ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В.ЛОМОНОСОВА»

ФИЗИЧЕСКИЙ ФАКУЛЬТЕТ

КАФЕДРА ОБЩЕЙ ЯДЕРНОЙ ФИЗИКИ

БАКАЛАВРСКАЯ РАБОТА

«Нарушение зарядовой симметрии в гиперон-нуклонном взаимодействии»

Выполнил студент 413 группы Алиев Турал Ровшан оглы

Научный руководитель: к.ф.-м.н., доц. Ланской Д.Е.

Допущен к защите Зав. кафедрой _____

> MOCKBA 2022

Содержание

1	Введение	1					
2	Знакомство с проблемой						
	2.1 Зеркальные гиперядра ${}^4_{\Lambda}H$ и ${}^4_{\Lambda}He$	2					
	2.2 Однопионный обмен	3					
	2.3 H3C для р-оболочечных гиперядер (A>4)	9					
	2.4 Дополненная диаграмма однопионного обмена	11					
3	Модификация потенциала						
4	Подбор формы потенциала V_γ	14					
	 4.1 На основе дифференциального сечения рассеяния на тяжелых ядрах 4.2 На основе диаграмной техники Фейнмана	14 19					
5	Заключение	20					

1 Введение

Гиперядром называют атомное ядро, в котором один из нуклонов заменен на гиперон. В частности, наиболее распространенными гиперядрами являются Λ -гиперядра. Они были открыты в 1953 году польскими учеными М.Данышем и И.Пниевским. Гиперядра могут образовываться в результате взаимодействия космического излучения с веществом в верхних слоях атмосферы. Люди научились получать их при помощи ускорителей в результате бомбардировки вещества различными адронами и мезонами. Облучение углеродной мишени отрицательно заряженными каонами является одним из первых методов получения гиперядер:

$$K^- + {}^{12}C \longrightarrow^{12}_{\Lambda}C + \pi^-$$

Изучение такого, довольно, экзотического объекта- ядра с странностью -1, привлекло внимание многих ученых мира. По своей сути гиперядра являются отправной точкой в изучении общего барион-барионного взаимодействия. Гиперон-нуклонное взаимодействие представляет собой "мостик"между нуклонами и гиперонами, детальное изучение которого может позволить перейти от частного, хорошо уже изученного, случая нуклон-нуклонного взаимодействия к общему барионному.

Свое внимание мы заострим на причинах нарушения зарядовой симметрии (Charge symmetry breaking) в ΛN -взаимодействии. Объектом изучения будут зеркальные гиперядра, в которых эффекты CSB проявляются в наблюдаемой разнице энергий связи для Λ -гиперона. Так, к примеру, для двух зеркальных гиперядер, согласно [1], ${}^{4}_{\Lambda}H$ и ${}^{4}_{\Lambda}He$:

$$\Delta B_{\Lambda}^4 = B_{\Lambda}(^4_{\Lambda}He) - B_{\Lambda}(^4_{\Lambda}H) = 0.35 \pm 0.06 \quad MeV,$$

где B_{Λ} - энергия связи для лямбда гиперона в гиперядре. Нарушение зарядовой симметрии в ΛN -взаимодействии и теоретические попытки объяснения наблюдаемой разности энергий связи ΔB_{Λ} в зеркальных гиперядрах были подробно изложены в работах [1]-[2]. В этих работах развивается ранее предложенный в [3] механизм однопионного обмена (см. рис.6) в гиперон-нуклонном взаимодействии, который нарушает зарядовую симметрию. Несмотря на хороший результат, даваемый моделью в [1] для ΔB_{Λ}^4 , к сожалению, не решены проблемы несоответствия экспериментальных измерений с теоретическими предсказаниями для других более тяжелых зеркальных гиперядер.

В данной работе мы предлагаем дополнить механизм однопионного обмена и учесть возможный процесс электромагнитного превращения $\Lambda p \longrightarrow \Sigma^0 p$ (см.рис. 1). Модифицированная диаграмма однопионного обмена является двухканальной (см.рис.9). Для поиска вида потенциала двухканального рассеяния необходимо воспользоваться результатами квантовой теории столкновений. Более подробно об этом будет сказано в разделе 4. Подбор формы потенциала рассеяния V_{γ} производится двумя методами. В первом случае, мы предлагаем использовать результат работы [4], в котором выведена форма дифференциального сечения рассеяния Λ -гиперона с его последующим электромагнитным превращением в Σ^0 на тяжелых ядрах. Во-втором же случае, мы воспользуемся тем, что константа распада $\Sigma^0 \longrightarrow \Lambda + \gamma$, $\mu_{\Lambda\Sigma^0}$ совпадает с матричным элементом электромагнитного тока J_{μ} перехода между состояниями Λ и Σ^0 , что позволяет определить все константы в вершинах диаграммы, конечную амплитуду рассеяния и форму потенциала.

Рис. 1: Электромагнитный процесс рассеяния $\Lambda p \longrightarrow \Sigma^0 p$.

2 Знакомство с проблемой

2.1 Зеркальные гиперядра ${}^4_\Lambda H$ и ${}^4_\Lambda He$

Под нарушением зарядовой симметрии в ядерной физике в первую очередь подразумевается зарядовая зависимость нуклон-нуклонного взаимодействия. Косвенный фактор, позволяющий отследить подобную зависимость-разница энергий связи для нуклонов в зеркальных ядрах. В качестве примера можно рассмотреть пару зеркальных ядер ³H и ³He, для которых разница в энергии связи составляет порядка 764 keV. Кулоновское отталкивание, проявляющееся уже в ядре ³He, вносит больший вклад в эту разницу по сравнению с оставшимеся 70 keV, которые приходятся на механизм $\rho^0 \omega$ -смешивания, описанного в однобозонных моделях NN-взаимодействия[5]. Механизм $\rho^0 \omega$ -смешивания мы будем относить к механизмам нарушающим зарядовую симметрию. Разница, вносимая за счет подобного механизма, достаточно мала.

Напротив, в гиперядрах ${}^{4}_{\Lambda}H$ и ${}^{4}_{\Lambda}He$, нарушение зарядовой симметрии проявляется намного сильнее. Вывод об этом множно сделать на основе измерений, проведенных в работе [6].

Рис. 2: Диаграмма уровней для зеркальных гиперядер, полученная добавлением Λ -гиперона к зеркальной паре (${}^{3}H, {}^{3}He$). Энергии отделения Λ -гиперона взяты из работы [6].

Рассматривая диаграмму уровней для гиперядер, можно отметить характерное для гиперон-нуклонного взаимодействия спин-спиновое расщепление. Теоретические попытки объяснить такую большую разницу ΔB_{Λ} на основе механизма $\rho^0 \omega$ -смешивания, использованного ранее для пары (³H,³He), для гиперядер дает лишь небольшие отрицательные вклады около 30 и 10 keV для основного и возбужденного состояний соответственно. Также, опровергнуты попытки объяснить наблюдаемую разницу с точки зрения адронных механизмов нарушения зярядовой симметрии в рамках четырехчастичных расчетов, развитых в работах [7]-[11]. Модель же однопионного обмена в гиперон-нуклонном взаимодействии позволила приблизиться к значениям, полученным в ходе эксперимента. Что бы перейти к этому вопросу, необходимо разъяснить некоторые нюансы гиперон-нуклонного взаимодействия.

2.2 Однопионный обмен

Точно так же, как и в случае нуклон-нуклонных сил, гиперон-нуклонные взаимодействия можно описать на языке обмена мезонами. При AN взаимодействии в качестве переносчика не подойдут мезоны с значением изоспина равного единице, поскольку A-гиперон имеет изоспин равный нулю, что приводило бы к нарушению закона сохранения изсопина в сильных взаимодействиях. Поэтому, привычный для нас обмен пионом, как в случае нуклон-нуклонных взаимодействий, между гипероном и нуклоном невозможен. Взаимодействие можно описать обменом мезонами (без обмена пространственными координатами): $\phi, \eta, \eta', \omega$. Стоит отметить, что их массы несколько больше, чем у пиона, поэтому радиус взаимодействия ΛN будет меньше в сравнении с нуклон-нуклонным ($R = 0.27 - 0.50 \, \Phi$ м).

Рис. 3: Обмен мезонами без изменения изоспина

Также, возможно взаимодействие через странные мезоны с обменом пространственных координат(диаграмма представлена ниже). Представленные

Рис. 4: Обмен странными мезонами

каналы взаимодействия не нарушают зарядовой симметрии. Мы уже упомянули, что однопионный обмен в силу несохранения изоспина невозможен в сильном взаимодействии. Но как же тогда реализовать подобный механизм? Стоит помнить, что изоспин может не сохраняться в электромагнитных распадах. Так:

$$\Sigma^0 \longrightarrow \Lambda + \gamma$$

В связи с одинаковым кварковым составом участвующих в распаде барионов, можно положить, что лямбда-гиперон представляет собой суперпозицю состояний $|\Lambda > u|\Sigma^0 >$. Это подтверждается неравенством нулю матричного

элемента смешивания масс:

$$<\Sigma^{0}|\delta M|\Lambda> = \frac{1}{\sqrt{3}}[M(\Sigma^{0}) - M(\Sigma^{+}) - M(n) + M(p)].$$
 (1)

Λ-гиперон предствавляет собой суперпозицию двух состояний:

$$|\Lambda_{phys.}\rangle = \cos \alpha |\Lambda\rangle + \sin \alpha |\Sigma^0\rangle.$$

Тоже самое можно сказать и про Σ^0 -гиперон:

$$|\Sigma_{phys.}^{0}\rangle = -\sin \alpha |\Lambda\rangle + \cos \alpha |\Sigma^{0}\rangle$$

Подействовав оператором смешивания масс на уравнения и домножив на бра-вектора соответствующих состояний согласно (1), можно получить:

$$\tan \alpha = -\frac{\langle \Sigma^0 | \delta M | \Lambda \rangle}{M(\Sigma^0) - M(\Lambda)} \approx -0.019 \pm 0.006$$

Это означает, что в гиперядре возможно превращение $\Lambda \longrightarrow \Sigma^0$ за счет изменения внутреннего состояния частицы и перехода в возбужденное состояние. Величина квадрата тангенса определяет отношение вероятностей пребывания лямбда-гиперона в состояниях $|\Lambda > u | \Sigma^0 >$. Из полученного значения следует, что однопионный обмен происходит довольно редко. Предложенный механизм $\Lambda\Sigma$ смешивания изображен на рисунке 5. Из-за

Рис. 5: Механиз
м $\Lambda\Sigma$ смешивания. Ось времени направлена по вертикали.

малости Σ -примесей в гиперядре следует рассматривать потенциал однопионного обмена, как некоторое возмущение первого порядка потенциала ΛN -взаимодействия. Более подробный вывод потенциала подобного взаимодействия можно рассмотреть в работе [3] и дальнейшую его модификацию, учитывающую возможность протекания реакций с более тяжелыми векторными мезонами в [1]. Так, для синглетного состояния:

$$\delta V_{\Lambda N}(r) = -T_z * f_{\Lambda\Lambda\pi} * f_{NN\pi} \frac{\exp[-m_\pi r]}{r}, \qquad (2)$$

где $f_{\Lambda\Lambda\pi}$ - вершинная константа превращения $\Lambda \longrightarrow \Sigma^0 + \pi^0, f_{NN\pi}$ - вершинная константа ядерного взаимодействия (обмен пионом), m_{π} -масса π^0 -мезона.

N
$$\Sigma$$

 $T = 1$
 π, ρ
N Λ

Рис. 6: Диаграмма обмена мезонами с T=1

Особый интерес представляет зависимость этого потенциала от проекции изоспина нуклона T_z , что объясняет нарушение зарядовой симметрии в ΛN взаимодействии. Диаграмма обмена мезонами с изоспином равным единице изображена на рисунке 6. С учетом скорректированных констант данная модель однопионного обмена [1] (NSC97) позволяет определить величину ΔB_{Λ} для пары зеркальных гиперядер ${}^4_{\Lambda}H$ и ${}^4_{\Lambda}He$, лежащей в пределах:

$$\Delta B_{\Lambda} = 0.21 \pm 0.05 \quad MeV.$$

В сравнении с другими моделями скорректированная модель однопионного обмена NSC97 позволяет приблизиться к наблюдаемому в эксперименте значению разницы энергий связи. Нас будет интересовать лишь центральная часть взаимодействия для двух состояний, описываемых термами ${}^{1}S_{0}$ и ${}^{3}S_{1}$. Так, центральная часть однопионного взаимодействия в гауссовой форме (параметризация центральной части для двух термов проводилась в [5]):

$$V(r,k_f) = \sum_{i=1}^{3} (a_i + b_i k_f + c_i k_f^2) \exp\left[-(\frac{r}{\beta_i})^2\right],$$
(3)

Параметризированный потенциал однопионного обмена зависит от среднего импульса нуклонов в ядре. Импульс подбирается по соображениям наилучшей аппроксимации энергии связи. Так, в [12] предлагается принять его равным 1 fm^{-1} .

Надо понимать, что реализовать сильное взаимодействие $\Lambda p \longleftrightarrow \Sigma^0 p$ возможно посредством нескольких каналов взаимодействия с участием заряженных мезонов, поскольку:

$$|\Sigma^0 p|I = I_{\Sigma^0} + I_p >= \sqrt{\frac{2}{3}} |\Sigma^+ n|I_z = +1/2 > -\frac{1}{\sqrt{3}} |\Sigma^0 p|I_z = +3/2 > .$$

Это приводит к появлению дополнительного множителя перед формой потенциала, который представляет собой коэффициент Клебша-Гордана, соответствующего паре $|\Sigma^0 p > .$

Как было сказано выше, взаимодействие может происходить обменом заряженными пионами с последующим изменением изоспина нуклона. Подобное взаимодействие с наличием заряженных сигма примесей можно наблюдать в диаграммах двухпионного обмена:

Рис. 7: Диаграммы двухпионного обмена с наличием заряженных сигма-примесей.

Можно ожидать, что разница в массе между Σ^+ и Σ^- гиперонами может привести к разнице между взаимодействиями Λ -n и Λ -р. Для систем Λ -n и Λ -р кинетические энергии, соответствующие промежуточному состоянию ΣN , эффективно различаются(см.[6]):

$$\Delta M_{\Sigma N} = \frac{2}{3} (M(\Sigma^+) - M(\Sigma^-) + 2(M(n) - M(p))) = -3.8 MeV$$

В модели NSC97 [1] выражение, отражающее асимметрию кинетической имеет несколько преобразованный вид:

$$\Delta T_{YN} \approx \frac{2}{3} P_{\Sigma} (M_{\Sigma^-} - M_{\Sigma^+})$$

Фактор 2/3 возникает из-за того, что примесь заряженных Σ -гиперонов составлят 2/3 от общей примеси Σ -гиперонов в гиперядре:

$$P_{\Sigma^{\pm}} = \frac{2}{3} P_{\Sigma}$$

Помимо асимметрии кинетической энергии, возникающей в результате проявления заряженных Σ -примесей в системах Λ -n и Λ -р, возникает также небольшое возмущение кулоновской добавки к разности энергии связи ΔB_{Λ}^4 . Лямбда-гиперон в гиперядре притягивает к себе окружающие его нуклоны, что приводит к сжатию ядерного остова. С учетом этого кулоновская энергия в ядерном остове ³*He* увеличивается в отличие от ³*H*, тем самым снижается значение энергии связи $B_{\Lambda}(^{4}_{\Lambda}He)$, а следовательно и разность ΔB^{4}_{Λ} . Для простой структуры ядерного остова рассчитанная в работе [16] деформация составила около десяти процентов, что соответствует увеличению на такой же процент кулоновской энергии:

$$\Delta E = 0.72 \frac{2(2-1)}{4^{\frac{1}{3}}} * 0.1 \approx 0.09 \quad MeV$$

т.е. ΔB_{Λ} уменьшается на 0.09 MeV. Для ядерного остова с таким малым числом нуклонов влияние притягивающего потенциала Λ -гиперона будет существенно ниже, поэтому оценка изменения разности энергий связи будет меньше рассчитанной. Для ядерных остовов энергия связи B_{Λ} из-за кулоновского взаимодействия для ${}^{3}He$ должна быть меньше, чем для трития. Это приводит к более широкому пространственному распределению нуклонов, поэтому радиус ${}^{4}_{\Lambda}He$ больше, чем у ${}^{4}_{\Lambda}H$. Энергия связи с увеличением потенциального радиуса уменьшается, что лежит в противоречии с экспериментальными для зеркальных гиперядер, поскольку:

$$B_{\Lambda}(^{4}_{\Lambda}He) > B_{\Lambda}(^{4}_{\Lambda}H).$$
(4)

При этом стоит учесть возможную примесь заряженных сигма-гиперонов, проявляющихся в результате двухпионного обмена, что безусловно вносит свой вклад в кулоновскую энергию. Поэтому более разумным будет разбить вклады, даваемые от Λ -гиперона и Σ -гиперона и представить добавку к кулоновской энергии как:

$$\Delta V_C = \Delta V_C^{\Lambda} + \Delta V_C^{\Sigma},$$

 ΔV_C^{Λ} -добавка является отрицательной и диапазон значений для различных моделей варьируется от менее чем 10 keV до 40 keV. ΔV_C^{Σ} - добавка, учитывающая кулоновское взаимодействие между $\Sigma^{\pm}p$. Она также отрицательна, но мала в сравнении с предыдущей добавкой и составляет несколько keV, оценить ее можно как:

$$\Delta V_C^{\Sigma} = -\frac{2}{3} P_{\Sigma} E_C(^3 H e),$$

где $E_C({}^{3}He) = 644$ keV -кулоновская энергия ядерного остова ${}^{3}He$, P_{Σ} -процент примеси сигма-гиперонов в ядре. Так, для скорректированной в работе [1] модели однопионного обмена NSC97 $P_{\Sigma} = 0.72\%$:

$$\Delta V_C^{\Sigma} = -\frac{2}{3} P_{\Sigma} E_C({}^3He) = -\frac{2}{3} * 7.2 * 10^{-3} * 644 \approx -3 \quad keV$$

Как мы видим, наличие заряженных Σ -примесей не решает вопроса, поставленного неравенством (4). Увеличение потенциального радиуса действительно приводит к уменьшению энергии связи B^4_{Λ} . Однако, стоит учесть, что

наличие сигма-примесей в гиперядре, приводящее к нарушению зарядовой симметрии в ΛN - взаимодейтсвии, вносит свою добавку ΔV_{YN} (Y= Λ , Σ) к энергии связи B^4_{Λ} , зависящую от изоспина остова ядра T_z :

$$T_z(^{3}He) = +1/2$$
 $T_z(^{3}H) = -1/2.$

Знак потенциала однопионного обмена(2) для ядерных остовов из-за этого будет разным:

$$\delta V_{\Lambda N}(^{4}_{\Lambda}He) < 0 \quad \delta V_{\Lambda N}(^{4}_{\Lambda}H) > 0.$$

Для гиперядра ${}^{4}_{\Lambda}He$ добавка к энергии связи Λ -гиперона ΔV_{YN} будет положительной. Для ${}^{4}_{\Lambda}H$ эта добавка будет отрицательной, поскольку потенциал будет отталкивающий. Несмотря на слабые примеси Σ -гиперонов, добавка получается ощутимой и превышает кулоновскую, что решает головоломку, связанную с основным состоянием для гиперядер с Λ =4.

2.3 НЗС для р-оболочечных гиперядер (А>4).

При использовании модели однопионного обмена мы не затрагивали случая, когда спин гиперядра равен единице, иными словами мы не рассматривали возбужденного состояния, ведь стоит отметить, что в случае гипероннуклонного взаимодействия спин-спиновое взаимодействие вносит большой вклад, чего не наблюдается в случае нуклон-нуклонного (оно пренебрежимо мало). Для упрощения качественного анализа мы будем использовать матричное представление потенциала однопионного обмена в модели NSC97, форма в таком случае приобретает вид:

$$V_{\Lambda\Sigma} = -0.0297 \frac{1}{\sqrt{3}} (\overline{V_{\Lambda\Sigma}} + \Delta_{\Lambda\Sigma} S_N * S_Y) T_z, \qquad (5)$$

где $\overline{V_{\Lambda\Sigma}}$ -матрица, отвечающая за радиальную часть потенциала, член $\Delta_{\Lambda\Sigma}S_NS_Y$ отвечает за спиновое расщепление, T_z -проекция изоспина нуклона.

Все это время мы говорили лишь о легких зеркальных гиперядрах с массовым число A=4, пришло время рассмотреть более тяжелые ядра. Целесообразность такого перехода можно оправдать тем, что, собрав какие-либо сведения о легких гиперядрах, мы можем проверить верность наших суждений и для других, более тяжелых. Если наши модели будут работать и для более тяжелых гиперядер, давая хотя бы приближенные значения к экспериментальным, то мы на верном пути. Забегая вперед, стоит сказать, что исследование более тяжелых гиперядер поставит еще больше вопросов о природе гиперон-нуклонного взаимодействия, но об этом чуть позже.

Первые попытки теоретического обоснования экспериментальных значений, где в основу было взято формально уже классическое представление об одно-

пионном обмене, привело к серьезным расхождениям между экспериментом и теорией. Для того, чтобы хоть как-то приблизиться к экспериментальным значениям, предлагается расширить рассматриваемую модель и учесть также взаимодействие гиперона с нуклонами на р-оболочке. Расширение модели на р-оболочку слабо влияет на уже полученное значение для ΔB_{Λ}^4 . Полученные матричные элементы для р-оболочки вдвое меньше аналогичных элементов для s-оболочки. Для расчета добавки необходимо использовать многонуклонное выражение вместо выражения для одного нуклона на s-оболочке, полученное путем суммирования нуклонов р-оболочки:

$$V_{\Lambda\Sigma} = -0.0297 \frac{1}{\sqrt{3}} \sum_{i} (\overline{V_{\Lambda\Sigma}^{0p}} + \Delta_{\Lambda\Sigma}^{0p} S_i * S_Y) T_{iz}$$

Результаты применения данной расширенной модели по отношению к основному состоянию зеркальных гиперядер приведены в таблице ниже. Все

${}^{A}_{\Lambda}Z_{>} - {}^{A}_{\Lambda}Z_{<}$ pairs	I, J^{π}	P_{Σ} (%)	ΔT_{YN} (keV)	ΔV_C (keV)	ΔV_{YN} (keV)	$\Delta B_{\Lambda}^{calc}$ (keV)	$\Delta B_{\Lambda}^{\exp}$ [3] (keV)
$^{4}_{\Lambda}$ He $-^{4}_{\Lambda}$ H	$\frac{1}{2}, 0^+$	0.72	39	-45	232	226	$+350\pm60$
$^{7}_{\Lambda}$ Be $-^{7}_{\Lambda}$ Li*	$1, \frac{1}{2}^+$	0.12	3	-70 [22]	50	-17	-100 ± 90
$^{8}_{\Lambda}$ Be $-^{8}_{\Lambda}$ Li	$\frac{1}{2}, 1^{-}$	0.20	11	-81 [26]	119	+49	$+40\pm60$
$^{9}_{\Lambda}B-^{9}_{\Lambda}Li$	$1, \frac{3}{2}^+$	0.23	10	-145 [27]	81	-54	-210 ± 220
$^{10}_{\Lambda}\text{B}-^{10}_{\Lambda}\text{Be}$	$\frac{1}{2}, 1^{-}$	0.053	3	-156 [27]	17	-136	-220 ± 250

Рис. 8: Рассчитаные расширенной моделью разницы энергий связи $\Delta B^{calc.}_{\Lambda}(g.s.).$

пары за исключением A=7 являются зеркальными гиперядрами. Данное исключение было сделано из-за отсутствия надежных данных о $B_{\Lambda}(^{7}_{\Lambda}He)$, поэтому пришлось компенсировать их отсутствие данными [17] о схожем ядре в возбужденном состоянии, наблюдаемого в ходе испускания фотона с энергией 3.38 MeV:

$${}^7_{\Lambda}Li^* \longrightarrow^7_{\Lambda}Li + \gamma$$

В таблице также приведены значения процента примеси сигма гиперонов P_{Σ} , где можно заметить, что с увеличением массового числа наблюдается снижение примесей сигма гиперонов в ядрах, что соответствует ранее полученным данным о матричных элементах G-матрицы для р-оболочки, которые примерно вдвое меньше по сравнению с матричными элементами для s-оболочки. Из-за меньшей примеси сигма-гиперонов в таких ядрах добавка, отвечающая асимметричности кинетической энергии, также будет значительно меньше в сравнении с гиперядрами A=4. Для ядер с A>4 она составляет порядка 10 keV. Аналогично получим, что кулоновская добавка ΔV_C^{Σ} , обусловленная сигма примесями, будет также значительно меньше и составляет не более 1 keV. Для ΔV_C^{Λ} с увеличением заряда ядерных остовов,

как и ожидалось, наблюдается увеличение кулоновского отталкивания, что приводит к уменьшению энергии отделения гиперона. Значительные отрицательные вклады ΔV_C^{Λ} несмотря на их второстепенную роль в формировании $\Delta B_{\Lambda}^A(g.s.)$, в определенный момент значительно превышают положительные вклады ΔV_{YN} , даваемые нуклонами р-оболочки, что начиная с A=9 приводит к явным отрицательным значениям для $\Delta B_{\Lambda}^A(g.s.)$. На примере $\Delta V_{YN}(A=4)=232$ keV и $\Delta V_{YN}(A=8)=119$ keV, можно проследить приблизительный коэффициент 1/2 между матричными элементами s-оболочки и р-оболочки.

Сравнивая экспериментально полученные данные с рассчитанным, мы отмечаем некоторое согласие, которое нам дает настоящая модель. Экстраполируя на более тяжелые ядра можно было бы ожидать отрицательных значений для $\Delta B_{\Lambda}^{calc.}$. Это предположение основано на том, что с увеличением массового числа отрицательный вклад ΔV_C^{Λ} остается весьма большим. Однако, необходимо учесть более тесную связанность нуклонов в ядерном остове за пределами A=9. Так, к примеру, в паре зеркальных гиперядер ${}^{12}_{\Lambda}C - {}^{12}_{\Lambda}B$ несмотря на то, что кулоновское отталкивание в ${}^{12}_{\Lambda}C$ больше, чем в ${}^{12}_{\Lambda}B$, но его недостаточно, чтобы полностью перекрыть положительную добавку ΔV_{YN} .

2.4 Дополненная диаграмма однопионного обмена

Диаграмма однопионного обмена (рис.6) дает близкое для легких гиперядер значения разности энергий связи, для более тяжелых наблюдаются отклонения. Мы не предлагаем универсального решения несоответствия экспериментальных значений с теоретическими. Мы лишь хотим учесть процесс электромагнитного взаимодействия, представленного на рисунке 1, который также нарушает зарядовую симметрию в ΛN -взаимодействии. Действительно, процесс электромагнитного рассеяния (рис.1) на нейтронах происходить не будет. Можно, конечно, учесть неравномерное распределение заряда в нейтроне и рассмотреть сей процесс на нем, но с уверенностью можно сказать, что электромагнитное взаимодействие будет на порядки меньше. Лишь по этой причине предложенный нами процесс нарушает зарядовую симметрию. Учет этого канала взаимодействия позволит несколько скорректировать значения ΔB_{Λ} . Дополненная диаграмма однопионного обмена будет двухканальной (см. рис. 9). Перейдем к "сшивке"потенциалов однопионного обмена V_{π^0} и электромагнитного взаимодействия V_{γ} .

Рис. 9: Дополненная диаграмма однопионного обмена.

з Модификация потенциала

Дополненная диаграмма однопионного обмена (см. рис. 1) является двухканальной, следовательно, при решении задачи нам необходимо будет воспользоваться некоторыми результатами многоканальной теории рассеяния. Мы можем воспользоваться результатом решения задачи о двух связанных каналах, который подробно изложен в [13]. Напомню, что волновая функция лямбда-гиперона представляет собой суперпозицию:

$$\Psi = \alpha \phi_{\Lambda} + \beta \phi_{\Sigma^0},$$

При этом, каждому состоянию можно поставить в соответствие одноканальную задачу рассеяния, так:

$$\hat{H}_{\Lambda} = \hat{T}_{\Lambda} + \hat{V}_{\Lambda},$$

представляет гамильтониан одноканального рассеяния для случая, когда частица пребывает в состоянии ϕ_{Λ} . Аналогично можно сформулировать одноканальную задачу рассеяния и для состояния ϕ_{Σ^0} . Система дифференциальных уравнений, связывающих волновые функции различных каналов взаимодействия имеет вид:

$$\begin{cases} \hat{H}_{\Lambda}\phi_{\Lambda} - E_{\Lambda}\phi_{\Lambda} = -\hat{V}_{\Lambda\Sigma}\phi_{\Sigma^{0}}\\ \hat{H}_{\Sigma}\phi_{\Sigma^{0}} - E_{\Sigma}\phi_{\Sigma^{0}} = -\hat{V}_{\Lambda\Sigma}\phi_{\Lambda}, \end{cases}$$
(6)

где $\hat{V}_{\Lambda\Sigma}$ - недиагональная компонента оператора гамильтона, ответственная за процессы превращения $\Lambda \longleftrightarrow \Sigma^0$, в постановке общей задачи:

$$\hat{H}\Psi = E\Psi$$

Недиагональная компонента включает в себя канал однопионного обмена и электромагнитного взаимодействия:

$$\hat{V}_{\Lambda\Sigma} = \hat{V}_{\pi^0} + \hat{V}_{\gamma}.$$
(7)

Волновую функцию ϕ_{Σ^0} можно выразить из системы (6):

$$\phi_{\Sigma^0} = \frac{V_{\Lambda\Sigma}}{E_{\Sigma} - \hat{H}_{\Sigma}} \phi_{\Lambda}$$

подставляя ее в первое уравнение системы получим, что:

$$\hat{H}_{\Lambda}\phi_{\Lambda} - E_{\Lambda}\phi_{\Lambda} = \hat{V}_{\Lambda\Sigma}\frac{1}{E_{\Sigma} - \hat{H}_{\Sigma}}\hat{V}_{\Lambda\Sigma}\phi_{\Lambda}$$

где $\hat{G}(E_{\Sigma})$ - оператор Грина:

$$\hat{G}(E_{\Sigma}) = \frac{1}{E_{\Sigma} - \hat{H}_{\Sigma}} \Longrightarrow$$
$$(\hat{T}_{\Lambda} + \hat{V}_{\Lambda})\phi_{\Lambda} - E_{\Lambda}\phi_{\Lambda} = \hat{V}_{\Lambda\Sigma}\hat{G}(E_{\Sigma})\hat{V}_{\Lambda\Sigma}\phi_{\Lambda} \Longrightarrow$$

$$(\hat{T}_{\Lambda} + \hat{V}^{eff} - E_{\Lambda})\phi_{\Lambda} = 0,$$

где эффективный потенциал взаимодействия частицы с нуклоном имеет вид:

$$\hat{V}^{eff} = \hat{V}_{\Lambda} + \hat{V}_{\Lambda\Sigma}\hat{G}(E_{\Sigma})\hat{V}_{\Lambda\Sigma},\tag{8}$$

Нас интересует лишь второе слагаемое эффективного потенциала, поскольку лишь в нем содержатся каналы взаимодействия, нарушающие зарядовую симметрию. Учитывая (7):

$$\hat{V}_{\Lambda\Sigma}\hat{G}(E_{\Sigma})\hat{V}_{\Lambda\Sigma} = \hat{V}_{\pi^{0}}\frac{1}{E_{\Sigma} - \hat{H}_{\Sigma}}\hat{V}_{\pi^{0}} + 2\hat{V}_{\pi^{0}}\frac{1}{E_{\Sigma} - \hat{H}_{\Sigma}}\hat{V}_{\gamma} + \hat{V}_{\gamma}\frac{1}{E_{\Sigma} - \hat{H}_{\Sigma}}\hat{V}_{\gamma}.$$
 (9)

Первое и последнее слагаемое соответствует каналу двухпионного обмена и двухфотонного обмена соответсвенно, центральный же член относится к исследуемому нами каналу, изображенному на рисунке 9. Преобразуем интересующий нас член из (9), используя спектральное разложение:

$$V_{CSB}(r) = 2 \int V_{\pi^{0}}(r') \sum_{n} \frac{\phi_{n}^{*}(r')\phi_{n}(r)}{E - E_{n}} V_{\gamma}(r),$$

где для упрощения будем считать, что параметр $E - E_n = <\Delta E > = const$ можно будет варьировать:

$$V_{CSB}(r) = \frac{2}{\langle \Delta E \rangle} \int V_{\pi^0}(r') \sum_n \phi_n^*(r') \phi_n(r) V_{\gamma}(r) = \frac{2}{\langle \Delta E \rangle} \int V_{\pi^0}(r') \delta(r'-r) V_{\gamma}(r)$$

В итоге имеем:

$$V_{CSB}(r) = \frac{2}{\langle \Delta E \rangle} V_{\pi^0}(r) * V_{\gamma}(r) \tag{10}$$

Параметр $< \Delta E >$ был искусственно введен для простоты проводимой сшивки потенциалов. Это позволит нам в будущем при расчете корректировок к ΔB_{Λ} варьировать этот параметр для поиска минимума разности энергий связи.

4 Подбор формы потенциала V_{γ}

4.1 На основе дифференциального сечения рассеяния на тяжелых ядрах

При первой попытке поиска формы потенциала V_{γ} мы обратились к результатам работы [4], где подробно изложен вывод дифференциального сечения рассеяния Λ -гиперонов на тяжелых ядрах. Результат работы был использован в [14] для уточнения времени жизни Σ^0 -гиперона. Дифференциальное

Рис. 10: Диаграмма рассеяния Л-гиперонов на тяжелых ядрах.

сечение рассеяния на тяжелых ядрах имеет вид:

$$\frac{d\sigma}{d\Omega} = \frac{8Z^2 e^2 m_{\Sigma}^3}{(m_{\Sigma}^2 - m_{\Lambda}^2)^3} \frac{\theta^2}{(\delta^2 + \theta^2)^2} \frac{F^2(q)}{\tau},$$
(11)

где τ -среднее время жизни Σ^0 -гиперона, F(q)-форм-фактор ядра и $\delta = \frac{m_{\Sigma}^2 - m_{\Lambda}^2}{2P_{\Lambda}}$. Квадрат импульса фотона имеет вид:

$$q^2 = q_L^2 + q_T^2 = P_\Lambda^2 \delta^2 + P_\Lambda^2 \theta^2 \approx P_\Lambda^2 \delta^2 + P_\Lambda^2 \sin^2 \theta = \frac{(m_\Sigma^2 - m_\Lambda^2)^2}{4P_\Lambda^2} + P_\Lambda^2 \sin^2 \theta$$

Поскольку в данном случае рассеяние является неупругим, то при увеличении импульса Λ -гиперона фиксировать значение угла рассеяния не получится так, как поперечная и продольные компоненты не изменяются пропорцианально друг другу. Это в свою очередь говорит о том,что импульс представляет собой функцию, зависящую от угла рассеяния. Это приведет к тому, что угловая часть амплитуды рассеяния(напомним,что квадрат модуля амплитуды рассеяния есть дифференциальное сечение рассеяния) не сведется полностью к аргументу от импульса фотона q. Поэтому, при Фурье-преобразовании, речь о котором пойдет ниже, необходимо будет свести функцию амплитуды рассеяния к функции, зависящей только от угла рассеяния θ , после чего можно будет вынести ее из под знака интеграла. В

Рис. 11: Векторная диаграмма рассеяния.

дальнейших вычислениях будем считать, что F(q) = 1. Нас не интересует случай обмена фотоном, при котором внутреннее строение протона играло бы существенную роль.

В работе [4] описаны ограничения на применимость формулы (11). Процесс рассеяния является неупругим и сопровождается превращением $\Lambda \longrightarrow \Sigma^0$, это накладывает ограничения на импульс гиперона снизу. Так, минимальный импульс, требуемый для подобного рассеяния, отвечает пороговому значению, при котором превращение возможно. Ограничения также накладываются сверху. Неограниченное увеличение энергии Λ -гиперона приведет нас к ситуации, в которой фотон за счет своей большой энергии, сможет пребывать в состоянии нейтральных векторных мезонов согласно модели векторной доминантности. В таком случае, процесс рассеяния $\Lambda p \longrightarrow \Sigma^0 p$ необходимо будет рассматривать в контексте сильного взаимодействия, и мы получим вместо исследуемой нами диаграммы, диаграмму двухпионного обмена. Верхняя граница импульса, таким образом, определяется пороговым значением, при котором может образоваться легкий, относительно других, π^0 -мезон. Согласно [4](3.2):

$$q_{min} = \frac{m_{\Sigma}^2 - m_{\Lambda}^2}{2E_{\Lambda}}, \qquad q_{max} = m_{\pi}$$
(12)

Ограничение по импульсу приводит к ограничению угла возможного рассеяния, определенным следующим условием [4](4.25):

$$\theta \ll \frac{m_{\pi}}{E_{\Lambda} A^{\frac{1}{3}}} \tag{13}$$

Условия (12)-(13) будут нам необходимы при определении потенциала рассеяния, но перед тем, как использовать эти условия, необходимо сделать некоторые преобразования, поскольку формулировки ограничений на импульс снизу и на угол рассеяния производились в лабораторной системе отсчета в ультрарелятивистском случае.

Во-первых, нам необходимо сохранить этот процесс квазиупругим несмотря на то,что у нас происходит превращение. Для этого достаточно положить, что после рассеяния:

$$p_{\Lambda} \approx p_{\Sigma^0}.\tag{14}$$

Тогда, согласно ЗСЭ:

$$T_{\Lambda} = T_{\Sigma^{0}} + q \approx T_{\Lambda} \frac{m_{\Lambda}}{m_{\Sigma^{0}}} + q \longrightarrow$$
$$q_{min} = T_{min\Lambda} \left(\frac{m_{\Sigma^{0}} - m_{\Lambda}}{m_{\Sigma^{0}}}\right),$$

где $T_{min\Lambda}$ - пороговое значение энергии для превращения $\Lambda \longrightarrow \Sigma^0$ в ЛСК:

$$T_{min\Lambda} = |Q|(1 + \frac{m_{\Lambda}}{m_p}) \approx 169, 4 \quad MeV \longrightarrow$$
$$q_{min} \approx 11 \quad MeV$$

Вернемся к выражению (11) и несколько его преобразуем с учетом [4](3):

$$\left(\frac{\mu_{\Sigma\Lambda}}{\mu_N}\right)^2 = \frac{1}{\tau} \frac{8\hbar m_p^2 m_{\Sigma}^3}{\alpha (m_{\Sigma}^2 - m_{\Lambda}^2)^3} \tag{15}$$

$$\longrightarrow \frac{\alpha}{m_p^2 \hbar} (\frac{\mu_{\Sigma\Lambda}}{\mu_N})^2 = \frac{1}{\tau} \frac{8m_{\Sigma}^3}{(m_{\Sigma}^2 - m_{\Lambda}^2)^3},$$

поскольку в нашем случае F(q) = 1, то :

$$\frac{d\sigma}{d\Omega} = \frac{\alpha Z^2 e^2}{m_p^2 \hbar} (\frac{\mu_{\Sigma\Lambda}}{\mu_N})^2 \frac{\theta^2}{(\delta^2 + \theta^2)^2},\tag{16}$$

где $(\frac{\mu_{\Sigma\Lambda}}{\mu_N})^2 = \frac{3}{4}$, т.к. Z = 1 :

$$\frac{d\sigma}{d\Omega} = \frac{3\alpha e^2}{4m_p^2\hbar} \frac{\theta^2}{(\delta^2 + \theta^2)^2} = \chi^2 \frac{\theta^2}{(\delta^2 + \theta^2)^2}.$$
(17)

Покажем, что угловую часть амплитуды рассеяния можно представить, как $\frac{\operatorname{ctg} \theta/2}{2}$:

$$f(\theta) = \chi \frac{\theta}{\delta^2 + \theta^2} \approx \chi \frac{\sin \theta}{\delta^2 + \sin^2 \theta} = \chi \frac{p_\Lambda^2 \sin^2 \theta}{p_\Lambda^2 \delta^2 + p_\Lambda^2 \sin^2 \theta} * \frac{1}{\sin \theta} = \chi \frac{q_T^2}{q^2} * \frac{1}{2\sin(\theta/2)\cos(\theta/2)}$$
(18)

$$f(\theta) = \chi \cos^2 \theta / 2 * \frac{1}{2\sin(\theta/2)\cos(\theta/2)} = \chi \frac{\cos(\theta/2)}{2}$$

Оценка коэффициента :

$$\chi^{2} = \frac{3\alpha e^{2}}{4m_{p}^{2}\hbar} = \frac{3\alpha^{2}}{4m_{p}^{2}} \longrightarrow \chi = \frac{\alpha\sqrt{3}}{2m_{p}} \approx 6,74 * 10^{-6} MeV^{-1}$$
(19)

Согласно первому борновскому приближению амплитуда рассеяния является трехмерным обратным преобразованием Фурье от формы потенциала:

$$f(q) = -\frac{m_{\Lambda}}{2\pi\hbar^2} \int V(r)e^{i\mathbf{q}\mathbf{r}}d^3\mathbf{r}.$$
 (20)

Потенциал же есть прямое Фурье-преобразование:

$$f(q) = -\frac{(2\pi)^{3/2} m_{\Lambda}}{(2\pi)^{3/2} 2\pi \hbar^2} \int V(r) e^{iqr} d^3r = -\frac{(2\pi)^{1/2} m_{\Lambda}}{(2\pi)^{3/2} \hbar^2} \int V(r) e^{iqr} d^3r =$$
$$= \frac{1}{(2\pi)^{3/2}} \int \Phi(r) e^{iqr} d^3r \Longrightarrow$$
$$\Phi(r) = \frac{1}{(2\pi)^{3/2}} \int f(q) e^{-iqr} d^3q \Longrightarrow V(r) = -\frac{\hbar^2}{4\pi^2 m_{\Lambda}} \int f(q) e^{-iqr} d^3q$$

Поскольку амплитуду рассеяния нельзя свести к функции только от q, то ее можно вынести из под знака интеграла. Преобразуем интеграл Фурье в сферических координатах:

$$V(r) = -\frac{\chi \operatorname{ctg}(\theta/2)\hbar^2}{8\pi^2 m_{\Lambda}} \int q^2 * \sin(\gamma) e^{-iqr\cos\gamma} dq d\gamma d\phi =$$
$$= \frac{\chi \operatorname{ctg}(\theta/2)\hbar^2}{4\pi m_{\Lambda}} \int q^2 * e^{-iqr\cos\gamma} dq d\cos\gamma = \frac{\chi \operatorname{ctg}(\theta/2)\hbar^2}{4\pi m_{\Lambda}} \int q \frac{e^{-iqrx}}{-ir} \Big|_1^{-1} dq.$$

Учтя ограничения на импульс фотона сверху и снизу имеем :

$$V(r) = -\frac{\chi\hbar^2}{2\pi m_{\Lambda}r} \operatorname{ctg} \theta/2 \int_{q_{min}}^{q_{max}} q\sin(qr) dq.$$
(21)

Оценим интеграл:

$$-\int_{q_{min}}^{q_{max}} q\sin(qr)dq = \frac{qr\cos(qr) - \sin(qr)}{r^2} \bigg|_{q_{min}}^{q_{max}} =$$

$$\frac{q_{max}r\cos(q_{max}r) - q_{min}r\cos(q_{min}r)}{r^2} + \frac{\sin(q_{min}r) - \sin(q_{max}r)}{r^2} \le \frac{q_{max} - q_{min}}{r} + \frac{1}{r^2}$$

В виду малости последнего члена, его можно отбросить. Поскольку нашей задачей является оценить возможное отталкивание за счет электромагнитного процесса, то мы можем использовать верхнюю оценку нашего потенциала:

$$V(r) = \frac{\chi \hbar^2}{2\pi m_\Lambda r^2} \operatorname{ctg}\left(\theta/2\right) (q_{max} - q_{min}) = \frac{3,73 * 10^{-5} fm^2}{r^2} \operatorname{ctg}\left(\theta/2\right) (q_{max} - q_{min})$$
(22)

Разность согласно подсчетам:

 $(q_{max} - q_{min}) \approx 124$ MeV.

Здесь можно остановиться и сделать несколько интересных замечаний. Вопервых, поле зависит от угла рассеяния частицы или же говоря проще, поле является неоднородным сферически, что не свойственно для кулоновского отталкивания, наш потенциал имеет разрыв в точке $\theta = 0$. Угол рассеяния ранее принимался достаточно малым. Действительно, рассматривать форму потенциала при больших углах рассеяния не имеет смысла, поскольку в таком случае, говорить о существовании связянного состояния Λ -гиперона с остовом ядра не придется. Поэтому, для того чтобы приблизить нашу ситуацию к реальному возможному рассеянию в гиперядре, примем угловой параметр таким, чтобы можно было сопоставить его по порядку с потенциалом однопионного обмена:

 $\operatorname{ctg}(\frac{\theta}{2}) \approx 10^3$

Тогда:

$$V(r) = \frac{4.6}{r^2} \quad MeV fm^2 \tag{23}$$

На самом деле, подобная искусственная подгонка параметра среднего угла рассеяния может исказить форму потенциала и ввести нас в заблуждение. Ниже мы представим иной подход к решению данной задачи, он абсолютно точный и позволит нам скорректировать параметр среднего угла рассеяния ближе к реальному. Вдобавок, хотелось бы отметить, что обратно квадратичная зависимость полученного потенциала (23) от расстояния, может объясняться тем, что в работе [4] учитывается экранировка заряда ядра электронной оболочкой атома. Использовать потенциал вида (23) можно было бы для сверхтяжелых гиперядер, в которых экранировка заряда ядра будет играть немаловажную роль.

4.2 На основе диаграмной техники Фейнмана

Выражение (11) учитывает лишь взаимодейтсвие реальных фотонов, что объясняет накладываемые ограничения на их импульс. Для того, что бы учесть влияние виртуальных процессов, необходимо расписать амплитуду процессов в каждой вершине диаграммы $\Lambda p \longrightarrow \Sigma^0 p$. Так, амплитуда процесса поглощения фотона нуклоном есть:

$$f_{\gamma} \sim \frac{\sqrt{\alpha}}{q^2},$$
 (24)

т.е. она обратно пропорцианальна квадрату импульса поглощенного фотона. Теперь нужно разобраться с верхней вершиной. Процесс $\Lambda \to \Sigma^0 \gamma$ представляет собой излучение М1 фотона. Полная вероятность М1 излучения выражается через матричный элемент оператора магнитного момента согласно [15](47.5):

$$W = \frac{4\omega^3}{3\hbar c^3} |\mu_{fi}|^2,$$
 (25)

где для нашего случая:

$$\mu_{\Lambda\Sigma^0} = \langle \Sigma^0, S_z = -1/2 | \sum_{i=1}^3 Q_i \mu_i \sigma_z(i) | \Lambda, S_z = +1/2 \rangle,$$

 Q_i и $\sigma_z(i)$, заряд и проекция спина i-го кварка на ось z. Используя спиновые волновые функции для гиперонов Λ и Σ^0 из приложения [16], можно провести расчет и заведомо исключить ортогональные между собой спиновые состояния частиц. Таким образом, можно получить:

$$\mu_{\Lambda\Sigma^{0}} = \frac{1}{3\sqrt{3}} (2\mu_{u} + \mu_{d}) \tag{26}$$

Для проверки правильности полученного выражения достаточно положить магнитные моменты и и d кварков одинаковыми и сравнить (26) с магнитным моментом нейтрона. Так, согласно [14](3):

$$\mu_{\Lambda\Sigma^0} = -\frac{\sqrt{3}}{2}\mu_n.$$

Действительно, если $\mu_u = \mu_d = \mu$,то:

$$\mu_{\Lambda\Sigma^0} = \frac{1}{\sqrt{3}}\mu \qquad \mu_n = -\frac{2}{3}\mu \Longrightarrow$$

$$\frac{\mu_{\Lambda\Sigma^0}}{\mu_n} = -\frac{\sqrt{3}}{2}$$

Опуская все промежуточные преобразования на основе (25) можно показать, что константа распада:

$$f_{M1} \sim \sqrt{\alpha} \mu_{\Lambda \Sigma^0}, \tag{27}$$

тогда амплитуда процесса $\Lambda p \longrightarrow \Sigma^0 p$:

$$f_{\Lambda p \longrightarrow \Sigma^0 p} \sim f_{M1} f_{\gamma} \sim \frac{\alpha \mu_{\Lambda \Sigma^0}}{q^2}$$
 (28)

Снова используя преобразование Фурье, можно получить вид потенциала V_{γ} . Однако, стоит отметить, что амплитуда $\frac{\alpha}{q^2}$ соответствует классическому потенциалу кулоновского взаимодействия. Из этого следует, что наш искомый потенциал будет отличаться от кулоновского лишь на константу распада $\mu_{\Lambda\Sigma^0}$:

$$V_{\gamma} = \frac{e^2}{r} \mu_{\Lambda\Sigma^0} = \frac{e^2 \hbar c}{r \hbar c} \mu_{\Lambda\Sigma^0} = \frac{\alpha * 197 M eV * fm}{r} \mu_{\Lambda\Sigma^0} = \frac{1.438 M eV * fm}{r} \mu_{\Lambda\Sigma^0} \tag{29}$$

Используя оценку для константы распада из [14]:

$$|\mu_{\Lambda\Sigma^0}| \approx 3.29 \Longrightarrow$$

$$V_{\gamma} = \frac{4.72 * MeV * fm}{r}$$
(30)

5 Заключение

Форма потенциала двухканального рассеяния, изображенного на диаграмме (см. рис.9) имеет следующий вид:

$$V_{CSB}(r) = \frac{2}{\langle \Delta E \rangle} V_{\pi^0}(r) * V_{\gamma}(r) \Longrightarrow$$
$$V_{CSB}(r) = -\frac{2}{\langle \Delta E \rangle} V_{\gamma}(r) * \frac{1}{\sqrt{3}} \sum_{i=1}^3 (a_i + b_i k_f + c_i k_f^2) \exp\left[-(\frac{r}{\beta_i})^2\right]$$

где коэффициенты a_i, b_i, c_i, β_i для исследуемых нами термов 1S_0 и 3S_1 подбираются из таблицы 16 работы $[12], -\frac{1}{\sqrt{3}}$ -коэффициент Клебша-Гордана, о котором мы говорили ранее. Для упрощения изобразим графически произведение $2V_{\pi^0}(r) * V_{\gamma}(r)$. В качестве потенциала $V_{\gamma}(r)$ будем использовать (30). Параметр вариации $< \Delta E >$ составляет несколько десятков MeV.

Для наглядности синей линией нанесены параметризации потенциала однопионного обмена для термов ${}^{1}S_{0}$ и ${}^{3}S_{1}$, красной же линией выделен модифицированный случай. Потенциалы обоих термов имеют разрыв в точке r=0. Для терма ${}^{1}S_{0}$ наблюдается существенное увеличение потенциальной

Рис. 12: Модифицированный потенциал терма 1S_0 .

Рис. 13: Модифицированный потенциал терма 3S_1 .

в интервале r = 0.5 - 1 fm, что может быть объяснено наличием электромагнитного отталкивания. Аналогичную ситацию можно наблюдать и для потенциала терма ${}^{3}S_{1}$. Это приведет к уменьшению возможной добавки к ΔB_{Λ} для гиперядер.

В будущем, мы надеемся рассчитать возможные поправки к ΔB_{Λ} , рассмотреть процесс при $F(q) \neq 1$ и перейти к изучению данного процесса уже

на нейтроне, что позволит количественно оценить нарушение зарядовой симметрии для систем $\Lambda - n$ и $\Lambda - p$.

Отдельно хотелось бы поблагодарить научного руководителя, Ланского Дмитрия Евгеньевича, за профессиональный подход в преподавании и за помощь в проведении исследования.

Список литературы

- [1] A.Gal, Physics Letters B 744 (2015) 352-357.
- [2] A.Gal, E.V.Hungerford , D.J. Millener , Reviews of Modern physics, vol. 88 (2016).
- [3] R.H.Dalitz, F.Von Hippel, Physics Letters, vol. 10 (1964).
- [4] I. Ya. Pomeranchuk and I. M. Schmushkevitch, Nucl. Phys. 23, 452 (1961).
- [5] R. Machleidt, H. Müther, Phys. Rev. C 63 (2001) 034005.
- [6] D.H. Davis, Nucl. Phys. A 754 (2005) 3c.
- [7] J. Carlson, AIP Conf. Proc. 224 (1991) 198.
- [8] S.A. Coon, H.K. Han, J. Carlson, B.F. Gibson, in: J. Adams, et al. (Eds.), Meson and Light Nuclei '98, WS, Singapore, 1999.
- [9] A. Nogga, H. Kamada, W. Glöckle, Phys. Rev. Lett. 88 (2002) 172501.
- [10] J. Haidenbauer, U.-G. Meißner, A. Nogga, H. Polinder, Lect. Notes Phys. 724.
- [11] A. Nogga, Nucl. Phys. A 914 (2013) 140.
- [12] M. M. Nagels , Th. A. Rijken and Y. Yamamoto Phys. Rev. C 99, 044003 (2019).
- [13] В.В. Балашов, Квантовая теория столкновений, §10.2.
- [14] T.Devlin, P.C. Petersen and A. Beretvas, Phys. Rev. 34, 5 (1986).
- [15] В.Б. Берестецкий, Е.М. Лифшиц, Л.П. Питаевский, т.4, Квантовая электродинамика.
- [16] А.Б. Говорков, Введение в теорию кварков.
- [17] H. Tamura, et al., Phys. Rev. Lett. 84 (2000) 5963.
- [18] Л.Д. Ландау, Е.М. Лифшиц, т.З ,Квантовая механика нерелятивистская теория.
- [19] R. H. Dalitz and B. W. Downs, Phys. Rev. 111 (1958) 967.
- [20] А.И. Ахиезер, М.П. Рекало, Электродинамика адронов, Киев "Наукова думка" (1977).