика эксперимента

- Выращивание склероций в питательной среде;
- измерение диаметров колоний фитопатогена через 24, 48, 72, 96 часа.
- Выращивание семян в питательной среде;
- измерение всхожести семян и диаметра колонии фитопатогена на 5 и 7 сутки после высева.
- Выращивание клубней на опытной станции «Элитная» (2 года);
 - измерение кинетики роста и фракционного состава урожая картофеля;
- фитоэкспертиза урожая картофеля

Влияние дозы обработки семенных клубней на кинетику развития растений и фракционный состав урожая картофеля сорта Лина

Ігод

2 год

Урожай картофеля

Фракции полученного урожая:

<u>Малая</u> – до 40 г; <u>Средняя</u> – от 40 до 80 г; <u>Крупная</u> – более 80 г. Влияние дозы обработки семенных клубней сорта Лина на урожайность и степень заражения клубней картофеля сорта Лина

Зависимость подавления урожайности картофеля и степени заражения клубней от дозы облучения

$$U(D) = \frac{a}{1 + e^{\mathbf{b} * (D-c)}} + f$$

а – максимальное значение урожайности;

b - параметр, характеризующий ширину распределения функции урожайности ;

с - значении дозы, при которой значение урожайности уменьшается в 2 раза;

f - невосприимчивая к обработке доля семенного материала.

Эффективный диапазон доз радиационной обработки картофеля

	Показатель	D _{пор} (Гр), 1 год	$\overline{\pmb{D}}_{ ext{nop}}$ (Гр), 2 год	
	Урожайность средней фракции	81±10	80±20	
	Склероциальные формы ризоктиниоза	48±8	50±10	
Склероциальные	Несколероциальные формы ризоктиниоза	50±5	25±3	
формы Несклероциальные формы	Снижение Ингибиров урожайности прораста в 2 раза сельхоз кул	ание ния ьтур	Подавл активн фитопап	ение ости погена
40 Гр 50 Г <u>г</u>	 o 80 Гр 200	Гр	 450(0 Гр

Влияние дозы обработки семян на всхожесть и фитосанитарное состояние культур

Зависимость всхожести семян от дозы облучения

Зависимость диаметров колоний фитопатогена на семенах льна и пшеницы от дозы облучения

-0

Выводы

Подавление активности фитопатогена R. Solani более чем на **50%** было достигнуто при облучении в дозах свыше **1800 Гр**, полное ингибирование - свыше **4500 Гр**.

Предпосадочное поверхностное облучение клубней картофеля в дозах от **20** до **200** Гр привело к задержке развития растений, а дозами свыше **200** Гр – к полному ингибированию прорастания растений.

Поверхностная обработка картофеля в дозах от **35 до 50 Гр** является наиболее эффективной для фитосанитарного контроля культуры картофеля.

Повышение эффективности радиационной обработки объектов ускоренными электронами

Причины неоднородности радиационной обработки ускоренными электронами

2

3

4

Зависимость поглощенной дозы D в слоях объекта из воды в форме параллелепипеда от глубины X при обработке электронами с энергией 3 МэВ и 10 МэВ

- Неоднородность плотности и химического состава вещества объекта;
- Сложная геометрия объектов облучения;
- Неоднородное распределение объектов в упаковке.

Trends in radiation sterilization of health care products. — Vienna : International Atomic Energy Agency, 2008

Характеристики распределения поглощенной дозы по глубине объекта

Lopt - оптимальная толщина обработки

 $K = \frac{D_{min}}{D_{max}}$ - однородность обработки

Зависимость поглощенной дозы D (отн. ед.) от глубины X (мм) при обработке электронами с энергией 10 МэВ водного фантома в форме параллелепипеда Метод повышения однородности распределения дозы с использованием пластин-модификаторов из алюминия

Распределение поглощённой дозы D (Гр) по глубине X (см) водного фантома в форме параллелепипеда при облучении электронами с энергией 10 МэВ при дополнительном размещении алюминиевой пластинымодификатора толщиной от 0.5 мм до 6.0 мм и без нее Значения характеристик распределений поглощённой дозы с дополнительным размещением пластины-модификатора из алюминия и без нее

Е ₀ , МэВ	d, мм	L _{opt,d} , г/см²	К ₀ , отн. ед.	К _d , отн. ед.
	0.0	3.875 ± 0.025	0.73 ± 0.01	-
10	2.0	3.125 ± 0.025	0.73 ± 0.01	0.81 ± 0.02
	4.0	2.225 ± 0.025	0.76 ± 0.02	0.91 ± 0.02
	5.0	1.575 ± 0.025	0.82 ± 0.02	0.97 ± 0.02

Подбор оптимальных параметров обработки

Значения однородности К при облучении водного фантома толщиной L_{opt} электронами с энергией 5—10 МэВ при дополнительном размещении алюминиевой пластины толщиной от 0.5 мм до 6.0 мм и без нее

> K — однородность обработки $L_{\text{объекта}}$ = Lop_t (См) - толщина объекта

Значения оптимальной толщины водного фантома L_{opt} при облучении электронами с энергией 5—10 МэВ при дополнительном размещении алюминиевой пластины толщиной от 0.5 мм до 6.0 мм и без нее

*E*₀(МэВ) – энергия электронов *d*(мм) – толщина пластины – модификатора

Метод комбинации пластин-модификаторов различной толщины

Зависимость распределения поглощенной дозы D (отн.ед.) по глубине X (см) водного параллелепипеда при обработке электронами с энергией 10 МэВ с использованием пластин из алюминия различной толщины

$$\sum_{i=1}^{M} \left(\sum_{j=1}^{N} \omega_i D_{ij} - const \right)^2 \to Min$$

Значения распределения поглощённой D (отн.ед.) по глубине X (см) водного фантома при облучении электронами с энергией 10 МэВ при дополнительном размещении пластин из алюминия различной толщины и без них

	10 МэВ							
Х глубина , см	возду Х	0.5 мм	1.0 мм	1.5 мм	2.0 мм	2.5 мм	3.0 мм	
0	7,55E-01	7,76E-01	7,86E-01	7,95E-01	8,13E-01	8,31E-01	8,49E-01	•••
0,2	7,96E-01	8,02E-01	8,10E-01	8,17E-01	8,33E-01	8,51E-01	8,71E-01	••
0,4	8,20E-01	8,23E-01	8,29E-01	8,38E-01	8,52E-01	8,71E-01	8,91E-01	•••
0,6	8,41E-01	8,43E-01	8,47E-01	8,57E-01	8,71E-01	8,92E-01	9,13E-01	•••
0,8	8,61E-01	8,62E-01	8,69E-01	8,76E-01	8,93E-01	9,14E-01	9,36E-01	•••
I	8,81E-01	8,84E-01	8,90E-01	8,99E-01	9,15E-01	9,36E-01	9,56E-01	•••
1,2	9,01E-01	9,05E-01	9,12E-01	9,21E-01	9,39E-01	9,60E-01	9,76E-01	•••
1,4	9,24E-01	9,28E-01	9,36E-01	9,44E-01	9,59E-01	9,78E-01	9,90E-01	•••
1,6	9,49E-01	9,54E-01	9,60E-01	9,65E-01	9,81E-01	9,93E-01	9,99E-01	•••
١,8	9,74E-01	9,78E-01	9,82E-01	9,85E-01	9,96E-01	1,00E+00	1,00E+00	•••
2	1,00E+00	1,00E+00	1,00E+00	1,00E+00	1,00E+00	1,00E+00	1,00E+00	•••

Сравнение применения одной пластины и комбинации пластин

Распределение поглощённой дозы D (отн.ед.) по глубине X (см) водного фантома в форме параллелепипеда при облучении электронами с энергией 10 МэВ при размещении пластины толщиной 6 мм, при размещении комбинации алюминиевых пластин толщиной от 0.5 мм до 6.0 мм и без пластин Значение коэффициента однородности К при одностороннем облучении водного параллелепипеда толщиной от 1.9 см до 3.4 см электронами с энергией 10 МэВ с использованием комбинации пластин и без них

Толщина фантома, см	К без пластин, отн.ед.	К лучший модификатор, отн.ед.	К комбинация пластин, отн.ед.
1.60	0.805 ± 0.005	0.941 ± 0.023	0.958 ± 0.025
1.80	0.783 ± 0.013	0.902 ± 0.003	0.947 ± 0.002
2.00	0.761 ± 0.003	0.907 ± 0.002	0.937 ± 0.017
2.20	0.742 ± 0.023	0.895 ± 0.011	0.927 ± 0.005
2.40	0.726 ± 0.006	0.871 ± 0.021	0.917 ± 0.015
2.60	0.719 ± 0.011	0.850 ± 0.023	0.899 ± 0.011
2.80	0.719 ± 0.012	0.832 ± 0.006	0.888 ± 0.014
3.00	0.719 ± 0.021	0.810 ± 0.012	0.872 ± 0.021
3.20	0.719 ± 0.005	0.782 ± 0.001	0.850 ± 0.013
3.40	0.719 ± 0.004	0.752 ± 0.006	0.804 ± 0.013

Система планирования радиационной обработки объектов

Восстановление энергетического спектра пучка по известному распределению поглощенной дозы в веществе

Моделирование дозовых распределений в алюминии для набора моноэнергетических пучков электронов с энергией от 5 МэВ до 10 МэВ

51

N I N I 10 MeVE

5.3 MeV

F

000

5.11

Алгоритм реконструкции спектра излучения ускорителя по глубинным дозовым распределениям в известном веществе

$$D(x) = \int_{0}^{E_{max}} f(E)d(x,E)dE$$
$$\downarrow D = df$$
$$D_{i} = \sum_{j=1}^{M} d_{ij} \cdot f_{j}$$
$$\downarrow V$$
$$\begin{cases} min_{f}(\theta[f]) \\ \theta[f] = \left\| S^{\frac{1}{2}}(D - df) \right\|^{2} \end{cases}$$

 распределение поглощенной дозы,
 создаваемое пучком электронов с некоторым спектром

значение поглощенной дозы в точке с координатой x_i, создаваемое пучком с некоторым распределением, которое разложено по базисным функциям с весами f_j. Проблема ограничения максимально допустимого количества базисных функций, вызванного погрешностью измерения дозовых распределений

$$D_{exp} = D + \delta D_{exp}$$

53

Алгоритм реконструкции спектра излучения ускорителя по глубинным дозовым распределениям в известном веществе, дополненное регуляризацией Тихонова

$$\begin{cases} \min_{f}(\theta[f]) \\ \theta[f] = \left\| S^{\frac{1}{2}} (D_{exp} - df) \right\|^{2} + \alpha \|f\|^{2} \\ \vdots \\ \vdots \\ \mathbf{y} \end{cases}$$
$$f_{rest}(\alpha) = (d^{T}Sd + \alpha E)^{-1} d^{T}SD_{exp}$$

Демонстрация восстановления спектра ускорителя путем алгоритма с дополнением регуляризации Тихонова

Восстанавливаемый спектр пучка электронов

Распределение поглощенной дозы в воде с учетом восстанавливаемого спектра в

алюминии

Демонстрация восстановления спектра и соответствующего распределения поглощенной дозы в воде

Выводы

Разработанный метод модификации пучка электронов с применением комбинации пластин-модификаторов из алюминия позволяет увеличить однородность обработки до 95 % для объектов толщиной до 4 см.

Показана достаточная эффективность метода регуляризации Тихонова для задач синтеза спектров с заданными дозовыми распределениями. Точность реконструкции глубинных дозовых распределений составляет порядка 85-95%.

СПАСИБО ЗА ВНИМАНИЕ

Контактные данные:

Близнюк Ульяна Александровна – старший преподаватель ФУиРМ ФФ МГУ, снс НИИЯФ МГУ E-mail: uabliznyuk@gmail.com Тел: +7(495)939-13-44