Поляризованная структурная функция электророждения нейтрального пиона на протоне в резонансной области (по материалам кандидатской диссертации)

> Голубенко Анна Александровна Специальность: 01.04.16 Науч. руководитель: к.ф.-м.н., с.н.с Исупов Е.Л.

Научно-исследовательский институт ядерной физики имени Д.В.Скобельцына МГУ им. М.В.Ломоносова

Москва, 2022

А.А. Голубенко, НИИЯФ МГУ

Москва, 2022

Стр. 1 из 51

(日)

Возбужденные состояния нуклонов как инструмент для изучения сильной КХД

А.А. Голубенко, НИИЯФ МГУ

Москва, 2022

Стр. 2 из 51

А.А. Голубенко, НИИЯФ МГУ

Москва, 2022

Стр. 3 из 51

イロト イヨト イヨト イヨト

Исследование функций партонных распределений в резонансной области

А.А. Голубенко, НИИЯФ МГУ

Москва, 2022

Стр. 4 из 51

(a)

CEBAF

Рис. 1: Ускоритель CEBAF.

Москва, 2022

Детектор CLAS

Рис. 2: Детектор CLAS.

А.А. Голубенко, НИИЯФ МГУ

Москва, 2022

Стр. 6 из 51

メロト メポト メヨト メヨト 二日

Кинематика электрон-протонного рассеяния

$$q = p_e - p'_e \tag{1}$$

$$W = \sqrt{(q+p_p)^2} \tag{2}$$

$$Q^{2} = -q^{2} = 4E_{e}E'_{e}\sin^{2}\frac{\theta_{ee'}}{2}$$
(3)

$$\nu = \frac{qp_p}{M_N} = \frac{W^2 + Q^2 - M_N^2}{2M_N} = (E_e - E'_e)$$
(4)

$$x_B = \frac{Q^2}{2M_N\nu} \tag{5}$$

А.А. Голубенко, НИИЯФ МГУ

Москва, 2022

Стр. 7 из 51

Структурные функции инклюзивного электрон-протонного рассеяния

$$\sigma(W,Q^2) = \sigma_T(W,Q^2) + \varepsilon \sigma_L(W,Q^2), \tag{6}$$

$$\varepsilon = \left(1 + 2\left(1 + \frac{\nu^2}{Q^2}\right) \operatorname{tg}^2\left(\frac{\theta}{2}\right)\right)^{-1},\qquad(7)$$

$$F_1 = M_p \frac{K}{4\pi^2 \alpha} \sigma_T(W, Q^2), \tag{8}$$

$$F_2 = \nu \frac{\sigma_T(W, Q^2) + \sigma_L(W, Q^2)}{4\pi^2 \alpha} \frac{(2\nu M_p - Q^2)Q^2}{2M_p(Q^2 + \nu^2)},$$
(9)

где M_p — масса протона, ν — переданная электроном энергия, $K = \frac{2\nu M_p - Q^2}{2M_p}.$

А.А. Голубенко, НИИЯФ МГУ

Стр. 8 из 51

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ - □ - つく⊙

Данные, доступные из экспериментов CLAS

Стр. 9 из 51

э

Интерполяция и экстраполяция структурных функций F_1, F_2

- Для интерполяции инклюзивных структурных функций и сечений были использованы данные CLAS
- Для экстраполяции были использованы данные параметризации M.E. Christy and P.E. Bosted, arXiv:0711.0159
- Комбинация данных, полученных из интерполяции и экстраполяции, была параметризована при помощи подхода Operator Product Expansion:

$$F_1(W,Q^2) = C_{0,1}(W) + \frac{C_{1,1}(W)}{Q^2} + \frac{C_{2,1}(W)}{Q^4} + \dots$$

$$F_2(W,Q^2) = C_{0,2}(W) + \frac{C_{1,2}(W)}{Q^2} + \frac{C_{2,2}(W)}{Q^4} + \dots$$
(10)

А.А. Голубенко, НИИЯФ МГУ

Стр. 10 из 51

イロト 不得下 イヨト イヨト 二日

Экстраполированные инклюзивные сечения рассеяния электрона на протоне

- $E_b = 10.6 \text{ GeV}$
- Интегр. светимость: $12.8\cdot 10^{10}~{\rm мбар h}^{-1}$
- $\Delta W = 0.01 \text{ GeV}$ $\Delta Q^2 = 0.1 \text{ GeV}^2$
- Стат. неопред.: 0.2 - 2.0%

(a)

CLAS Physics Database http://clasweb.jlab.org/physicsdb

Стр. 11 из 51

Оценка резонансных вкладов в инклюзивные сечения электрон-протонного рассеяния

$$\sigma_{L,T}^{R}(W,Q^{2}) = \frac{\pi}{q_{\gamma}^{2}} \sum_{N^{*},\Delta^{*}} (2J_{r}+1) \frac{M_{r}^{2}\Gamma_{tot}(W)\Gamma_{\gamma}^{T,L}(M_{r})}{(M_{r}^{2}-W^{2})^{2} + M_{r}^{2}\Gamma_{tot}^{2}(W)} \frac{q_{\gamma}}{K}.$$
 (11)

$$\Gamma_r^T(M_r, Q^2) = \frac{q_{\gamma, r}^2(Q^2)}{\pi} \frac{2M_N}{(2J_r + 1)M_r} (|A_{1/2}(Q^2)|^2 + |A_{3/2}(Q^2)|^2);$$
(12)

$$\Gamma_r^L(M_r, Q^2) = 2\frac{q_{\gamma,r}^2(Q^2)}{\pi} \frac{2M_N}{(2J_r + 1)M_r} |S_{1/2}(Q^2)|^2;$$
(13)

где $q_{\gamma,r} = q_{\gamma}|_{W=M_r}$.

N^*	M_r	Γ_r		I	<i>A</i>	R	X
14	[MeV]	$[\mathrm{MeV}]$	L_{r}	$\rho_{\pi N}$	$\rho_{\eta N}$	$\rho_{r.}$	[GeV]
$\Delta(1232) \ 3/2^+$	1232	117	1	1.00	0	0	_
$N(1440)\;1/2^+$	1430	350	1	0.65	0	0.35	0.3
$N(1520)\ 3/2^-$	1515	115	2	0.60	0	0.40	0.1
$N(1535)\ 1/2^-$	1535	150	0	0.45	0.42	0.13	0.5
$\Delta(1620) \ 1/2^-$	1630	140	0	0.25	0	0.75	0.5
$N(1650)\ 1/2^-$	1655	140	0	0.60	0.18	0.22	0.5
$N(1675)\ 5/2^-$	1675	150	2	0.40	0	0.60	0.5
$N(1680)\ 5/2^+$	1685	130	3	0.68	0	0.32	0.2
$\Delta(1700)~3/2^-$	1700	293	2	0.10	0	0.90	0.22
$N(1710)\ 1/2^+$	1710	100	1	0.13	0.30	0.57	0.5
$N(1720)\ 3/2^+$	1748	114	1	0.14	0.04	0.82	0.5
$N'(1720) \ 3/2^+$	1725	120	1	0.38	0	0.62	0.5

A.N. Hiller Blin, ..., A.A. Golubenko et al. Phys.Rev. C100, 035201 (2019)

А.А. Голубенко, НИИЯФ МГУ

Стр. 12 из 51

Оценка резонансных вкладов в инклюзивные сечения электрон-протонного рассеяния

А.А. Голубенко, НИИЯФ МГУ

Москва, 2022

Стр. 13 из 51

Извлечение амплитуд электророждения $\gamma_v N N^*$ из эксклюзивного мезонного электророждения на нуклонах

I.G. Aznauryan and V.D. Burkert, Prog. Part. Nucl. Phys. 67, 1 (2012)

イロト イポト イヨト イヨト

А.А. Голубенко, НИИЯФ МГУ

Москва, 2022

Стр. 14 из 51

Измеренные данные по электророждению одиночного псевдоскалярного мезона на нуклоне

		Q^2	W	
JLab/Hall B	$\frac{d\sigma}{d\Omega}(\pi^0 p, \pi^+ n)$	0.16-0.36	1.1-1.38	[8]
	$\frac{d\sigma}{d\Omega}(\pi^0 p)$	0.4-1.8	1.1-1.68	[9]
	$\frac{d\sigma}{d\Omega}(\pi^0 p)$	3.0-6.0	1.1-1.39	[10]
	$A_{LT'}(\pi^0 p)$	0.4, 0.65	1.1-1.66	[11]
	$A_t, A_{et}(\pi^0 p)$	0.252, 0.385, 0.611	1.12-1.55	[12]
	$\frac{d\sigma}{d\Omega}(\pi^+n)$	0.3-0.6	1.1-1.55	[13]
	$\frac{d\sigma}{d\Omega}$, $A_{LT'}(\pi^+ n)$	1.7-4.5	1.11-1.69	[14]
	$A_{LT'}(\pi^+n)$	0.4, 0.65	1.1-1.66	[15]
	$\frac{d\sigma}{d\Omega}(\eta p)$	0.375-1.385	1.5-1.86	[16]
	$\frac{d\sigma}{d\Omega}(\eta p)$	0.17-3.1	1.5-2.3	[17]

Progress in Particle and Nuclear Physics 67 (2012) 1 I.G. Aznauryan, V.D. Burkert

А.А. Голубенко, НИИЯФ МГУ

Москва, 2022

Стр. 15 из 51

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

Амплитуды электровозбуждения Роперовского резонанса

А.А. Голубенко, НИИЯФ МГУ

Москва, 2022

Стр. 16 из 51

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Изучение Роперовского резонанса в подходе Дайсона-Швингера

Стр. 17 из 51

3

< ロ > < 同 > < 三 > < 三 > <

Измеренные данные по электророждению одиночного псевдоскалярного мезона на нуклоне

		Q^2	W	
JLab/Hall B	$\frac{d\sigma}{d\Omega}(\pi^0 p, \pi^+ n)$	0.16-0.36	1.1-1.38	[8]
	$\frac{d\sigma}{d\Omega}(\pi^0 p)$	0.4-1.8	1.1-1.68	[9]
	$\frac{d\sigma}{d\Omega}(\pi^0 p)$	3.0-6.0	1.1-1.39	[10]
	$A_{LT'}(\pi^0 p)$	0.4, 0.65	1.1-1.66	[11]
	$A_t, A_{et}(\pi^0 p)$	0.252, 0.385, 0.611	1.12-1.55	[12]
	$\frac{d\sigma}{d\Omega}(\pi^+n)$	0.3-0.6	1.1-1.55	[13]
	$\frac{d\sigma}{d\Omega}$, $A_{LT'}(\pi^+ n)$	1.7-4.5	1.11-1.69	[14]
	$A_{LT'}(\pi^+n)$	0.4, 0.65	1.1-1.66	[15]
	$\frac{d\sigma}{d\Omega}(\eta p)$	0.375-1.385	1.5-1.86	[16]
	$\frac{d\sigma}{d\Omega}(\eta p)$	0.17-3.1	1.5-2.3	[17]

Progress in Particle and Nuclear Physics 67 (2012) 1 I.G. Aznauryan, V.D. Burkert

А.А. Голубенко, НИИЯФ МГУ

Москва, 2022

Стр. 18 из 51

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

Набор данных e1e

- Энергия пучка:
 2.036 ГэВ
- $\bullet \ 0.4 < Q^2 < 1 \ {\rm GeV^2}$
- 1.1 < W < 1.8 GeV

イロト イヨト イヨト イヨト

Стр. 19 из 51

Доступ к третьей резонансной области

Exclusive $\pi^0 p$ electroproduction off protons in the resonance region at photon virtualities $0.4 \text{ GeV}^2 \leq Q^2 \leq 1 \text{ GeV}^2$

N. Markov,^{8,36}, K. Joo,⁸ V.D. Burkert,³⁶ V.I. Mokeev,³⁶ L. C. Smith,⁴¹ M. Ungaro,³⁶ S. Adhikari,¹¹

Набор данных e1e:

Доступная кинематическая область:

- $0.4 < Q^2 < 1 \text{ GeV}^2$;
- 1.1 < W < 1.8 GeV.

Набор данных e1e

- Энергия пучка:
 2.036 ГэВ
- $0.4 < Q^2 < 1 \ {\rm GeV^2}$
- 1.1 < W < 1.8 GeV
- Поляризация пучка: $\sim 80\%$
- Мишень:
 - H_2 , толщина 2 см

(a)

• Количество триггеров: $\sim 1.5\cdot 10^9$

Идентификация электронов

Рис. 3: Энергия, выделяемая отрицательно заряженными частицами во внутреннем калориметре, по сравнению с энергией, выделяемой во внешнем калориметре. Ось цветов (*z*) представляет количество событий.

А.А. Голубенко, НИИЯФ МГУ

Стр. 22 из 51

Идентификация электронов

Рис. 4: Энергия, оставляемая отрицательно заряженными частицами в калориметре, деленная на импульс частиц в зависимости от импульса. Ось цветов (z) показывает количество событий.

А.А. Голубенко, НИИЯФ МГУ

Москва, 2022

Стр. 23 из 51

イロト イポト イヨト イヨト

Идентификация протонов

Рис. 5: β как функция импульса для положительно заряженных частиц. Ось цветов (*z*) представляет количество событий.

А.А. Голубенко, НИИЯФ МГУ

Москва, 2022

Стр. 24 из 51

イロト イポト イヨト イヨト

Геометрические отборы областей доверия

Рис. 6: Детектор CLAS.

А.А. Голубенко, НИИЯФ МГУ

Москва, 2022

Стр. 25 из 51

Геометрические отборы областей доверия

Рис. 7: Выбор доверительной области для электронов. Ось цветов (z) представляет количество событий.

А.А. Голубенко, НИИЯФ МГУ

Москва, 2022

Стр. 26 из 51

イロト イポト イヨト イヨト

Ограничения на вершину электрона

Рис. 8: *Z* координата вершины для электронов в разных секторах (разные кривые).

А.А. Голубенко, НИИЯФ МГУ

Москва, 2022

Стр. 27 из 51

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Идентификация реакции $ep
ightarrow ep \pi^0$

Реакция

$$ep \to ep \pi^0 \to ep \gamma \gamma$$

будет идентифицироваться методом "недостающей массы" в канале:

$$ep \to epX$$
,

где сигнал от π^0 будет выделяться при помощи недостающей массы частицы Х:

$$MM^{2}(\pi^{0}) = (P_{e} + P_{p} - P_{e'} - P_{p'})^{2},$$
(15)

где P_{e} , $P_{p'}$, P_{p} , $P_{p'}$ - четырехвектора начального и конечного электронов и начального и конечного протонов соответственно.

А.А. Голубенко, НИИЯФ МГУ

Москва, 2022

Стр. 28 из 51

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Разбиение кинематической области

Переменная	Размер	Количество	Нижняя	Верхняя
	ячейки	ячеек	граница	граница
<i>W</i> , ГэВ	0.025	28	1.1	1.7-1.8
Q^2 , Гэ B^2	0.2-0.4	2	0.4	1.0
$\cos \theta_{\pi^0}$	0.2	10	-1	1
ϕ_{π^0}	30°	12	0°	360°

А.А. Голубенко, НИИЯФ МГУ

Стр. 29 из 51

3

イロト イヨト イヨト イヨト

Идентификация реакции $ep \rightarrow ep \pi^0$

Рис. 9: Распределение недостающей массы в реакции $ep \rightarrow epX$.

А.А. Голубенко, НИИЯФ МГУ

Москва, 2022

Стр. 30 из 51

A B b A B b

Пре- и пострадиационные упругие события

А.А. Голубенко, НИИЯФ МГУ

Москва, 2022

Стр. 31 из 51

Пре- и пострадиационные упругие события

Рис. 10: Отделение событий Бете-Гайтлера. Ось цветов (z) представляет количество событий.

А.А. Голубенко, НИИЯФ МГУ

Москва, 2022

Стр. 32 из 51

(a)

Идентификация реакции $ep ightarrow ep \pi^0$

Рис. 11: Распределение недостающей массы в реакции $ep \to epX$.

А.А. Голубенко, НИИЯФ МГУ

Москва, 2022

Стр. 33 из 51

A (10) × (10) × (10) ×

$$A_{LT} = \frac{1}{P_e} \frac{N^+ - N^-}{N^+ + N^-},$$
(18)

где P_e - поляризация пучка, N^{\pm} - количество событий с спиральностью электрона ± 1 .

イロト イポト イヨト イヨト 一日

Рис. 12: Спиновая асимметрия пучка как функция азимутального угла пиона в системе центра масс ϕ_{π} для реакции $ep \rightarrow e' \pi^0 p$.

CLAS Physics Database http://clasweb.jlab.org/physicsdb

А.А. Голубенко, НИИЯФ МГУ

Москва, 2022

Стр. 35 из 51

Было проведено сравнение полученных спиновых асимметрий пучка $A_{LT'}(W, Q^2, \cos \theta, \phi)$ и структурных функций $\sigma_{LT'}(W, Q^2, \cos \theta)$ с предсказаниями модели MAID2007 с использованием двух различных наборов амплитуд электровозбуждения N^* :

- исходные данные по амплитудам электровозбуждения N^* , заложенным в модель MAID2007;
- амплитуды, полученные из анализа данных CLAS по однопионному и двухпионному электророждению на протоне.

イロト 不得下 イヨト イヨト 二日

Амплитуды электровозбуждения нуклонных резонансов из данных CLAS

https://userweb.jlab.org/ isupov/couplings/

А.А. Голубенко, НИИЯФ МГУ

Москва, 2022

Стр. 37 из 51

BSA W= 1.56 GeV, Q^2 = 0.5 GeV², cos θ_{π} = -0.9 BSA W= 1.71 GeV, Q^2 = 0.5 GeV², cos θ_{π} = 0.9

(a)

Рис. 13: Спиновая асимметрия пучка как функция азимутального угла пиона в системе центра масс ϕ_{π} для реакции $ep \rightarrow e' \pi^0 p$.

А.А. Голубенко, НИИЯФ МГУ

Москва, 2022

Стр. 38 из 51

Извлечение $\sigma_{LT'}$

$$\frac{d^2\sigma}{d\Omega_{\pi}^*} = \frac{p_{\pi}^*}{k_{\gamma}^*} (\sigma_0 + h\sqrt{2\epsilon_L(1-\epsilon)} \,\sigma_{LT'} \,\sin\,\theta_{\pi}^* \,\sin\,\phi_{\pi}^*), \tag{19}$$

$$\sigma_{0} = \sigma_{T} + \epsilon_{L}\sigma_{L} + \epsilon \sigma_{TT} \sin^{2}\theta_{\pi}^{*} \cos 2\phi_{\pi}^{*} + \sqrt{2\epsilon_{L}(1+\epsilon)} \sigma_{LT} \sin \theta_{\pi}^{*} \cos \phi_{\pi}^{*},$$
(20)
Где p_{π}^{*} обозначает абсолютное значение импульса π^{0} в системе

центра масс, а k_{γ}^{*} - эквивалентная энергия реального фотона:

$$k_{\gamma}^* = \frac{W^2 - M_N^2}{2W}.$$
 (21)

$$\varepsilon = (1+2|\vec{q}|^2 \tan^2(\theta_e/2)/Q^2)^{-1}, \ \varepsilon_L = \frac{Q^2}{\omega_{\gamma}^{*2}}\varepsilon,$$
 (22)

где $|\vec{q}|$ и θ_e - абсолютные значения трехимпульса виртуального фотона и угла рассеяния в лабораторном системе отсчета, ω_{γ}^* энергия виртуального фотона в системе центра масс.

Извлечение $\sigma_{LT'}$

(a)

Рис. 14: Спиновая асимметрия пучка как функция угла ϕ при W=1.66 ГэВ $0.4 < Q^2 < 0.6$ ГэВ $^2\cos\theta=-0.9.$

А.А. Голубенко, НИИЯФ МГУ

Москва, 2022

Стр. 40 из 51

Извлечение $\sigma_{LT'}$

Рис. 15: Структурная функция $\sigma_{LT'}$ для электророждения $\pi^0 p$ на протоне в третьей резонансной области.

А.А. Голубенко, НИИЯФ МГУ

Москва, 2022

Стр. 41 из 51

Моменты Лежандра структурной функции $\sigma_{LT'}$

$$\sigma_{LT'} = \sum_{l=0}^{l_{max}=3} D_l P_l(\cos\theta_\pi^*), \qquad (24)$$

где l - орбитальный момент π^0 .

А.А. Голубенко, НИИЯФ МГУ

Стр. 42 из 51

イロト イロト イヨト イヨト 二日

Анализ чувствительности момента Лежандра D_0 к резонансным вкладам

Рис. 16: Момент Лежандра $D_0(Q^2, W)$ структурной функции $\sigma_{LT'}$ из данных электророждения $\pi^0 p$ при Q^2 =0,4-0,6 ГэВ².

$$D_{0} \sim (5E_{3+}^{*} - 2E_{3-}^{*} + M_{1-}^{*} + M_{1+}^{*})S_{0+}$$

$$+ E_{0+}^{*}(S_{3-} - S_{3+}).$$
(25)

А.А. Голубенко, НИИЯФ МГУ

Москва, 2022

Стр. 43 из 51

Анализ чувствительности момента Лежандра D_0 к резонансным вкладам

P_{11}	P_{31}	$\frac{1}{2}^{+}$	1^{+}	L_{1-}
S_{11}	S_{31}	$\frac{1}{2}^{+}$	0^{-}	L_{0+}, E_{0+}
D_{13}	D_{33}	$\frac{1}{2}^{+}$	2^{-}	L_{2-}, E_{2-}
P_{11}	P_{31}	$\frac{1}{2}^{+}$	1^{+}	M_{1-}
P_{13}	P_{33}	$\frac{1}{2}^{+}$	1^{+}	M_{1+}
P_{13}	P_{33}	$\frac{1}{2}^{+}$	1^{+}	L_{1+}, E_{1+}
F_{15}	F_{35}	$\frac{1}{2}^{+}$	3^{+}	L_{3-}, E_{3-}
D_{13}	D_{33}	$\frac{1}{2}^{+}$	2^{-}	M_{2-}
D_{15}	D_{35}	$\frac{1}{2}^{+}$	2^{-}	M_{2+}

А.А. Голубенко, НИИЯФ МГУ

Стр. 44 из 51

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ - □ - つく⊙

Анализ чувствительности момента Лежандра D_0 к резонансным вкладам

Рис. 17: Момент Лежандра $D_0(Q^2, W)$ структурной функции $\sigma_{LT'}$ из данных электророждения $\pi^0 p$ при Q^2 =0,4-0,6 ГэВ².

$$D_{0} \sim (5E_{3+}^{*} - 2E_{3-}^{*} + M_{1-}^{*} + M_{1+}^{*})S_{0+}$$

$$+ E_{0+}^{*}(S_{3-} - S_{3+}).$$
(26)

А.А. Голубенко, НИИЯФ МГУ

Москва, 2022

Стр. 45 из 51

Анализ чувствительности момента Лежандра D_1 к резонансным вкладам

Рис. 18: Момент Лежандра $D_1(Q^2, W)$ структурной функции $\sigma_{LT'}$ из данных электророждения $\pi^0 p$ при Q^2 =0,4-0,6 ГэВ².

$$D_{1} \sim -6E_{2-}^{*}S_{2-} - 6M_{2-}^{*}S_{2-}$$

$$+6E_{1+}^{*}S_{1+} - 6M_{1+}^{*}S_{1+}.$$
(27)

А.А. Голубенко, НИИЯФ МГУ

Москва, 2022

Стр. 46 из 51

Анализ чувствительности момента Лежандра D_2 к резонансным вкладам

Рис. 19: Момент Лежандра $D_2(Q^2, W)$ структурной функции $\sigma_{LT'}$ из данных электророждения $\pi^0 p$ при Q^2 =0,4-0,6 ГэВ².

$$D_{2} \sim 12(M_{2+}^{*} - E_{2-}^{*})S_{1+} + 6(3E_{2+}^{*} + 2M_{2+}^{*})S_{1+} - 15M_{1+}^{*}S_{2-}$$
(28)
+5(5 $E_{3+}^{*} - 2E_{3-}^{*} + M_{3-}^{*} - M_{3+}^{*})S_{0+} + 5E_{0+}^{*}(3S_{3-}^{*} - 4S_{3+}^{*}).$

А.А. Голубенко, НИИЯФ МГУ

Стр. 47 из 51

Анализ чувствительности момента Лежандра D_3 к резонансным вкладам

Рис. 20: Момент Лежандра $D_3(Q^2, W)$ структурной функции $\sigma_{LT'}$ из данных электророждения $\pi^0 p$ при Q^2 =0,4-0,6 ГэВ².

$$D_{3} \sim 18(M_{3-}^{*} - E_{3+}^{*})S_{1+}$$

$$+(34E_{3+}^{*} - 36E_{3-}^{*})S_{1+} - 28M_{1+}^{*}S_{3+}.$$

$$(29)$$

А.А. Голубенко, НИИЯФ МГУ

Москва, 2022

Стр. 48 из 51

Анализ чувствительности моментов Лежандра к резонансным вкладам

Рис. 21: Моменты Лежандра $D_l(Q^2, W)(l=0,1,2,3)$ структурной функции $\sigma_{LT'}$ из данных электророждения $\pi^0 p$ при $Q^2=0.6$ -1.0 ГэВ²: $D_0(Q^2, W)$ (вверху слева), $D_1(Q^2, W)$ (вверху справа), $D_2(Q^2, W)$ (внизу слева), $D_3(Q^2, W)$ (внизу справа).

А.А. Голубенко, НИИЯФ МГУ

Стр. 49 из 51

Основные результаты работы

- Получена спиновая асимметрия пучка при значении кинематических переменных, соответствующей второй и третьей резонансным областям, при 0.4 < Q² < 1.0 ГэВ², где мировые данные до этого отсутствовали или были ограничены.
- Поляризованная структурная функция $\sigma_{LT'}$ электророждения нейтрального пиона на протоне впервые получена в кинематической области при $0.4 < Q^2 < 1.0$ ГэВ² и 1.5 < W < 1.8 ГэВ.
- Найден вклад нуклонных резонансов в инклюзивные структурные функции F_1 и F_2 на основе новейших данных CLAS по амплитудам электровозбуждения N^* .

イロト 不得下 イヨト イヨト 二日

- Polarized structure function σ_{LT} from π⁰p electroproduction data in the resonance region at 0.4 GeV²≤Q²≤1.0 GeV² / A. A. Golubenko [et al.] // Phys. Rev. C. — 2022. — Feb. — Vol. 105, issue 2.— P. L022201.
- Nucleon resonance contributions to unpolarized inclusive electron scattering / Hiller Blin A. N., Mokeev V.I., Albaladejo M., Fern'andez-Ram'irez C., Mathieu V., Pilloni A., Szczepaniak A., Burkert V. D., Chesnokov V. V., Golubenko A. A., Vanderhaeghen, M. // Phys. Rev. C. — 2019. — Sept. — Vol. 100, issue 3. — P. 035201.
- Evaluation of the Inclusive Electron Scattering Observables in the Resonance Region from the Experimental Data / A.A. Golubenko [et al.] // Phys. Part. Nuclei. — 2019. — Sept. — Vol. 50. — P. 587–592.
- А.А. Голубенко. Экстраполяция структурных функций F₁ и F₂ в область виртуальностей фотона от 2 до 7 ГэВ² // Учен. зап. физ. фак-та Моск. ун-та. — 2018. — No 2.
- А.А. Голубенко, Е.Н. Головач. Интерполяция и экстраполяция сечений и структурных функций инклюзивного рассеяния электронов на протонах при W < 4.0 ГэВ и 2.0 < Q² < 7.0 ГэВ² // Учен. зап. физ. фак-та Моск. ун-та. — 2019. — No 3.
- Electromagnetic form factors of nucleon resonances from CLAS / A.A. Golubenko [et al.] // EPJ Web Conf. 2019. Vol. 222. — P. 02003.

А.А. Голубенко, НИИЯФ МГУ

Москва, 2022

Стр. 51 из 51

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Спасибо за внимание!

Апробация

イロト イロト イヨト イヨト 二日

Основные результаты работы докладывались автором на следующих конференциях:

- XV International Seminar on Electromagnetic Interactions of Nuclei (Москва – 2018 г.)
- CLAS Collaboration Meeting (Ньюпорт-Ньюс, США 2019)
- International conference "NUCLEUS" (Дубна 2019 г., Санкт-Петербург – 2020 г.)
- Научная конференция «Ломоносовские чтения» (Москва – 2019 г.)

Цели и задачи

Данная работа посвящена экспериментальному измерению спиновых асимметрий пучка и извлечению поляризованных структурных функций. Существенной частью работы является оценка резонансного вклада в инклюзивные структурные функции.

Цели и задачи

Для достижения поставленных целей необходимо было решить следующие задачи:

- Произвести надежную идентификацию электронов и протонов, необходимую для предварительного отбора событий, принадлежащих исследуемым каналам реакции, содержащих только один электрон и протон.
- Вычитание фона различного происхождения в событиях, в том числе от Бете-Гайтлеровских процессов, значительно подавляющих сигнал реакции, и окончательный отбор событий методом недостающей массы для экспериментальных событий *ep* → *epX*
- Вычисление спиновой асимметрии пучка и применение коррекций на центр ячеек при четырехмерном разбиении кинематического пространства и радиационных поправок.
- Сравнение измеренных асимметрий и вычисленных *σ_{LT'}* с феноменологической моделью MAID2007 с различными предположениями об амплитудах электровозбуждения нуклонных резонансов.
- Интерполяция и экстраполяция инклюзивных структурных функций F₁ и F₂ из мировых данных и данных CLAS в кинематической области по W до 4 ГэВ и по Q² до 7 ГэВ².
- Вычисление резонансного вклада в инклюзивные структурные функции F₁ и F₂ на основе данных по спиральным амплитудам электровозбуждения N*.

Основные положения, выносимые на защиту

- Значения структурных функций F_1 и F_2 в инклюзивном электрон-протонном рассеянии в кинематической области по Wдо 4 ГэВ и по Q^2 до 7 ГэВ² и вычисление вклада нуклонных резонансов в инклюзивные структурные функции.
- Набор значений спиновых асимметрий пучка в реакциях $ep \to ep\pi^0$ в фазовом пространстве четырех переменных $W, \ Q^2, \ \cos \theta, \ \phi.$
- Поляризованные структурные функции $\sigma_{LT'}(W, Q^2, \cos \theta)$.
- Значения моментов Лежандра для поляризованных структурных функций $\sigma_{LT'}$. Анализ чувствительности моментов Лежандра к вкладам резонансных состояний $S_{31}(1620)$, $P_{13}(1720)$ и $D_{33}(1700)$.

Новизна работы

(日)

- Получена спиновая асимметрия пучка при значении кинематических переменных, соответствующей третьей резонансной области, при $0.4 < Q^2 < 1.0$ ГэВ², где мировые данные до этого отсутствовали или были ограничены.
- Поляризованная структурная функция $\sigma_{LT'}$ электророждения нейтрального пиона на протоне впервые получена в кинематической области при $0.4 < Q^2 < 1.0$ ГэВ² и 1.5 < W < 1.8 ГэВ.
- Найден вклад нуклонных резонансов в инклюзивные структурные функции F_1 и F_2 на основе новейших данных CLAS по амплитудам электровозбуждения N^* .