ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В.ЛОМОНОСОВА»

ФИЗИЧЕСКИЙ ФАКУЛЬТЕТ

КАФЕДРА ОБЩЕЙ ЯДЕРНОЙ ФИЗИКИ

БАКАЛАВРСКАЯ РАБОТА

«ПРЕДСКАЗАНИЕ МАСС ЯДЕР ВДАЛИ ОТ ЛИНИИ СТАБИЛЬНОСТИ НА ОСНОВЕ ЛОКАЛЬНЫХ МАССОВЫХ СООТНОШЕНИЙ»

Выполнила студентка

413 группы

Ивлева Анастасия Петровна

Научный руководитель:

к.ф.-м.н., доц Т.Ю. Третьякова

Допущена к защите

Зав. кафедрой: член-корр. РАН Э.Э. Боос _____

МОСКВА 2023

Оглавление

Введение	2
1. Теоретические методы определения масс ядер	5
1.1 Макроскопический подход	6
1.2 Микроскопический подход	8
5.1 Микро-макроскопический подход	8
5.1 Локальные методы	10
2. Соотношения Гарви-Келсона	11
3. Энергия связи в оболочечной модели	.14
4. Энергия отделения протонов и нейтронов для легких и средних ядер на пример алюминия и олова	е 16
5. Методика определения нейтрон-протонного взаимодействия	18
5.1 Характеристика Δ_{np}	18
4.2 Соотношение бV _{пр}	22
5. Результаты	24
5.1 Соотношения Гарви-Келсона на базе современных данных АМЕ2020	24
5.2 Аппроксимации соотношений Δ_{np} и δV_{np}	25
 5.3 Разностные схемы 5.3.1 Массовые соотношения, определяющие однородное разностное уравнение 5.3.2 Массовые соотношения, определяющие неоднородное разностное уравнение 	28 .30 .32
Заключение	.35
Список использованных источников	37
Приложение 1. Зависимости S _n , S _p и Δ _{np} от числа нейтронов N для кремния	39
Приложение 2. Однородные разностные схемы	40
Приложение 3. Неоднородные разностные схемы	.43

Введение

Масса ядра M(A, Z) является одной из фундаментальных характеристик ядра. Открытие Э. Резерфордом в 1911 г. атомного ядра, а в 1919 г. протона послужило предпосылкой к образованию новой концепции строения материи. Следующий шаг был сделан в 1930-х годах, сразу после открытия нейтрона Дж. Чедвиком в 1932 г. [1]. С этого момента мы полагаем, что атомное ядро представляет из себя систему, состоящую из Z протонов и N нейтронов, связанных ядерным взаимодействием.

Масса ядра выражается как: $M(A, Z) = Zm_p + Nm_n - B(A, Z)/c^2$, где m_n – масса нейтрона, m_p – масса протона, A = Z + N есть массовое число, Z и N – число протонов и нейтронов, соответственно, а B(A, Z) – энергия связи ядра – минимальная энергия, необходимая для разделения ядра на составляющие его нуклоны.

Согласно различным теоретическим моделям, возможно существование более 7000 ядер, в то время как на сегодняшний день в ходе экспериментальных исследований было обнаружено около 3500 ядер [2]. И массы около 2500 ядер были точно измерены [3].

Таблица АМЕ (Atomic Mass Evaluation) была создана в 1950-х годах на основе уже имевшихся экспериментальных данных. С тех пор в связи с непрерывным расширением экспериментальных данных об атомных массах серии таких таблиц регулярно обновлялись [4, 5]. На сегодняшний день последней обновленной таблицей является АМЕ2020 [3].

На протяжении многих лет постоянный рост числа нуклидов, массы которых были измерены, внес огромный вклад в наше понимание структуры ядра. А поиск путей происхождения элементов и изотопов является одной из главных задач ядерной астрофизики [6 – 7].

Рис. 1. *NZ* – диаграмма атомных ядер. Пунктирными линиями показаны протонная и нейтронная границы существования ядер. Черными квадратами обозначены ядра, которые либо стабильны, либо практически стабильны и образуют «долину стабильности». Также показаны области *α*- и *β*[±] - радиоактивных ядер [8].

Каждое атомное ядро, характеризующееся определенным количеством протонов и нейтронов, занимает конкретное место на *NZ*-диаграмме ядер (см. рис 1), которая очерчивает область возможного существования атомных ядер, ограничивая число протонов и нейтронов, при которых ядра перестают быть связанными.

Ключевым фактором, определяющим стабильность ядер и место прохождения границы их существования, является энергия отделения нуклонов (протонов и нейтронов), то есть минимальное количество энергии, необходимое для удаления нуклона из ядра. Если энергия отделения положительна, то ядро устойчиво к испусканию нуклонов; и наоборот, если энергия отделения одного или двух нейтронов или протонов становится отрицательной, ядро не существует. Нейтронная граница достигается при $S_n = 0$ или $S_{2n} = 0$, где S_n и S_{2n} – энергии отделения одного и двух нейтронов, соответственно. Для протонной границы выражения аналогичные. Энергия отделения нейтрона и протона может быть выражена через энергию связи ядра B(Z, N) следующим образом: $S_n(Z, N) = B(Z, N - 1) - B(Z, N), S_n(Z, N) = B(Z - 1, N) - B(Z, N).$

Астрофизические процессы быстрого захвата протонов и нейтронов, ответственные за получение многих тяжелых элементов, проходят очень близко к границам нуклонной стабильности [9]. Однако, положение нейтронной границы существования ядер в области тяжелых элементов является неопределенным, поскольку основано на теоретических предсказаниях с использованием экстраполяций, продолженных в эту область. Предсказания моделей, согласованные в области стабильных ядер, сильно различается при приближении к границам существования.

Как известно, ядро состоит из двух типов фермионов – протонов и нейтронов, и в зависимости от их соотношения, ядра делятся на 2 группы: стабильные и радиоактивные (нестабильные). Стабильные ядра, число которых около 300, располагаются на линии стабильности и живут более 10^{12} лет. Если рассматривать график зависимости удельной энергии связи (средней энергии связи на 1 нуклон) от массового числа A, то оказывается, что ядра вокруг железа и никеля ($A \sim 60$), то есть вокруг железного максимума (составляет приблизительно 8 МэВ), имеют самые высокие энергии связи по сравнению с остальными ядрами. Такое поведение удельной энергии связи отражает свойство насыщения ядерных сил, которое означает, что каждый нуклон в ядре взаимодействует только с ограниченным числом соседних нуклонов. Именно поэтому реакции синтеза в звездах заканчиваются на уровне железа, а производство более тяжелых элементов посредством *s*- или *r*-процесса требует нахождения в нейтроноизбыточной звездной среде [10].

Несмотря на огромный экспериментальный и теоретический прогресс, изучение масс ядер около границ протонной и нейтронной стабильности, а также синтез элементов во Вселенной тяжелее железа, являются одними из самых проблемных.

Считается, что медленный *s*-процесс и быстрый *r*-процесс захвата нейтронов [10] производят большинство тяжелых элементов во Вселенной. В *s*-процессе стабильное ядро захватывает нейтроны до тех пор, пока не будет получен β -

нестабильный изотоп. Последующий β^- распад превращает один из нейтронов ядра в протон, таким образом образуется следующий более тяжелый элемент. Посредством многократного повторения этого процесса можно достичь области ядер вплоть до висмута с Z = 83. В то время как *s*процесс протекает вдоль долины β -стабильности, где свойства ядер в основном известны, *r*-процесс связан с экзотическими ядрами, находящими близко к границе нейтронной стабильности [11, 12], где данные о свойствах ядер крайне скудны или просто отсутствуют. Например, тяжелые изотопы, такие как торий и уран, образуются в *r*-процессе [13]. Поскольку такие астрофизические процессы управляются реакциями на радиоактивных изотопах, массы ядер и периоды полураспада бета-активных ядер, являются важными входными данными для моделирования нуклеосинтеза.

Таким образом, характеристики неизвестных изотопов, в первую очередь их массы, играют важную роль в решении многих проблем ядерной физики и астрофизики [14, 15]. Они важны не только для постановки новых экспериментов, но и для определения границ существования ядер. А для моделирования астрофизических процессов особый интерес представляет предсказание масс нейтрон-избыточных изотопов в области трека *r*-процесса [16 – 18], расположенного вдали от линии стабильности.

1. Теоретические методы определения масс ядер

Перечислим различные теоретические подходы, позволяющие с той или иной точностью оценить массы и энергии связи атомных ядер. Они включают в себя макроскопический, рассматривающий ядро как каплю заряженной жидкости (LDM – Liquid Droplet Model – модель жидкой капли), микроскопический, базирующийся на модели независимых частиц в среднем поле (в частности метод Хартри-Фока (HF – Hartree-Fock), и микро-макроскопический методы. В качестве микро-макроскопического метода в работе будет рассмотрена

модель FRDM (Finite-Range Droplet Model – модель капли с конечным радиусом) [19]. Помимо перечисленных подходов, используется также феноменологический подход, базирующийся на свойстве непрерывности массовой поверхности (метод локальных массовых соотношений).

1.1 Макроскопический подход

Первой попыткой теоретического обоснования энергий связи ядер в 1935 году стала «полуэмпирическая массовая формула» Эрнста фон Вайцзеккера в соответствии с капельной моделью ядра [20]. Она представляет собой коллективную модель, рассматривающую ядро, как сферическую в обычном состоянии, несжимаемую и положительно заряженную каплю жидкости, обладающую следующими свойствами: ядро характеризуется радиусом $r = 1,3A^{1/3}$ Фм; плотность ядерного вещества для всех ядер постоянна, что говорит об их несжимаемости; объемная плотность заряда постоянна; протоны равномерно распределены В объем ядра; ядерные силы являются зарядонезависимыми и короткодействующими. При таком описании ядра, его энергия связи B(N, Z) была разделена на компоненты, отвечающие за объемную и поверхностную энергию, а так же кулоновскую энергию и энергиию симметрии.

Формула Вайцзеккера предполагала сложный расчет коэффициентов перед компонентами энергии связи на основе межнуклонного взаимодействия, поэтому в последствие Ханс Бете и Роберт Бэчер в 1936 году [21] пересмотрели эту формулу и довели ее до привычного нам вида. Эта формула обычно упоминается как полуэмпирическая массовая формула Бете-Вайцзеккера. Она успешно описывает данные по энергиям связи вокруг линии стабильности и прогнозирует энергии связи для изотопов, не слишком удаленных от этой линии. Энергия связи ядра в формуле Бете-Вайцзеккера, определяется, как:

$$B(Z, N) = E_{vol} + E_{surf} + E_{coul} + E_{sym} + E_{eo},$$
(1)

где E_{vol} – объёмная энергия, E_{surf} – поверхностная энергия, E_{coul} – кулоновская энергия, E_{sym} – энергия симметрии, наличие которой обусловлено принципом Паули, а E_{eo} – энергия спаривания, которая описывает дополнительную связь между нуклонами одного типа, находящимися на одном энергетическом уровне. Вид вклада энергии спаривания нуклонов и значения его коэффициентов определяются из подгонки экспериментальных данных.

Объемная энергия записывается, как $a_{vol}A$, что отражает свойство насыщения ядерных сил, вследствие которого объем ядра растет пропорционально числу его нуклонов. Поверхностная энергия выражается, как $a_{surf}A^{2/3}$. Существование поверхностного члена отражает конечность размера ядра. Кулоновская энергия отвечает за отталкивание между протонами, а зависимость от $1/A^{1/3}$ возникает из-за обратной пропорциональности силы кулона и радиуса ядра $R = r_0 A^{1/3}$. После подсчета количества протонных пар, равных Z(Z - 1) получаем выражение $a_{coul}Z(Z - 1)/A^{1/3}$. Энергия симметрии $a_{sym}(N - Z)^2/A$ характеризует протон-нейтронную асимметрию. А слагаемое, отвечающее энергии спаривания, принимает три возможных значения в зависимости от четности ядра.

Таким образом, формула Бете-Вайцзеккера принимает вид:

$$B(Z,N) = a_{vol}A - a_{surf}A^{\frac{2}{3}} - a_{coul}\frac{Z(Z-1)}{A^{\frac{1}{3}}} - a_{sym}\frac{(N-Z)^{2}}{A} + A^{-3/4} \begin{cases} +\delta, \text{чет} - \text{чет ядер} \\ -\delta, \text{неч} - \text{неч ядер} \\ 0, \text{ остальные} \end{cases}$$
(2)

Формула (2) Бете-Вайцзеккера наименее точно способна описать ядра с магическими числами протонов и нейтронов, поэтому вследствие рассмотрения ядра как капли заряженной жидкости микроскопические эффекты, такие как оболочечные эффекты, описаны хорошо быть не могут, тогда как влияние спаривания нуклонов может быть наиболее наглядно выделено.

1.2 Микроскопический подход

С 1950-х годов стали активно разрабатываться микроскопические подходы к описанию ядра, направленные на решение нерелятивистского уравнения Шредингера для многонуклонных систем. Уравнение Шредингера для системы из *N* частиц для стационарного состояния имеет вид:

$$H(r,...,r) \Psi(q,...,q) = E \Psi(q,...,q).$$
(3)

Поскольку получение точного решения уравнения (3), даже с использованием численных методов для самых легких ядер, не представляется возможным, чрезвычайно важным является вопрос о методах его приближенного решения. Одним из таких методов является метод среднего поля, или метод Хартри-Фока (Hartree-Fock – HF). Поскольку ядро является сложной квантовомеханической системой многих частиц, то построение теоретических моделей, микроскопическую учитывающих структуру сталкивается ядра, С определенными трудностями. Поэтому для описания таких систем в методе Харти-Фока предполагается, что каждая частица двигается в некотором усреднённом поле, а именно в среднем поле, которое создают все остальные частицы этой системы. В этом методе используется пробная волновая функция в виде детерминанта Слэтера, который составлен из антисимметричных одночастичных волновых функций. Также используется параметризация Скирма (метод Skyrme-Hartree-Fock, SHF), с помощью которой можно не только учесть деформацию ядра и поправки на симметрию, но и предсказать свойства почти всех ядер [22].

5.1 Микро-макроскопический подход

Идеи, предложенные Вайцзеккером, стали одними из основополагающих для разработки новых ядерных моделей, в частности такой стандартной модели, как FRDM (Finite-Range Droplet Model – модель капли с конечным радиусом).

Систематические расчеты с использованием модели жидкой капли с микроскопическими поправками были представлены в 1966 году Майерсом и Святецким [23].

Оболочечные эффекты проявлялись как дополнительное «наслоение» на одночастичный спектр, вследствие чего его уровни отклонялись от положения уровней эквидистантного (равномерного) спектра. Для описания этого «нагромождения», которое должно было исчезать с увеличением деформации, было найдено простое алгебраическое представление. Предварительные количества нуклонов на заполненных оболочках для их группировки составили: 20, 28, 50, 82 и т.д. Затем Майерс, Святецкий и их коллеги разработали метод расчета. Они сконцентрировались на рассмотрении более тяжелых ядер, а также на процессе их деления через изменение формы. А Мёллером и др. в 1988 году была разработана оценка одночастичного спектра на основе двухчастичного взаимодействия [24, 25]. Они предположили, что это взаимодействие описывается с помощью потенциала Юкавы. Был разработан метод описания макроскопической части с помощью конечного радиуса взаимодействия, как в потенциале Юкавы. Поэтому этот метод известен сейчас как модель капли с конечным радиусом действия. Энергии оболочек методом Нильссона-Струтинского. В рассчитывались их представлении форма ядер была деформированной. Таким образом, модель FRDM – модель жидкой капли с поправками на оболочечную структуру и с деформациями.

Энергия основного состояния была разделена на две составляющие: вклад от деформированной жидкой капли (макроскопический подход) и вклад за счет деформированных одночастичных состояний (микроскопический подход с учетом оболочечных эффектов и поправок на спаривание). Таким образом, выражение для полной энергии, известное как макро-микроскопическая формула, зависит не только от числа протонов и нейтронов, но и от формы (shape) ядерной материи и записывается в виде:

 $E(Z, N, \text{shape}) = E_{mac}(Z, N, \text{shape}) + E_{mic}(Z, N, \text{shape}).$

Модель FRDM выходит далеко за рамки первоначальной модели жидкой капли, описанной в разделе 1.1. Она предоставляет нам действенный инструмент для описания таких динамических явлений, как, например, гигантский дипольный резонанс.

5.1 Локальные методы

Для вычисления энергии связи, а следовательно, и масс ядер, массовую поверхность считают непрерывной. А используя ее локальную совокупность экспериментальных значений, можно предсказывать массы ядер путем составления простых алгебраических линейных соотношений для выявления их характеристик и эффективности в предсказательной способности масс ядер. Такой метод получил название «метод локальных массовых соотношений» или ЛМС, примерами которого служат соотношения Гарви-Келсона [26, 27], а также методика определения остаточного *пр*взаимодействия [28]. Несмотря на простоту метода, он обладает высокой предсказательной способностью (отклонения могут составлять от 60 до 300 кэВ) [16].

На рис. 2 представлены схемы локальных массовых соотношений в виде фрагментов NZ-диаргаммы.

Рис. 2. Локальные массовые соотношения на *NZ*-диаграмме: соотношения Гарви-Келсона GK_T (*a*), GK_L (*б*), оценка *пр*-взаимодействия в нечетно-нечетных ядрах Δ_{np} (*в*) и соотношения δV_{np} в четно-четных (*г*), четно-нечетных (*д*) и нечетно-четных (*е*) ядрах. Выделенным квадратом отмечено ядро (*N*, *Z*). Обозначения: «*ee*» – от англ. «even-even» – четно-четный, «*eo*» – от англ. «even-odd» – четно-нечетный и «*oe*» – от англ. «odd-even» – нечетно-четный.

2. Соотношения Гарви-Келсона

Метод локальных массовых соотношений был впервые использован в 1966 году в работах Гарви и Келсона [27, 28] и основан на формулах, связывающих массы (или энергии связи B(N, Z)) шести близко расположенных нуклидов. Эти соотношения активно использовались для предсказания массы неизвестного шестого ядра на основе пяти известных. Формулы Гарви-Келсона известны как поперечное (GK_T) и продольное (GK_L) соотношения:

$$GK_T: -B(N+2, Z-2) + B(N, Z) - B(N, Z-1) + B(N+1, Z-2) - B(N+1, Z) + B(N+2, Z-1) = 0$$
(4)

$$GK_{L}: -B(N+2, Z) + B(N, Z-2) - B(N+1, Z-2) + B(N+2, Z-1) - B(N, Z-1) + B(N+1, Z) = 0$$
(5)

Соотношения (4) и (5) удобно изображать в плоскости NZ-диаграммы (рис. 2, *a*, *б*). Они основываются на модели независимых частиц и составлены таким образом, что сумма проекций изоспинов ядер, входящих в соотношение, равна 0. Рассмотрим получение соотношений Гарви-Келсона на основе их представления как изоспиновых мультиплетов [29]. Применим такой подход (подход применим и для частиц) к поперечному соотношению GK_T . Представим его не через зависимости энергий связи от числа нейтронов и протонов, а через зависимости от массового числа A и проекции изоспина I_z ,

где
$$A = N + Z$$
, $I_z = \frac{1}{2}(N - Z)$ [30].

Таким образом, GK_T :

$$-B(A, I_{z}+2) + B(A, I_{z}) - B(A-1, I_{z}+\frac{1}{2}) + B(A-1, I_{z}+\frac{3}{2}) - B(A+1, I_{z}+\frac{1}{2}) + B(A+1, I_{z}+\frac{3}{2}) = 0$$
(6)

На рис. З графически представлено соотношение (6) в координатах массового числа *А* и проекции изоспина *I*_z.

Рис. 3. Продольное соотношение GK_T в координатах (A, I_z). Цифрами для удобства обозначены ядра, входящие в соотношение (6). Оранжевым цветом обозначены линии, соответствующие постоянным значениям Z на диагоналях.

Отметим, что в изоспином пространстве вследствие преобразования электромагнитного тока в комбинацию изоскаляра и изовектора возникают правила отбора для изоспина: $\Delta I = 0$, и появляется расщепление масс членов изоспиновых мультиплетов.

Обозначим массу ядра как «т» и представим ее в виде двух слагаемых:

 $m = m^{str} + \Delta m$, где m – реальная масса ядра, а m^{str} – так называемая «голая масса» (возникает вследствие сильного взаимодействия). Если разность между реальной физической массой и «голой» массой ядра обозначить через Δm , то она должна стать одинаковой для всех членов мультиплета. Тогда для секстета получим:

$$\Delta m_1 = \Delta m_4$$

$$\Delta m_5 = \Delta m_2,$$

 $\Delta m_3 = \Delta m_6.$

При сложении и сокращении «голых» масс, возникает выражение:

$$m_1 + m_5 + m_3 = m_4 + m_2 + m_6. \tag{7}$$

Перепишем выражение (7) в следующем виде:

$$m_1 - m_2 + m_3 - m_4 + m_5 - m_6 = 0. \tag{8}$$

Тогда получим, что оно в точности повторяет выражение для поперечного соотношения Гарви-Келсона (4). Важно отметить, что при получении равенства (8) голые массы сократятся, если в каждую из разностей ($m_1 - m_2$, $m_3 - m_4$, $m_5 - m_6$) будут входить массы ядер с одинаковыми массовыми числами *A*. И на рис. 3 такие ядра для каждой из разностей располагаются на одних линиях *A* = const в изоспиновом мультиплете. В противном случае «голые» массы не сократятся вследствие добавления нуклонов.

Приведенные в данном разделе вычисления и соображения могут быть проделаны и для получения продольного соотношения GK_L.

С точки зрения эффективности продвижения от линии стабильности в область нейтроноизбыточных ядер, поперечное соотношение GK_T в силу своей конфигурации, а именно в силу расположения входящих в него ядер, оказывается более продуктивным для использования.

Поскольку карта изотопов постоянно расширяется, актуальной является проверка точности выполнения данных соотношений на основе современных экспериментальных данных AME2020. А именно, определение разброса соотношений GK_T и GK_L для массива ядер с массовым числом A > 40.

Соответствующий анализ точности соотношений Гарви-Келсона получен в разделе диплома 5. 1, посвященном результатам.

3. Энергия связи в оболочечной модели

В рамках оболочечной модели [31] рассмотрим ядро, имеющее *n* нейтронов в состоянии *j*₁ и *p* протонов в состоянии *j*₂ сверх замкнутого остова (*N*₀, *Z*₀). Энергия связи такой ядерной конфигурации представима в следующем виде:

$$B(N_0 + n, Z_0 + p) = B(N_0, Z_0) + n\epsilon_n + p\epsilon_p + W(j_1^n) + W(j_2^p) + I(j_1^n, j_2^p),$$
(9)

где ε_n и ε_p обозначают одночастичные энергии нейтронов в состоянии j_1 и протонов в состоянии j_2 в центральном поле. Слагаемые W(j) соответствуют энергии взаимодействия тождественных нуклонов на одной оболочке, в то время как $I(j_1, j_2)$ обозначает энергию взаимодействия между нуклонами, расположенными на разных оболочках. Вклад от взаимодействия n одинаковых нуклонов в состоянии j может быть представлен в виде суммы двух членов:

$$W(j^n) = \frac{1}{2}\left(n - \frac{1 - (-1)^n}{2}\right)\pi + \frac{n(n-1)}{2}d,$$

где первый член в формуле описывает связь одинаковых нуклонов с энергией спаривания π , а второй – дополнительное взаимодействие двух нуклонов с силой d, которое не зависит от относительной ориентации их спинов и носит отталкивающий характер.

Рис. 4. График зависимости $S_n(N)$ и $S_p(N)$ для изотопов олова Z = 50 на базе данных АМЕ2020.

На рис. 4 приведен график зависимости энергии отделения нейтронов (S_n) и энергии отделения протонов (S_p) от числа нейтронов N для изотопов олова Z == 50 на базе современных данных AME2020 [3]. Зависимость S_n (N) имеет зигзагообразную форму, обусловленную нейтронным спариванием. Зависимость S_p (N) является более гладкой по сравнению с S_n (N) и не чувствительной к оболочкам, тем не менее по-прежнему заметны (хотя и небольшие) четно-нечетные зубцы, связанные вследствие неизменности Z с *пр*-корреляциями из-за дополнительного взаимодействия протона с нечетным нейтроном.

Для оценки значений π и d при нейтрон-нейтронном спаривании обратимся к зависимости $S_n(N)$ при Z = const на рис. 4. Так, энергия спаривания π отвечает за зигзагообразное поведение кривой $S_n(N)$, то есть за расстояние между соседними ядрами с четными и нечетными значениями N. В то время, как величина d отвечает за наклон кривой и может быть оценена по разности $S_n(N+1) - S_n(N-1)$.

Взаимодействие *n* нейтронов в состоянии *j*₁ и *p* протонов в состоянии *j*₂ может быть записано в виде суммы следующих двух членов:

$$I(j_1^n, j_2^p) = npI^0 + \frac{(1 - (-1)^n)(1 - (-1)^p)}{4}I',$$

где вклад I^0 в энергию связи ядра (в рамках оболочечной модели) не зависит от ориентации спина нуклона, а вклад I' зависит от значения полного спина J и отражает спаривательные свойства нуклонного взаимодействия.

При нейтрон-протонном спаривании за наклон, но уже графика зависимости $S_p(N)$ при Z = const на рис. 4, будет отвечать параметр I^0 , а параметр I' будет отвечать за высоту зубцов этой кривой.

Таким образом, выражение для энергии связи (9) может быть записано в следующей форме [31]:

$$B(N_0 + n, Z_0 + p) = B(N_0, Z_0) + n\epsilon_n + p\epsilon_p + \frac{n}{2}\pi_n + \frac{p}{2}\pi_p + \frac{n(n-1)}{2}d_n + \frac{p(p-1)}{2}d_p + npI^0 - \delta,$$
(10)

где спаривательный член δ принимает следующие значения в соответствии с четностью ядра («*ee*» – от англ. «even-even» – четно-четный, «*eo*» – от англ. «even-odd» – четно-нечетный, «*oe*» – от англ. «odd-even» – нечетно-четный и «*oo*» – от англ. «odd-odd» – нечетно-нечетный, эти обозначения см. и далее):

$$\delta = \begin{cases} 0, ee, \\ \frac{1}{2}\pi_p, eo, \\ \frac{1}{2}\pi_n, oe, \\ \frac{1}{2}\pi_n + \frac{1}{2}\pi_p - I', oo. \end{cases}$$
(11)

В рамках оболочечной модели, описанной в этом разделе, выражения для продольного и поперечного соотношений Гарви-Келсона строго равны 0.

4. Энергия отделения протонов и нейтронов для легких и средних ядер на примере алюминия и олова

Рассмотрим два варианта учета эффекта спаривания в модели жидкой капли:

1) LDM w/o *np* – расчеты проведены в модели жидкой капли без учета нейтрон-протонного спаривания. В этом случае в формуле Вайцзеккера

(2) член $E_{pair} = \delta A^{-\frac{3}{4}}$, где $\delta = 34$ МэВ, описывает усредненный эффект спаривания тождественных нуклонов.

2) LDM w/np – расчеты с учетом различия вкладов нейтрон-нейтронного, протон-протонного и нейтрон-протонного спаривания. Вид вклада энергии спаривания в формулу Бете-Вайцзеккера был предложен в работе [32] и имеет вид (11).

Для такого расчета использовались аппроксимации соответствующих вкладов, полученные в работе [33], на основе данных AME2016:

$$\delta_{np} = 7.04 \cdot A^{-\frac{2}{3}}, \Delta_n = 5.11 \cdot A^{-\frac{1}{3}}, \Delta_p = 5.74 \cdot A^{-\frac{1}{3}}.$$

На рис. 5 рассмотрим зависимости энергий отделения нейтронов S_n от числа нейтронов N для алюминия и олова. В расчете микроскопическим методом Хартри-Фока (HF) для алюминия, как и для олова, заметны четкие ступеньки, соответствующие переходам с одной оболочки на другую. Также из графиков видно, что энергия отделения нейтронов в модели жидкой капли, как с учетом нейтрон-протонного спаривания (LDM w/np), так и без его учета (LDM w/o np), довольно хорошо описывает экспериментальные данные.

Таким образом, на графике S_n (*N*) в микроскопическом методе для алюминия и олова хорошо прослеживается влияние оболочечных эффектов.

Рис. 5. Графики зависимости энергий отделения протонов S_p и нейтронов S_n от числа нейтронов N для алюминия (слева) и олова (справа) на основе экспериментальных данных AME2020 (черная кривая) и модельных расчетах в LDM с учетом нейтрон-протонного спаривания (голубая кривая) и с учетом только спаривания тождественных нуклонов (синяя кривая). Красная кривая соответствует расчету методом Хартри-Фока с параметризацией SLy4 [34].

В Приложении 1 (рис. П.1 (А)) приведены графики зависимости S_n и S_p от числа нейтронов N для кремния.

5. Методика определения нейтрон-протонного взаимодействия

Принимая во внимание тот факт, что по мере удаления от линии стабильности точность предсказательной способности соотношений Гарви-Келсона существенно падает, было предложено использовать другие модельные соотношения, базирующиеся на описании *пр*-взаимодействия, а именно характеристики Δ_{np} и δV_{np} .

5.1 Характеристика Δ_{np}

Частным случаем метода ЛМС является методика определения остаточного нейтрон-протонного взаимодействия Δ_{np} . Её преимущество заключается в том, что в соотношение Δ_{np} входят энергии связи только четырех соседних ядер,

что позволяет использовать ее в областях *NZ*-диаграммы, в которых мало экспериментальных данных.

Величина Δ_{np} в случае нечетно-нечетных ядер определяется как разность энергии отделения пары нейтрон-протон S_{np} над четно-четным ядром (N-1, Z-1) и суммы энергий отделения протона S_p для ядра (N-1, Z) и нейтрона S_n для ядра (N, Z-1) [35]:

$$\Delta_{np}(N, Z) = S_{np}(N, Z) - (S_p(N-1, Z) + S_n(N, Z-1)) =$$

= $S_p(N, Z) - S_p(N-1, Z) =$
= $B(N, Z) - B(N, Z-1) - B(N-1, Z) + B(N-1, Z-1).$ (12)

В последствии применение соотношения (12) было расширено на все типы ядер [33].

Из формулы (12) видно, что характеристика Δ_{np} выражается через разность энергий отделения протона от ядра (N, Z) и от ядра (N - 1, Z).

Обратимся к зависимости энергии отделения протонов S_p от числа нейтронов N на рис. 5 (раздел 4) для изотопов алюминия и олова. Можно заметить, что для олова розовая кривая, соответствующая варианту без учета нейтрон-протонного спаривания – LDM w/o np, имеет гладкое поведение, тогда как учет члена δ_{np} в модели с нейтрон-протонным спариванием – LDM w/np позволяет воспроизвести зубчатый характер зависимости S_p (N).

Также отметим, что в расчете S_p (*N*) методом Хартри-Фока пилообразная структура отсутствует как для алюминия, так и для олова. Это объясняется тем, что микроскопический подход не учитывает эффекты нейтрон-протонного спаривания.

Схема для Δ_{np} представлена на рис. 2 (в). Из сравнения схем 2 (*a*, *б*) и 2 (в) заметно, что соотношения GK_T и GK_L фактически являются комбинациями Δ_{np} для соседних ядер; GK_L имеет вид: $\Delta_{np} (N - 2, Z) + \Delta_{np} (N - 1, Z - 1) = 0$, а GK_T: $-\Delta_{np} (N - 1, Z) + \Delta_{np} (N - -2, Z - 1) = 0$.

Исходя из описанного в разделе 3 представления энергии связи ядра в рамках оболочечной модели, характеристику Δ_{np} можно выразить через вклады I^0 и I':

$$\Delta_{np}(N, Z) = \begin{cases} I^0 - I', \ eo \ u \ oe, \\ I^0 + I', \ ee \ u \ oo. \end{cases}$$
(13)

Для успешного и эффективного использования тех или иных массовых соотношений необходимо, чтобы соответствующие зависимости от массового числа или от N и Z были гладкими. В качестве примера рассмотрим зависимости Δ_{np} от числа нейтронов N в цепочках изотопов алюминия (Z = 13) и олова (Z = 50) в следующих модельных расчетах: в макроскопическом – на основе модели жидкой капли (LDM) и в микроскопическом – на основе метода Хартри-Фока (HF), а также расчет на основе экспериментальных значений масс ядер из современной базы данных АМЕ2020 (рис. 6).

Рис. 6. Зависимость $\Delta_{np}(N)$ в изотопах Al (*a*) и Sn (*б*) на основе экспериментальных данных AME2020 (черная кривая) и модельных расчетах в LDM с учетом нейтрон-протонного спаривания (голубая кривая) и с учетом только спаривания тождественных нуклонов (синяя кривая). Красная кривая соответствует расчету методом Скирма-Хартри-Фока с параметризацией SLy4 (SHF) [34]. Вертикальные линии соответствуют схеме оболочечной модели.

На рис. 6 (а, б) экспериментальные значения Δ_{np} в цепочках изотопов алюминия и олова разделяются на группы с четным и нечетным значением A,

различие между которыми для алюминия могут достигать около 4 МэВ, а для олова – приблизительно от 0.5 МэВ до 1 МэВ. Для алюминия заметен выброс при N = Z = 13, который соответствует энергии Вигнера. Также присутствует выброс при N = 20, который может быть связан с переходом на следующую оболочку.

Проанализируем влияние оболочечных эффектов на вид зависимости $\Delta_{np}(N)$, полученной в подходе Хартри-Фока с силами Скирма [36] без учета эффекта спаривания нуклонов и в модели жидкой капли, позволяющей учесть как спаривание тождественных нуклонов, так и нейтрон-протонное спаривание. В подходе Хартри-Фока для алюминия, равно как и для олова, на графике отчетливо заметно наличие ступенек, соответствующих переходам между оболочками. Видно, что переход на следующую подоболочку приводит к незначительным отклонениям в зависимости $\Delta_{np}(N)$, которые не превышают примерно 100 кэВ. Отметим также, что в случае расчета методом Хартри-Фока, основное влияние оболочечной структуры может быть связано с заполнением очередной подоболочки, поскольку в отсутствие спаривания фактически реализуется последовательное заполнение уровней.

Влияние спаривания нуклонов наглядно позволяет рассмотреть модель жидкой капли на основе формулы Бете-Вайцзеккера, см. раздел 1.1.

Можно заметить, что на рис. 6 учет нейтрон-протонного спаривания в отличии от спаривания тождественных нуклонов влияет на поведение зависимости $\Delta_{np}(N)$. Для алюминия и олова добавление поправки δ_{np} на нейтрон-протонные корреляции приводит к разбросу между четными и нечетными *A*, и согласие с экспериментальной кривой улучшается. Наиболее четко это согласие прослеживается для изотопов вблизи от линии стабильности для состояний с относительно большим значением *j*: для алюминия это *j* = 3/2, для изотопов олова это *j* = 7/2 и 11/2.

Зависимость $\Delta_{np}(N)$ для изотопов кремния приведена в Приложении 1 (рис. П.1 (Б)).

4.2 Соотношение δV_{np}

В литературе для описания *пр*-взаимодействия активно используется, помимо соотношения Δ_{np} , величина δV_{np} [37], которая для нечетно-нечетных ядер совпадает с величиной Δ_{np} . Вид характеристики δV_{np} для ядер в зависимости от их четности показан на рис. 2 (*в*, *г*, *д*, *е*) и определяется следующими выражениями:

$$\delta V_{np}(N,Z) = \begin{cases} \frac{1}{4} [B(N,Z) - B(N,Z-2) - B(N-2,Z) + B(N-2,Z-2)], & NZ:ee \\ \frac{1}{2} [B(N,Z) - B(N,Z-1) - B(N-2,Z) + B(N-2,Z-1)], & NZ:eo, \\ \frac{1}{2} [B(N,Z) - B(N,Z-2) - B(N-1,Z) + B(N-1,Z-2)], & NZ:oe, \\ B(N,Z) - B(N,Z-1) - B(N-1,Z) + B(N-1,Z-1), & NZ:oo. \end{cases}$$
(14)

Из формулы (13) видно, что величина δV_{np} является комбинацией Δ_{np} : $\delta V_{np}(N, Z) =$

$$= \begin{cases} \Delta_{np}^{ee}(N, Z) + \Delta_{np}^{oe}(N-1, Z) + \Delta_{np}^{eo}(N, Z-1) + \Delta_{np}^{oo}(N-1, Z-1), & NZ: ee, \\ \Delta_{np}^{eo}(N, Z) + \Delta_{np}^{oo}(N-1, Z), & NZ: eo, \\ \Delta_{np}^{oe}(N, Z) + \Delta_{np}^{oo}(N, Z-1), & NZ: oe, \\ \Delta_{np}^{oo}(N, Z), & NZ: oo. \end{cases}$$
(15)

И в соответствие с формулой (13) формулу (15) можно выразить через

параметры I^0 и I' в следующем виде: $\delta V_{np}(N,Z) = \begin{cases} 4I^0, NZ: ee, \\ 2I^0, NZ: eo, \\ 2I^0, NZ: oe, \\ I^0 + I', NZ: oo. \end{cases}$

Рис. 7. Зависимость $\delta V_{np}(N)$ для изотопов алюминия (*a*) и олова (*б*) на основе экспериментальных данных АМЕ2020 (черная кривая) и модельных расчетах в LDM с учетом нейтрон-протонного спаривания (голубая кривая) и с учетом только спаривания тождественных нуклонов (синяя кривая). Красная кривая соответствует расчету методом Хартри-Фока с параметризацией SLy4 (SHF) [34].

Зависимость величины δV_{np} от числа нейтронов *N* для изотопов алюминия и олова приведена на рис. 7. Для алюминия по-прежнему остался выброс при N = Z = 13, соответствующий энергии симметрии, использование данной характеристики в качестве индикатора энергии Вигнера показано в работе [38]; масштабы остальных флуктуаций сравнимы с флуктуациями в методе Хартри-Фока в диапазоне около 1.5 МэВ. Для олова характеристика δV_{np} демонстрирует более гладкое по сравнению с Δ_{np} поведение: диапазон флуктуаций экспериментальной кривой также сравним с разбросом расчетов в SHF и не превышает 200 кэВ. Расчеты в LDM показывают, что данная характеристика имеет очень гладкое поведение для четно-четных и нечетночетных ядер (рис. 7 δ), при этом учет *np*-корреляций приводит к разделению ядер на две группы – нечетно-нечетных и четно-нечетных изотопов (рис. 7 *a*). Таким образом, можно рассчитывать на успешное применение соотношений δV_{np} для построения аппроксимаций и их применения для предсказания масс ядер.

5. Результаты

5.1 Соотношения Гарви-Келсона на базе современных данных АМЕ2020

Перейдем к реализации проверки точности выполнения поперечного GK_T и продольного GK_L соотношений Гарви-Келсона на основе современных экспериментальных данных AME2020 для A > 40. На рис. 8 представлены зависимости соотношений GK_T и GK_L от массового числа A.

Рис. 8. Значения соотношений $GK_T(a)$ и $GK_L(\delta)$ от *A*. Синими точками отмечены ядра с N = Z, красными точками – магические ядра. Черными точками – остальные ядра, за исключением магических. Для расчета использованы данные AME2020.

На графиках видно, что разброс значений около 0 для продольного соотношения Гарви-Келсона значительно меньше, чем для поперечного, и составляет для A > 40 около 1,25 МэВ. Соответственно, среднеквадратичное отклонение о в области A > 40 для GK_T составляет 286.7 кэВ, а для GK_L – 200.7 кэВ.

В области более тяжелых ядер уже практически отсутствуют ядра с N = Z, дающие значительные отклонения от 0, а отклонения для магических ядер не отличаются от общей тенденции, что свидетельствует о том, что соотношения Гарви-Келсона не чувствительны к оболочечным эффектам.

5.2 Аппроксимации соотношений Δ_{np} и δV_{np}

Для предсказания масс ядер необходимы аналитические аппроксимации характеристик Δ_{np} и δV_{np} . Чаще всего используется зависимость от массового числа *A* с различными вариантами степенной зависимости:

$$\Delta_{np}^{approx}(A) = C_1 + C_2 \cdot A^{\gamma}, \tag{16}$$

$$\delta V_{np}^{approx}(A) = C_1 + C_2 \cdot A^{\gamma}, \tag{17}$$

где C_1 , C_2 и γ — параметры аппроксимации, которые либо находятся из фитирования экспериментальных значений, либо фиксируются. Отметим, что разумно строить аппроксимации с показателями степени γ , кратными 1/3, так как у величины $A^{1/3}$ есть физический смысл – она пропорциональна радиусу ядра.

Так, например, для характеристики Δ_{np} определить энергию связи B_{pred} (N, Z), а следовательно и массу интересующего нас неизвестного ядра можно воспользовавшись тремя известными энергиями связи и результатом аппроксимации, а именно: B_{pred} (N, Z) = $B(N, Z - 1) + B(N - 1, Z) - B(N - 1, Z - -1) + \Delta_{np}^{approx}(A)$.

Рис. 9. Аппроксимации зависимостей $\delta V_{np}(A)$ для нечетных A и четно-четных ядер (a) и $\Delta_{np}(A)$ для четных A (черные точки) и нечетных A (красные точки) (δ) . Точки — расчет с использованием данных АМЕ2020. Линии — наиболее оптимальные аппроксимации (см. табл. 1 и 3).

Если построить зависимость Δ_{np} (*A*) (рис. 9, б), то сразу видно разделение массива значений Δ_{np} на две ветви – с четными и нечетными значениями *A*. Поэтому аппроксимации были проведены отдельно для каждой ветви графика Δ_{np} (*A*). В табл. 1 приведены результаты аппроксимаций величины Δ_{np} для различных наборов параметров C_{1} , C_{2} и γ . При подгонке были исключены области магических и около магических чисел (отличающихся на 1), а также ядер с N = Z, $N = Z \pm 1$ и $Z = N \pm 1$.

	С1 (МэВ)	C_2 (M \ni B)	γ	σ (кэВ)
	0.133 ± 0.015	62.40 ± 1.70	-1	169
А четные	0	31.84 ± 3.06	-0.81 ± 0.02	168
	0	76.36 ± 0.74	- 1	177
	0.087 ± 0.005	0	_	147
A	0.023 ± 0.013	8.24 ± 1.52	-1	144
нечетные	0	10.75 ± 0.62	- 1	145

Таблица 1. Параметры функции (16) для аппроксимации $\Delta_{np}(A)$ для A > 40.

При сравнении результатов аппроксимаций в таб. 1 на основе среднеквадратичных отклонений σ были выбраны наиболее удачные аппроксимации (они выделены жирным шрифтом), которым соответствует наименьшее σ .

Теперь проведем сравнение полученных нами удачных аппроксимаций с аппроксимациями, полученными ранее на базе данных АМЕ2016 в статье [39]. В таблице 2 из статьи [39] представлены аппроксимации выражения (16), где для четных A фиксируется параметр $\gamma = -1$, для нечетных A фиксируется параметр $C_2 = 0$. Коэффициенты C_1 и C_2 аппроксимации (16) для различных диапазонов по массовым числам A взяты из статьи [40]. Четные A обозначены «чет», а нечетные A - «неч». Данные поделены на отдельные массивы по массовым числам A = 60, 100, 140, 180. Мы разбили массив значений A на аналогичные группы из статьи [39] и рассчитали (в таб. 2 графа «наши расчеты») среднеквадратичные отклонения σ для Δ_{np} на каждом отдельном интервале для аппроксимаций, приведенных в таб. 2 в графе «расчеты из статьи [39]» для четных и нечетных A.

Таблица 2. Среднеквадратичные отклонения σ значений Δ_{np} на отдельных массивах четных и нечетных значений A

Наши	A	60 - 100		100 - 140		140 - 180		≥ 180	
расчеты		чет	неч	чет	неч	чет	неч	чет	неч
	σ (кэВ)	217	185	151	121	127	143	144	102
Расчеты	C_1 ,	0,01	0,128	0,041	0,086	- 0,285	0,06	- 0,031	0,116
ИЗ	МэВ								
статьи	C_2 ,	73,1	_	71,2	_	129,1	_	106,6	_
[39]	МэВ								
	σ (кэВ)	220	190	173	127	127	145	153	111

Как видно из сравнения строк со среднеквадратичными отклонениями («наши расчеты» и «расчеты из статьи [39]») из таб. 2, уменьшение среднеквадратичного отклонения для нечетных A на всех отдельных массивах значений A говорит о том, что более точной оказывается аппроксимация с $\gamma = -1$ без фиксации $C_2 = 0$.

На рис. 9 (б) представлена зависимость δV_{np} от массового числа *A*. При проведении аппроксимации (17) нами также были удалены значения для четно-четных ядер с N = Z и для ядер, в расчеты которых попадали энергии связи для ядер с N = Z. По результатам данной подгонки (таб. 3), для δV_{np} наиболее оптимальным является показатель $\gamma = -2/3$, однако этот результат незначительно отличается от других вариантов подгонки и может зависеть от диапазона аппроксимируемых данных.

С ₁ (МэВ)	С2 (МэВ)	γ	σ (кэВ)
0	17.82 ± 0.92	-0.81 ± 0.01	114.1
0.08 ± 0.05	34.23 ± 0.51	- 1	114.1
-0.081 ± 0.007	11.25 ± 0.17	- 2/3	113.9

Таблица 3. Параметры функции (17) для характеристики $\delta V_{np}(A)$ для A > 40 (кроме нечетнонечетных ядер) и величина среднеквадратичного отклонения σ

Таким образом, полученные аппроксимации (таб. 1 и таб. 3) в дальнейшем могут быть использованы для предсказания масс ядер.

5.3 Разностные схемы

Рассмотрим различные массовые соотношения, удовлетворяющие качественным критериям оптимальности, но не связанные с какими-либо физическими характеристиками.

Построим следующее разностное выражение x(N, Z):

$$x(N,Z) = \sum_{i=1}^{N_L + N_R + 1} \sum_{j=1}^{Z_D + Z_U + 1} p_{ij} B(N - N_L - 1, N - Z_D - 1),$$
(18)

где B(N, Z) — энергия связи ядра с числом нейтронов N и числом протонов Z; p_{ij} — коэффициенты разностного выражения, которые могут принимать произвольные значения от C_{MIN} до C_{MAX} с шагом 1. Для определения положения ядра (N, Z) и для задания размеров сетки используются обозначения N_L = NPATLEFT, Z_D = ZPATDOWN, N_R = NPATRIGHT, Z_U = ZPATUP (см. рис 10).

Если выражение x(N, Z) = 0, то разностное выражение называется однородным, а если $x(N, Z) \neq 0$, то – неоднородным.

Рис. 10. Пример графического представления разностного выражения (18): *x*(*N*, *Z*) на *NZ*диаграмме. Цветом выделен квадрат с энергией связи *B*(*N*, *Z*).

Таким образом, изображенная на рис. 10 схема соответствует разностному выражению x(N, Z) = B(N, Z) + B(N - 3, Z + 3) - B(N - 3, Z - 1) - B(N - 2, Z + 2) + B(N - 1, Z + 2) - B(N + 1, Z - 1), а коэффициенты p_{ij} принимают значения - 1, 0 и + 1.

Количество различных разностных выражений *К* определяется числом возможных значений каждого коэффициента в степени числа клеток в разностной схеме, т. е.

$$K = \left(\frac{C_{\text{MAX}} - C_{\text{MIN}} + 1}{C_{\text{STEP}}}\right)^{(N_{L} + N_{R} + 1)(Z_{D} + Z_{U} + 1)}$$

Число *К* для разностных выражений размером 4×4 и 5 х 5 принимает очень большие значения, а именно: $K(4\times4) = 3^{16}$, а $K(5\times5) = 3^{25}$. Чтобы осуществить последовательный перебор таких разностных выражений, потребуется немалое время, поэтому для уменьшения числа выражений хотя бы в два раза используем следующее допущение. Если два разностных выражения оказываются представимы в виде: $x_1(N, Z) = ax_2(N, Z)$, то есть имеют общий множитель, то рассматриваться будет только одно из двух таких выражений.

Для анализа гладкости полученного разностного выражения необходимо ввести некоторую меру гладкости. Так, если для всех изотопов с A > 50 вычисленные значения x(N, Z) расположить в порядке возрастания массового

числа, то в качестве меры гладкости можно использовать функцию *t*, равную сумме модулей разности расстояний между соседними точками, нормированную на величину *R*:

$$t = \frac{1}{R} \sum_{i} |x_i - x_{i+1}|$$
,

где норма служит для приведения разброса минимального и максимального значений *x* к единичному интервалу и определяется, как $R = |max(x_i) - min(x_i)|$.

В ОЭПВАЯ НИИЯФ МГУ К. А. Стопани создал компьютерную программу, позволяющую перебрать все массовые соотношения с заданным размером сетки и диапазоном значений коэффициентов *p*_{ij}. Дальнейшее рассмотрение массовых соотношений выполнено с ее использованием.

В следующем разделе рассмотрены примеры однородных и неоднородных разностных схем, а именно графики зависимости значений разностных выражений x(N, Z) от массового числа A для нечетно-нечетных, четно-нечетных, четно-четных и четно-четных ядер. Для удобства полученные разностные соотношения представлены на графиках в виде клеточек NZ-диаграммы с вписанными в них коэффициентами p_{ij} при энергиях связи из формулы (18).

5.3.1 Массовые соотношения, определяющие однородное разностное уравнение

На рис. 11 рассмотрим пример сетки 3 x 3 графика зависимости x(N, Z) от массового числа A для ядер в зависимости от их четности. Заметим, что на рис. 11 (а, б, г) представлено продольное соотношение Гарви-Келсона GK_L, а на рис. 11 (в) – характеристика Δ_{np} . Интересно, что все однородные соотношения для сеток 4 x 4, 5 x 4 и 4 x 5 (приведены в Приложении 2:

рис. П.2 (А), П.2 (Б) и П.2 (В), соответственно) являются комбинациями Δ_{np} или представляют собой GK_L.

Рис. 11 а, б, в, г. Зависимости численных значений разностных выражений x(N, Z) от массового числа A для разностной схемы размером 3 х 3, для нечетно-нечетных (а), четнонечетных (б), нечетно-четных (в) и четно-четных (г) ядер; коэффициенты p_{ij} принимают значения от – 1 до 1 с шагом 1. Значению меры гладкости каждого соотношения соответствует число t.

По результатам работы программы для однородных разностных схем была составлена общая сводная таблица 4 со значениями меры гладкости *t* для нечетно-нечетных, четно-нечетных, нечетно-четных и четно-четных ядер в зависимости от размеров сетки.

Таблица 4. Значения меры гладкости *t* для однородных разностных схем разного размера с коэффициентами *p_{ij}* при энергиях связи от – 1 до 1 с шагом 1.

Размер сетки	3 x 3	4 x 4	5 x 4	4 x 5
00	58,399836	51,942653	47,671951	46, 416035
ео	58,707302	40,622829	39,486029	37,334611
oe	50,690238	40,894724	37,888125	38,34153
ee	50,275479	44,514959	42,061674	40,698897

Из таблицы 4 можно заметить, что с увеличением размера сетки соотношения становятся более гладкими, о чем свидетельствует уменьшение значения меры гладкости *t*. Таким образом, с точки зрения гладкости однородных разностных выражений, наиболее оптимальными оказываются соотношения для сетки 4 х 5, приведенные в Приложении 2 на рис. П.2 (В).

5.3.2 Массовые соотношения, определяющие неоднородное разностное уравнение

На рис. 12 приведен пример для сетки 3 х 3 графика зависимости x(N, Z) от массового числа A для ядер в зависимости от их четности с коэффициенты p_{ij} от – 1 до 1 с шагом 1. Соотношения x(N, Z) на рис. 12 (а, г) могут быть выражены через характеристики Δ_{np} для ядер в зависимости от их четности. А Δ_{np} в свою очередь легко выражаются по формуле (13) через параметр I^0 , следующим образом:

$$\Delta_{np}^{ee}(N, Z) + \Delta_{np}^{oe}(N - 1, Z) + \Delta_{np}^{eo}(N, Z - 1) + \Delta_{np}^{oo}(N - 1, Z - 1) = 4I^{0}.$$

На рис. 12 (в) соотношение $x(N, Z)$ выражается через параметры I^{0} и I' :
$$\Delta_{np}^{eo}(N, Z) + \Delta_{np}^{ee}(N, Z - 1) + \Delta_{np}^{oe}(N - 1, Z - 1) = 3I^{0} - I'.$$

Графики зависимости x(N, Z) от массового числа A для сеток 4 x 4, 3 x 3 (с коэффициентами p_{ij} от – 2 до 2, от – 3 до 3 и от – 4 до 4) и 4 x 5 приведены в Приложении 3 (рис. П.3 (А), П.3 (Б), П.3 (В), П.3 (Г) и П.3 (Д), соответственно).

Рис. 12 а, б, в, г. Зависимости численных значений разностных выражений x(N, Z) от массового числа A для разностной схемы размером 3 х 3. Коэффициенты p_{ij} принимают значения от – 1 до 1 с шагом 1. Обозначения см. рис. 11.

По результатам работы программы для неоднородных разностных схем также была составлена общая сводная таблица 5 со значениями меры гладкости *t* для нечетно-нечетных, четно-нечетных, нечетно-четных и четно-четных ядер в зависимости от размеров сетки.

Размер сетки		3 x	4 x 4	4 x 5		
Коэффициенты	От – 1 до 1	От – 2 до 2	От – 3 до 3	От – 4 до 4	От – 1 до 1	От – 1 до 1
p_{ij}						
00	5,891428	5,041944	4,729923	4,621074	3,756713	3,448758
eo	6,56758	4,934611	4,52414	4,390466	4,118076	3,34392
oe	6,669626	4,853821	4,807866	4,702142	3,61444	3,001615
ee	4,247274	3,857823	3,642638	3,612328	3,798302	2,982238

Таблица 5. Значения меры гладкости *t* для неоднородных разностных схем разного размера с различными коэффициентами *p_{ij}* (с шагом 1) при энергиях связи из формулы (18).

Исходя из данных таб. 5, с точки зрения гладкости для неоднородных разностных выражений наиболее оптимальными оказываются соотношения для сетки 4 х 5, приведенные в Приложении 3 на рис. П.3 (Д).

Таким образом, разностные схемы, рассмотренные в разделе 5.3, являются эффективным инструментом для выявления новых соотношений с учетом их гладкости и подходят для предсказания масс ядер. Их преимущество заключается в том, что посредством варьирования размеров сетки и шага, стало возможным получать не только известные нам массовые соотношения, такие как Δ_{np} , δV_{np} , соотношения Гарви-Келсона и их различные комбинации, но и совершенно иные комбинации энергий связи с коэффициентами, отличными от 0 и \pm 1.

Заключение

В настоящей работе был наглядно предложен способ получения соотношений Гарви-Келсона путем представления их в качестве изоспиновых мультиплетов, также были построены зависимости соотношений Гарви-Келсона от массового числа A на базе современных данных AME2020 и посчитаны среднеквадратичные отклонения для продольного и поперечного соотношений GK_T и GK_L для A > 40. Для GK_T среднеквадратичное отклонение составило 286,7 кэВ, а для GK_L: 200,7 кэВ.

Также было исследовано, имеется ли влияние оболочечных эффектов и эффектов спаривания на энергии отделения протонов S_p и нейтронов S_n для алюминия и олова, рассчитанных на базе экспериментальных данных AME2020, в моделях жидкой капли (с учетом и без учета нейтрон-протонного спаривания) и в методе Хартри-Фока.

Кроме того, рассмотрены соотношения, которые в литературе используются для описания нейтрон-протонного взаимодействия, а именно Δ_{np} и δV_{np} . Эти характеристики были представлены через параметры I^0 и I', являющиеся вкладами в энергию связи ядра, представленную в рамках оболочечной модели. Было рассмотрено влияние эффектов спаривания и оболочечных эффектов на характеристики Δ_{np} и δV_{np} в зависимости от числа нейтронов для цепочек изотопов алюминия и олова в модели жидкой капли (с учетом и без учета нейтрон-протонного спаривания) и методе Хартри-Фока в сравнении с экспериментальными данными AME2020.

С учетом среднеквадратичных отклонений были построены новые аппроксимации Δ_{np} (*A*) и δV_{np} (*A*), которые в дальнейшем могут быть использованы для предсказания масс ядер:

$$\Delta_{np}^{approx}(A \text{ чет}) = 0,133 + 62,4 \cdot A^{-1}$$
 (169 кэВ),

$$\Delta_{np}^{approx}(A \text{ нечет}) = 0,023 + 8,24 \cdot A^{-1} (144 \text{ кэB}),$$

 $\delta V_{np}^{approx}(A) = -0,081 + 11,25 \cdot A^{-2/3} (113,9 \text{ кэB}).$

Также было проведено сравнение полученных аппроксимаций $\Delta_{np}^{approx}(A)$ с аппроксимациями, полученными ранее на базе данных AME2016 в статье [44], на основе среднеквадратичных отклонений значений Δ_{np} на отдельных массивах четных и нечетных значений A.

Помимо всего перечисленного, были рассмотрены избранные результаты работы компьютерной программы для выявления различных однородных и неоднородных разностных соотношений, удовлетворяющих количественным критериям оптимальности.

Таким образом, массовые соотношения, рассмотренные в настоящей работе, являются хорошим инструментом для предсказания масс неизвестных ядер. Особенно хотелось бы отметить перспективность использования однородных и неоднородных разностных схем для генерирования новых неизвестных массовых соотношений. В дальнейшем на основе полученных аппроксимаций Δ_{np} (*A*) и δV_{np} (A) и использования наиболее удачных с точки зрения гладкости разностных соотношений предполагается составление массовой таблицы.

Благодарность

Автор выражает благодарность Т.Ю. Третьяковой и К.С. Стопани за полезные советы, ценные обсуждения и помощь в получении результатов. Автор выражает благодарность Е.В. Владимировой за возможность использования ее программы «Marel», с помощью которой были получены данные для модели жидкой капли LDM и для энергий отделения протонов и нейтронов.

Список использованных источников

[1] J. Chadwick // Proc. Roy. Soc. Lond. A136, (1932), 692.

[2] National Nuclear Data Center (NNDS), <u>http://www.nndc.bng.gov/</u>.

[3] Zepeng Gao, Yongjia Wang, Hongliang Lü et al.// Nucl. Sci. Tech. 32. 10,(2021), 1.

[4] G. Audi // Int. J. Mass Spectr. 251, (2006), 85.

[5] A.H. Wapstra // Hyperfine Interact. 132, (2001), 127.

[6] E. M. Burbidge, G. R. Burbidge, W. A. Fowler, F. Hoyle // Rev. Mod. Phys. 29.
4, (1957), 548 – 550.

[7] G. Wallerstein, I. J. Iben, P. Parker, A. M. Boesgaard, G. M. Hale, et al. // Rev. Mod. Phys. 69, (1997), 995.

[8] *Б.С. Ишханов, Т.Ю. Третьякова* //ВМУ. Серия 3. Физ. Астрон. № 3, (2017), 4.

[9] K. Langanke, M. Wiescher // Rep. Prog. Phys. 64, (2001), 1657 – 1660.

[10] *E.M. Burbidge, G.R. Burbidge, W.A. Fowler, F. Hoyle* // Rev. Mod. Phys. 29, (1957), 547.

[11] F.K. Thielemann et al. // Prog. Part. Nucl. Phys. 66, (2011), 346.

[12] J.J. Cowan et al. // Rev. Mod. Phys. 93, (2021), 015002.

[13] T. Kajino, W. Aoki, A.B. Balantekin, R. Diehl, M.A. Famiano // Prog. Part.
 Nucl. Phys. 107, (2019), 109.

[14] D. Lunney, J. M. Pearson, C. Thibault // Rev. Mod. Phys. 75, (2003), 1021 – 1027.

[15] K. Blaum // Phys. Rep. 425. 1, (2006), 1–78.

[16] D. Lunney, J. M. Pearson, C. Thibault // Rev. Mod. Phys. 75, (2003), 1021 – 1027.

[17] T. Yamaguchi, H. Koura, Yu.A. Litvinov, M. Wang // Prog. Part. Nucl. Phys. 120, (2021), 103882.

[18] В.В. Негребецкий, М.В. Симонов, Е.В. Владимирова и др. // ВМУ. Серия
3. Физ. Астрон. № 1, (2022), 37.

- [19] *P. Möller*, *A.J. Sierk*, *T. Ichikawa*, *H. Sagawaet* // At. Data and Nucl. Data Tabl. 109 110, (2016), 1 204.
- [20] C.F. von Weizsäcker // Z. Physik 96, (1935), 431.

[21] H.A. Bethe, R.F. Bacher // Rev. Mod. Phys. 8, (1936), 829.

[22] S. Goriely, F. Tondeur, J.M. Pearson // Atom. Data and Nucl. Data Tables 77, (2001), 311.

- [23] W. D. Myers, and W. J. Swiatecki // Nucl. Phys. 81, (1966), 1.
- [24] P. Möller, J.R. Nix // At. Data Nucl. Data Tables 39, (1988), 213.
- [25] P. Möller, W.D. Myers, W.J. Swiatecki, J. Treiner // At. Data Nucl. Data Tables 39, (1988), 225.
- [26] I. Kelson, G.T. Garvey // Phys. Rev. Lett. 5, (1966), 197.
- [27] G.T. Garvey, W.J. Gerace, R.L. Jaffe et al. // Rev. Mod. Phys. 41, (1969), S1.
- [28] J. Jänecke, H. Berens // Phys. Rev. C. 9, (1974), 1276.
- [29] Д. Перкинс. Введение в физику высоких энергий, Москва, Издательство «МИР», (1975), 284 285.
- [30] G.T. Garvey., W.J. Gerace, R L. Jaffe et al. // Rev. Mod. Phys. 41, (1969), S3.
- [31] N. Zeldes // Nucl. Phys. 7, (1958), 27.
- [32] D.G. Madland, J.R. Nix // Nucl. Phys. A476, (1988), 1.
- [33] B.S. Ishkhanov, S.V. Sidorov, T.Yu Tretyakova, E.V. Vladimirova // Chin.
- Phys. C. 43, (2019), 014104.
- [34] E. Chabanat, P. Bonche, P. Haensel et al. // Nucl. Phys. A635, (1998), 231.
- [35] V.A. Kravtsov // Sov. Phys. JETP, 36. 9, (1959), 871.
- [36] D. Vautherin, D.M. Brink // Phys. Rev. C. 5, (1972), 626.
- [37] Wu Zheying, S.A. Changizi, Qi Chong // Phys. Rev. C. 93, (2016), 034334.
- [38] D.D. Warner, M.A. Bentley, P. Van Isacker // Nature Physics 2, (2006), 311.
- [39] В.В. Негребецкий, М.В. Симонов, Е.В. Владимирова, К.А. Стопани,
- Т.Ю. Третьякова //ВМУ. Сер. 3. Физ. Астрон. № 1., (2022), 1-7.
- [40] E.V. Vladimirova, M.V. Simonov, T.Y. Tretyakova // Proc. 24th Int. Sci. Conf. Young Sci. Spec., AIP Conf. Proc. 2021.

Приложение 1. Зависимости S_n , S_p и Δ_{np} от числа нейтронов N для кремния.

Рис. П. 1 (А). Графики зависимости энергий отделения протонов S_p и нейтронов S_n от числа нейтронов N для кремния на основе экспериментальных данных АМЕ2020 (черная кривая) и модельных расчетах в LDM с учетом нейтрон-протонного спаривания (голубая кривая) и с учетом только спаривания тождественных нуклонов (синяя кривая). Красная кривая соответствует расчету методом Хартри-Фока с параметризацией SLy4 [38].

Рис. П. 1 (Б). Зависимость $\Delta_{np}(N)$ в изотопах кремния на основе экспериментальных данных АМЕ2020 (черная кривая) и модельных расчетах в LDM с учетом нейтрон-протонного спаривания (голубая кривая) и с учетом только спаривания тождественных нуклонов (синяя кривая). Красная кривая соответствует расчету методом Скирма-Хартри-Фока с параметризацией SLy4 [38]. Вертикальные линии соответствуют схема оболочечной модели.

Рис. П. 2 (А). Зависимости численных значений разностных выражений x(N, Z) от массового числа A для разностной схемы размером 4 х 4, для нечетно-нечетных (а), четно-нечетных (б), нечетно-четных (в) и четно-четных (г) ядер; коэффициенты p_{ij} принимают значения от – 1 до 1 с шагом 1. Значению меры гладкости каждого соотношения соответствует число t.

Рис. П. 2 (Б). Зависимости численных значений разностных выражений x(N, Z) от массового числа A для разностной схемы размером 5 х 4. Коэффициенты p_{ij} принимают значения от – 1 до 1 с шагом 1. Обозначения см. рис. П. 2 (А).

Рис. П. 2 (В). Зависимости численных значений разностных выражений x(N, Z) от массового числа A для разностной схемы размером 4 х 5. Коэффициенты p_{ij} принимают значения от – 1 до 1 с шагом 1. Обозначения см. рис. П. 2 (А).

Приложение 3. Неоднородные разностные схемы.

Рис. П. 3 (А). Зависимости численных значений разностных выражений x(N, Z) от массового числа A для разностной схемы размером 4 х 4. Коэффициенты p_{ij} принимают значения от – 1 до 1 с шагом 1. Обозначения см. рис. П. 2 (А).

Рис. П. 3 (Б). Зависимости численных значений разностных выражений x(N, Z) от массового числа A для разностной схемы размером 3 х 3. Коэффициенты p_{ij} принимают значения от – 2 до 2 с шагом 1. Обозначения см. рис. П. 2 (А).

Рис. П. 3 (В). Зависимости численных значений разностных выражений x(N, Z) от массового числа A для разностной схемы размером 3 х 3. Коэффициенты p_{ij} принимают значения от – 3 до 3 с шагом 1. Обозначения см. рис. П. 2 (А).

Рис. П. 3 (Г). Зависимости численных значений разностных выражений x(N, Z) от массового числа A для разностной схемы размером 3 х 3. Коэффициенты p_{ij} принимают значения от – 4 до 4 с шагом 1. Обозначения см. рис. П. 2 (А).

Рис. П. 3 (Д). Зависимости численных значений разностных выражений x(N, Z) от массового числа A для разностной схемы размером 4 х 5. Коэффициенты p_{ij} принимают значения от – 1 до 1 с шагом 1. Обозначения см. рис. П. 2 (А).