<<Московский государственный университет имени М.В. Ломоносова>> Кафедра общей ядерной физики

Оптимизация параметров оптического потенциала для реакций рассеяния нейтронов на ядрах ²⁴Mg, ²⁸Si, ³²S.

Выполнил студент гр. 413: Пампушик Григорий Владимирович Научный руководитель: к.ф.-м. н, Третьякова Татьяна Юрьевна Научный консультант: к.ф.-м. н, Фёдоров Никита Александрович

Введение

- Проект <<TANGRA>> (TAgged Neutron and Gamma RAys) посвящён изучению нейтрон-ядерных взаимодействий с использованием метода меченых нейтронов (ММН).
- Энергия нейтронов на установках TANGRA: 14.1 МэВ

 $d + t \rightarrow \alpha + n + 17,6 \text{ M} \Rightarrow B$

 Измеряются свойства γ-квантов (выходы, угловые распределения) и нейтронов (угловые распределения)

Цели коллаборации

- Обновление баз данных по нейтрон-ядерным реакциям
- Исследование структуры атомных ядер.

TALYS и библиотека TalysLib

- TALYS программа позволяющая проводить расчеты свойств ядерных реакций в широком диапазоне энергий (1 кэВ - 200 МэВ) и ядер (А ≥ 12).
- TALYS объединяет в себе множество теоретических моделей для описания различных процессов (оптическая модель, метод связанных каналов, Борновское приближение искаженных волн и т.д.)
- TalysLib объектно-ориентированная C++ библиотека, основанная на ROOT (<u>https://github.com/terawatt93/TalysLib</u>).
- TalysLib автоматизирует работу с TALYS и его базой данных.
- В ходе выполнения данной работы была добавлена возможность работы с EXFOR и ENDF, использованная для извлечения данных, на которых выполнялась оптимизация параметров оптической модели.

Структура TalysLib

- В основе библиотеки лежат 3 класса, каждый из которых соответствует физическому объекту.
- Каждый из классов хранит указатели на объект, находящийся выше по иерархии.

Извлечение экспериментальных данных из EXFOR

- На сегодняшний день не существует C++ или Python-библиотек, позволяющих считывать данные из файлов EXFOR.
- Приходиться выполнять поиск и обработку данных вручную.
- Автоматизация этого процесса могла бы облегчить подбор параметров теоретических моделей и сравнение результатов с экспериментальными данными.
- В ходе данной работы были проанализированы существующие форматы табулированных данных, полученные путем автоматизированной обработки файлов EXFOR: C4 и EXFORTABLES.

Форматы C4 и EXFORTABLES

Пример для ядра ¹²С

#ENTRY #AUTHORJ #YEAR #INSTITL #TITLE #+ #DATASET #DATASET #DATASET #DATASET #DATASET #DATASET #DATASET #DATASET #DATASET #DATASET #PR0J #TARG #MF #PR0DUCT #C4BEGIJ #X4STATL	I UTE (S) DE NCE FS F DN T DN V US	2055 G.Ha 1975 (2FF Diff elas G.Ha Y.Pa (R.(Rept No.4 3 2055 2011 G-C- 1 6012 3 51 6-C- DAT/ [COF	59 5000 5 8000 5 8000 500	t+ c) t, F R-4 ent , 1 8 4 N, 1 8 4 N, 1 60 Da	al cross d inelast J.Lachkar Cocu 641,19750 re d Etud 975 NL)6-C-12 NL)6-C-12 12 3 5 ta correl	sections ic scatte , J.Sigau 2) es Nuclea ,PAR,SIG 1 C] ated with	for carbo ring from d, ires, Sac	n neutron 8.0 to 1 lay Repor data set	4.5 MeV ts						
#DATA		9		272	20.201	4	10.11		2.1.1.2		222.22		And Buckley Start		24
# Pr] 10	arg I	M MP	MI	289	Energy	dEnergy	Data	dData	Cos/Lo	dcos/L0	ELV/HL	dELV/HL	178 Heter (YY)		Entry
1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6	5012 5012 5012 5012 5012 5012 5012 5012	**********	51 51 51 51 51 51 51 51 51 51 51		5800000, 6300000, 6800000, 7000000, 7300000, 7300000, 8000000, 8300000, 8300000, 8300000,	200000.0 120000.0 110000.0 100000.0 100000.0 100000.0 100000.0 100000.0	9.5000-3 0.186000 0.133000 0.206000 0.206000 0.362000 0.383000 0.200000 0.309000	0.010000 0.019000 0.013000 0.018000 0.020000 0.030000 0.030000 0.030000 0.031000			4439600, 4439600, 4439600, 4439600, 4439600, 4439600, 4439600, 4439600, 4439600,		LVLG. Haouat, ET.A LVLG. Haouat, ET.A	L. (75) L. (75) L. (75) L. (75) L. (75) L. (75) L. (75) L. (75) L. (75)	2055 2055 2055 2055 2055 2055 2055 2055

1.44	Townsh 7	6			
#	Target 2 :	0			
#	Target A :	12			
#	Target state:				
#	Projectile :	n			
#	Reaction :	Inelastic s	cattering		
#	E-inc :	14.760 Me	v		
#	E-exc :	10.84400 Me	V (EXFOR: 10.8	0000)	
#	Quantity :	Angular dis	tribution		
#	Frame :	C			
#	MF :	4			
#	MT :	55			
#	X4 ID :	20223003			
#	X4 code :	6-C-12(N, IN	L)6-C-12, PAR, D	A	
#	Author :	Kuijper			
#	Year :	1972			
#	Data points :	19			
#	Angle(deg)	xs(mb/sr)	dxs(mb/sr)	ELV/HL	
	4.04000E+01	1.50000E+00	8.00000E-01	10.8 MeV] MT = 55
	6.99001E+01	7.50000E+00	1.70000E+00		
	6.43001E+01	6.8000E+00	1.40000E+00		
	6.00001E+01	6.50000E+00	8.00000E-01		
	4.89001E+01	7.80000E+00	1.40000E+00	0.6 MeV	MT = 53
	3.99000E+01	8.60000E+00	1.30000E+00	9.0 IVIE V	
	2.63001E+01	6.30000E+00	1.90000E+00		
	6.85001E+01	1.10000E+00	4.00000E-01		1
	6.30001E+01	4.00000E-01	5.00000E-01		
	5.88001E+01	1.30000E+00	5.00000E-01		
	4.79000E+01	1.30000E+00	4.00000E-01	7.6 MeV	MT=52
	3.91000E+01	1.40000E+00	4.00000E-01		
	2.58000E+01	4.00000E+00	1.50000E+00		
	6.71001E+01	1,49000E+01	8.00000E-01		1
	6.19001E+01	1.83000E+01	9.00000E-01		
	5,76000E+01	1.87000E+01	9.00000E-01		
	4.70000E+01	2.83000E+01	1,20000E+00	4.4 MeV	MT=51
	3,83000E+01	3,10000E+01	1,10000E+00		
	2.52000E+01	3.91000E+01	2,70000E+00		
#	Reference:		21100002.00		1

#P.Kuijper, J.C.Veefkind, C.C.Jonker

#Neutron scattering from bismuth, strontium and sodium at 14.8 MeV
#Jour. Nuclear Physics, Section A Vol.181, p.545, 1972

C4

EXFORTABLES

Пампушик Г.В.

HC->0

Подбор параметров моделей

- Подбор параметров модели осуществляется с помощью класса TalysFitterMT и минимизатора MINUIT, встроенного в ROOT.
- Экспериментальные данные представляются в виде таблично заданной функции D(x).
- Функция С сопоставляет набор подбираемых параметров с параметрами вычислений.
- Функция F описывает процедуру извлечения данных, соответствующих экспериментальным, из основных классов библиотеки.

Блок-схема подбора параметров.

Оптический потенциал

Взаимодействие частицы и атомного ядра описывается комплексным потенциалом:

$$U(r) = V(r) + iW(r)$$

Феноменологический оптический потенциал из работы Кёнинга-Делароша [1]:

 $U(r, E) = -\mathcal{V}_V(r, E) - i\mathcal{W}_V(r, E) - i\mathcal{W}_D(r, E) + (\vec{l} \cdot \vec{\sigma})(\mathcal{V}_{SO}(r, E) + i\mathcal{W}_{SO}(r, E)) + \mathcal{V}_C(r)$ $\mathcal{V}_V(r, E) = V_V(E) f(r, R_V, a_V),$

$$\begin{split} \mathcal{W}_{V}(r,E) &= W_{V}(E)f(r,R_{V},a_{V}), \\ \mathcal{W}_{D}(r,E) &= -4a_{D}W_{D}(E)\frac{d}{dr}f(r,R_{D},a_{D}), \\ \mathcal{W}_{SO}(r,E) &= V_{SO}(E) \bigg(\frac{\hbar}{m_{\pi}c}\bigg)^{2}\frac{1}{r}\frac{d}{dr}f(r,R_{SO},a_{SO}), \\ \mathcal{W}_{SO}(r,E) &= W_{SO}(E) \bigg(\frac{\hbar}{m_{\pi}c}\bigg)^{2}\frac{1}{r}\frac{d}{dr}f(r,R_{SO},a_{SO}), \\ \end{split}$$

31.05.2023

Модельное описание прямых процессов

Метод искаженных волн (DWBA)

- Упругое рассеяние и поглощение являются доминирующими процессами
- Вклады каждого из отдельных каналов невелики
- Метод связанных каналов (СС)
- Полный учёт нескольких избранных каналов реакции
- Влияние отброшенных каналов учитывается через оптический потенциал ядра

Сферическая форма потенциала ядра: $R_i = r_i A^{1/3}$

Симметричный ротатор: $R_i = r_i A^{\frac{1}{3}} (1 + \sum_{\lambda=2,4,\dots} \beta_\lambda Y_\lambda^0(\theta, \varphi))$ Колебательная модель: $R_i = r_i A^{\frac{1}{3}} (1 + \sum a_{\lambda\mu} Y_\lambda^\mu(\theta, \varphi))$ Асимметричный ротатор: $R_i(\Theta) = r_i A^{\frac{1}{3}} [1 + \beta_2 \cos \gamma Y_2^0(\Omega) + \sqrt{\frac{1}{2}} \beta_2 \sin \gamma (Y_2^2(\Omega) + Y_2^{-2}(\Omega)) + \beta_4 Y_4^0(\Omega)]$

31.05.2023

Объекты исследования

Тип коллективных возбуждений:

- Магний: асимметричный ротатор (AROT)
- Кремний: ротатор (ROT)
- Сера: осциллятор (VIB)

Значения параметров деформации: $\beta_2 = 0.592 \ \beta_4 = -0.05 \ (для всей полосы) [1]$ $\beta_2 = -0.420 \ \beta_4 = 0.2 \ (для всей полосы) [2]$ $\beta_2 = 0.299 \ (для 1-ого возбужденного состояния) [1]$ 5. 4617.9 37 FS

- 1. TALYS 2.0 deformation files.
- 2. Haouat G. et al. Phys. Rev. C. 1984. Vol. 30, no. 6. P. 1795.

Результаты аппроксимации угловых распределений рассеянных нейтронов (E_n: 14.6-15 МэВ) на ядре ²⁴Мg

31.05.2023

Результаты аппроксимации угловых распределений рассеянных нейтронов (E_n: 14.6-15 МэВ) на ядре ²⁸Si

Неупругое рассеяние нейтронов на ²⁸Si с Упругое рассеяние нейтронов на ²⁸Si возбуждением уровня 2+ (1779 кэВ) $\frac{d\sigma}{d\Omega}(\theta), \frac{M6}{crep}$ $\frac{d\sigma}{d\Omega}(\theta), \frac{M6}{crep}$ G.Haouat+ 1984 G. Haouat+ 1984 J.Hohn+ 1969 J.Hohn+ 1969 TALYS по умолчанию TALYS по умолчаник Наши расчеть Наши расчеты 10 10² 10 20 80 100 120 140 160 180 60 40 20 40 60 80 100 120 140 160 180 θ, град θ, град Красная линия – наши расчеты ($\chi^2/N = 3.55$) Черная линия – расчеты TALYS <<по умолчанию>> ($\chi^2/N = 39.33$)

31.05.2023

Результаты аппроксимации угловых распределений рассеянных нейтронов (E_n:13.9-14.3 МэВ) на ядре ³²S

31.05.2023

Результаты подбора параметров ОП

²⁴Mg (AROT)

	$\chi^2/_N$	V_V MeV	W_V MeV	W_D MeV	V _{SO} MeV	<i>W_{SO}</i> MeV	r _V fm	a_V fm	r _D fm	a _D fm	r _{so} fm	a _{so} fm	β_2	γ	eta_4
TALYS def	12.06	48.70	1.286	7.63	5.413	-0.07	1.163	0.674	1.296	0.54	0.96	0.59	0.592	20	-0.05
Наши расчеты	3.91	48.36	0.971	4.79	4.735	0	1.167	0.633	1.349	0.70	0.85	0.58	0.579	20	-0.107
²⁸ Si (ROT)															
TALYS def	39.33	48.93	1.21	7.68	5.44	-0.07	1.17	0.67	1.29	0.54	0.97	0.59	-0.420		0.2
Наши расчеты	3.55	51.76	0.90	4.80	5.38	0	1.15	0.53	1.38	0.73	0.96	0.58	-0.413		0
³² S (VIB)															
TALYS def	74.65	48.89	1.20	7.68	5.46	-0.07	1.18	0.67	1.29	0.54	0.98	0.59	0.299		
Наши расчеты	19.97	50.60	0.93	4.78	7.62	0	1.17	0.58	1.14	0.76	0.83	1.0	0.316		

31.05.2023

0

Итоги

- Был протестирован функционал автоматического получения экспериментальных данных и подбора параметров библиотеки TalysLib.
- С помощью TalysLib были получены новые наборы параметров оптического потенциала и значений параметров деформации для ядер ²⁴Mg, ²⁸Si, ³²S.
- Результаты аппроксимации угловых распределений показывают, что результаты расчетов TALYS <<по умолчанию>> могут быть значительно улучшены.

Результаты работы были представлены на конференциях:

- The XXVI International Scientific Conference of Young Scientists and Specialists (AYSS-2022)
- Концентрированные потоки энергии в космической технике, электронике, экологии и медицине (2022)
- Ломонсов-2023
- ISIN-29

Статья с результатами принята в печать:

 Г.В. Пампушик, Н.А. Фёдоров << Развитие библиотеки TalysLib>> Ученые записки физического факультета Московского Университета

Спасибо за внимание!

²⁴Mg

31.05.2023

Пампушик Г.В.

31.05.2023

Приложение: зависимость параметров от E_n

$$V_V(E) = v_1 \Big[1 - v_2 (E - E_f) + v_3 (E - E_f)^2 - v_4 (E - E_f)^3 \Big],$$

$$W_V(E) = w_1 \frac{(E - E_f)^2}{(E - E_f)^2 + (w_2)^2},$$

 $r_V = \text{constant},$

 $a_V = \text{constant},$

$$W_D(E) = d_1 \frac{(E - E_f)^2}{(E - E_f)^2 + (d_3)^2} \exp\left[-d_2(E - E_f)\right],$$

 $r_D = \text{constant},$

 $a_D = \text{constant},$

$$V_{SO}(E) = v_{so1} \exp\left[-v_{so2}(E - E_f)\right],$$

$$W_{SO}(E) = w_{so1} \frac{(E - E_f)^2}{(E - E_f)^2 + (w_{so2})^2},$$

 $r_{SO} = \text{constant},$

 $a_{SO} = \text{constant},$

 $r_C = \text{constant},$

Приложение: зависимость расчетов TALYS от E_n

31.05.2023

Приложение: параметры <
best>>

31.05.2023

Приложение: модели TALYS

31.05.2023

Приложение: ММН

31.05.2023

Приложение: экспериментальные данные

Реакция	Автор	Год	E_n , МэВ
(n, n)	A. Virdis	1984	14.83
(n, n)	G. Haouat+	1981	14.83
(n, n')	A. Virdis	1984	14.83
(n,n)	G. Haouat+	1981	14.83

²⁴Mg (En: 14.6-15 МэВ)

Реакция	Автор	Год	E_n , МэВ
(m,m)	G. Haouat+	1984	14.83
(n,n)	J. Hohn+	1969	14.7
(n, n')	G. Haouat+	1984	14.83
(n, n)	J. Hohn+	1969	14.7

²⁸Si (En: 14.6-15 M₉B)

Реакция	Автор	Год	E_n , МэВ
	C.R. Howell+	1988	13.92
2	C.St. Pierre+	1959	13.95
	P.H. Stelson+	1965	14
(n, n)	J.O. Elliot	1956	14
(n, n)	R.L. Clarke+	1964	14.1
	M.A.Al-Ohali+	2012	13.92
	E. Mezzetti+	1978	14.2
	C.R. Howell+	1988	13.92
(n n')	P.H. Stelson+	1965	14
(n, n)	V.V. Bobyr+	1961	14
	E. Mezzetti+	1978	14.2

³²S (En: 13.9 - 14.3 M₃B)