

M.Kapishin

NICA Heavy Ion Complex

BM@N: heavy ion energy 1-4 GeV/n, beams: p to Au, Intensity ~10⁶ /s

Baryonic Matter at Nuclotron (BM@N) Collaboration:

3 Countries, 10 Institutions, 188 participants

- University of Plovdiv, Bulgaria
- St.Petersburg University
- Joint Institute for Nuclear Research
- Institute of Nuclear Research RAS, Moscow
- Shanghai Institute of Nuclear and Applied Physics, CFS, China;

- NRC Kurchatov Institute, Moscow
- Moscow Engineer and Physics Institute
- Skobeltsin Institute of Nuclear Physics, MSU, Russia
- Moscow Institute of Physics and Technics
- Lebedev Physics Institute of RAS, Moscow

Heavy Ion Collision Experiments

BM@N: √s_{NN}= 2.3 - 3.3 GeV MPD: √s_{NN}= 4 - 11 GeV

BM@N competitors:

HADES BES (SIS): Au+Au at $\sqrt{s_{NN}}$ = 2.42 GeV, Ag+Ag at $\sqrt{s_{NN}}$ = 2.42 GeV, 2.55 GeV.

STAR BES (RHIC): Au+Au at $\sqrt{s_{NN}}$ = 3-200 GeV

EOS of symmetric and asymmetric nuclear matter

BM@N experiment

Ch. Fuchs and H.H. Wolter, EPJA 30 (2006) 5

EOS: relation between density, pressure, temperature, energy and isospin asymmetry

$$\mathsf{E}_{\mathsf{A}}(\rho,\delta) = \mathsf{E}_{\mathsf{A}}(\rho,0) + \mathsf{E}_{\mathsf{sym}}(\rho) \cdot \delta^2$$

with $\delta = (\rho_n - \rho_p)/\rho$ E/A(ρ_o) = -16 MeV

Curvature defined by nuclear incompressibility: $K = 9\rho^2 \ \delta^2(E/A)/\delta\rho^2$

Study symmetric matter EOS at ρ =3-5 ρ_0 \rightarrow elliptic flow of protons, mesons and hyperons

 \rightarrow sub-threshold production of strange mesons and hyperons

 \rightarrow extract K from data to model predictions

► Constrain symmetry energy E_{sym}

 \rightarrow elliptic flow of neutrons vs protons

 \rightarrow sub-threshold production of particles with opposite isospin

M.Kapishin

Nuclear matter equation-of-state up to 2 ρ_0

Symmetry energy

ASY-EOS: Elliptic flow of neutrons/charged particles

P. Russotto et al., Phys. Rev. C 94 (2016) 034608

KaoS: Excitation function of kaon production

- in Au + Au collisions up to 1.5A GeV
- C. Sturm et al., PRL 86 (2001) 39
- C. Fuchs et al., PRL 86 (2001) 1974
- FOPI: Excitation function of elliptic flow
 - of protons and light fragments
 - in Au + Au collisions up to 1.5A GeV
 - A. Le Fevre et al., Nucl. Phys. A945 (2016) 112

BM@N experiment

BM@N physics case and observables

The QCD matter equation-of-state at high densities

> particle production at (sub)threshold energies via multi-step processes

Example: subthreshold K⁺ production at GSI

Time (x axis), transverse (y axis) and longitudinal (z axis) dynamics of Au+Au collision

M.Kapishin

BM@N experiment

Directed and elliptic flow at BM@N

BM@

- Good agreement between reconstructed and model data
- Approximately 250-300M events are required to perform multi-differential measurements of $v_{\rm n}$

$v_n(y)$ in Au+Au $\sqrt{s_{NN}}$ =2.4 GeV: models vs. HADES data

Experimental data points: Phys. Rev. Lett. **125** (2020) 262301

Cascade models fail to reproduce HADES experimental data

Reasonable agreement for $v_n(y)$ Higher harmonics are more sensitive to different EOS than v_1 More JAM results with different EOS are needed

Heavy-ions A+A: Hypernuclei production

BM@N

In heavy-ion reactions: production of hypernuclei through coalescence of Λ with light fragments enhanced at high baryon densities

D Maximal yield predicted for $\sqrt{s}=4-5A$ GeV (stat. model) (interplay of Λ and light nuclei excitation function)

BM@N energy range is suited for search of hyper-nuclei

M.Kapishin

BM@N experiment

Comparison HADES, STAR FxT, BM@N

	year	A+A	E _{kin} A GeV	# Events	Rare Observables		
					e+e-	Ξ ⁻ , Ω ⁻	hypernuclei
HADES	2012	Au+Au	1.23	7·10 ⁹	\checkmark		
HADES	2019	Ag+Ag	1.58	1.4·10 ¹⁰	\checkmark		800 ³ _A H
STAR FxT	2018	Au+Au	2.9	3·10 ⁸		10 ⁴ Ξ ⁻	10 ⁴ ³ _Λ Η, 6·10 ³ ⁴ _Λ Η,
STAR FxT	2021 planned	Au+Au	2.9	2·10 ⁹		7·10⁴Ξ⁻, Ω⁻?	7·10 ⁴ ³ _A H, 4·10 ⁴ ⁴ _A H, ⁵ _A He, ⁷ _A Li, ⁷ _A He, ?
BM@N	simulated	Au+Au	3.8	2·10 ¹⁰		$5 \cdot 10^{6} \equiv^{-1}$ Expected: $10^{5} \Omega^{-1}$ $3 \cdot 10^{4}$ anti-Λ $5 \cdot 10^{2} \Omega^{+1}$	10 ⁶ ${}^{3}_{\Lambda}$ H, ${}^{4}_{\Lambda}$ H, ${}^{5}_{\Lambda}$ He, ${}^{7}_{\Lambda}$ Li, ${}^{7}_{\Lambda}$ He, Expected: 10 ² ${}^{5}_{\Lambda\Lambda}$ H

Reaction rates: HADES \approx 20 kHz, BM@N \approx 20 kHz, STAR FxT \approx 2 kHz

Energy Au beams: HADES: 0.2 - 1.25 A GeV, BM@N: 1.5 – 3.8 A GeV, STAR FxT: > 2.9 A GeV Conclusion:

HADES and BM@N are complementary , no cascade hyperons (Ξ^-, Ω^-) at HADES Statistics at BM@N \approx 70 times higher (Ξ^-) than at STAR FxT

Heavy ion program goals and observables

- 1. BM@N energy range is very promising (EOS, symmetry energy, hypernuclei)
- 2. Sensitive probes have to be measured multi-differential (p_T , y) and as function of beam energy (2 4 GeV/u)
- EOS for high-density symmetric matter:
 - Collective flow of protons and light fragments in Au+Au collisions: Centrality, event plane, identification of fragments
 - Ξ⁻ (dss) and Ω⁻ (sss) hyperons: Yields, spectra, p_T vs. y from Au+Au and C+C collisions
- > Symmetry energy at high baryon densities:
 - Particles with opposite isospin I₃=±1: $\Sigma^{+}(uus)/\Sigma^{+}(dds)$
 - Proton vs neutron collective flow (need highly granulated neutron detector)
- \succ Λ -N and Λ -NN interactions
 - Hypernuclei: Yields, lifetimes, masses of ³_AH, ⁴_AH, ⁵_AH, ⁴_AHe, ⁵_AHe, ...
- > Phase transition from hadronic to partonic matter:
 - Deconfinement: excitation function of $\Xi^{-}(dss)$, $\Omega^{-}(sss)$ (EOS observables)
 - Transition to scaling of collective flow of mesons / hyperons with number of quarks (partonic matter)
 - Critical endpoint: higher order moments of the proton multiplicity distribution

BM@N setup in experimental run with 3.2 AGeV Ar beam, 2018

Tracking GEM detectors only in upper part of magnet

Ar beam , 3.2 AGeV , Ar + Al,Cu,Sn \rightarrow X

Identification of π +, K+, p, t, He3, d/He4

THILING CONTRACTOR

Production of π^+ and K^+ mesons in 3.2 AGeV argon-nucleus interactions at the

BM@N

A hyperon signals in 4A GeV carbonnucleus interactions

BM@N

C beam 4 AGeV C + C,AI,Cu $\rightarrow \Lambda$ + X minimum bias Λ signal width 2.4 – 3 MeV

> C+C: 4.6M triggers C+AI: 5.3M triggers C+Cu: 5.3M triggers

- Yield of Λ in C+C, C+AI, C+ Cu minimum bias interactions in dependence on rapidity y* in c.m.s. transverse momentum p_T
- Comparison with predictions of DCM-QGSM, UrQMD, PHSD models

$1/p_T \cdot d^2 N/dp_T dy = A \cdot exp(-(m_T - m_A)/T), \quad m_T = \sqrt{(m_A^2 + p_T^2)}$

M.Kapishin

BM@N experiment

BM@N Experimental physics run in Xe beam with CsI target

BM@N: Estimated hyperon yields in Xe + Cs collisions

4 A GeV Xe+Cs collisions, multiplicities from PHSD model, Beam intensity 2.5·10⁵/s, DAQ rate 2.5·10³/s, accelerator duty factor 0.25

 $1.8 \cdot 10^9$ interactions $1.8 \cdot 10^{11}$ beam ions

Particle	E _{thr} NN GeV	M b<10 fm	٤ %	Yield/s b<10fm	Yield / 80 hours b<10 m	0	DCM-SMM
Λ	1.6	1.5	2	150	5·10 ⁷		x 0.75
[1]	3.7	2.3·10 ⁻²	0.5	0.55	2·10⁵		x 0.5
Ω	6.9	2.6·10 ⁻⁵	0.25	3.2.10-4	110	Τ	
Anti-A	7.1	1.5·10 ⁻⁵	0.5	3.7.10-4	130	/	

Xe + Csl run configuration of hybrid central tracker: 4 Forward Si + 7 GEM stations

DCM-SMM model: Xe + Sn , T_0 = 1.5 - 3.9 AGeV

4 Forward Si + 7 GEM

BM@N

BM@N experiment

BM@N detector preparation for heavy ion run

3 Silicon beam tracking detectors

Outer tracker: Cathode Strip Chambers \rightarrow 4 CSC of 106x106 cm2

Outer tracker group

Big CSC 220x145 cm2

BM@N experiment

FST group

Beam profile meter with Si detector and positioning mechanics

Silicon beam tracking detector in SRC setup

INR RAS group

Forward hodoscope in front of FHCAL

Forward Silicon Tracker for heavy ion run

Setup for FST tests with cosmic rays

FST modules in SRC setup

FST group

Assembled FST half station of 7 detectors

Cosmic ray X/Y profile of FST half station

► All 48 modules and 4 FST stations with 6, 10,14,18 modules are assembled, tested and installed

BM@N tracking detector installation for heavy ion run

Forward Si tracker detectors in front of GEM detectors /

GEM, **FST** groups + engineer group

GEM detectors on positioning mechanics in magnet

Carbon vacuum beam pipe

Vacuum boxes for beam detectors

Experimental run in 3.85 AGeV Xe beam with Csl (2%) target

BM@N Trigger detectors

Fragment detector FD

M.Kapishin

BM@N experiment

Vertex reconstruction

FST hit reconstruction: 4 Si stations

y cm

y cm

BM@N

GEM hit reconstruction: 7 stations + small **GEM** profile meter

GEM Hits

1

Raw online data: ToF-700 π +, p, d identification

Without dedicated ToF calibration

Velocity vs. Rigidity

Raw data reconstruction: $\Lambda \rightarrow p\pi^{-}$ and $K_{s}^{0} \rightarrow \pi^{+}\pi^{-}$ signals _{BM@N}

Need dedicated alignment of silicon and GEM tracking detectors 400k events

Centrality selection with Hodoscope and FHCal detectors

Color bins – 10% of number of events in each bin

Csl target, Z vertex cut (-1.5 < Z <1.5 cm), Ntr (vertex) >= 2 , single Xe ion

R&D High Granularity Neutron detector prototype

~12X₀

HGN prototype (15 layers, thickness > 2 λ_{int}): 1-st layer – VETO 2-6 layers – γ -detection part (Pb/Scint.)

7-15 layer – n-detection part (Cu/Scint.)

Prototype tested in Xe run

BM@N

Time resolution between two nearest layers for neutron detection in the BM@N Run. Single cell time resolution is better then 200ps

M.Kapishin

BM@N experiment

Trigger rates and DAQ capacity

3.8 AGeV: Spill ~2.2 s, cycle 12 s, up to 900k Xe ions per spill 3.0 AGeV: Spill ~3.5 s (up to 4 s), up to 1.3M ions per spill

v Spill nbr. 235164 16.01.2023 18:45:11

Statistics of recorded interactions The information is current as of February 07 2023 23:59.

Csl (2%): 484.58 MEvents

> Csl (2%): 52.59 MEvents

no target: 3.97 MEvents

15/01

01/02

5/12

10/10

Date

Beam parameters and setup at different stages of BM@N experiment

BM@N

Year	2016	2017 spring	2018 spring	2023	2025 and later
Beam	d(↑)	С	Ar	Xe	Bi
Max.inten sity / spill	0.5M	0.5M	0.5M	1M	1.5M
Trigger rate, spill	5k	5k	8k	10k	15k
Central tracker status	6 GEM half planes	6 GEM half planes	6 GEM half planes + 3 forward Si planes	7 GEM full planes + 4 forward Si planes	7 GEM full planes + forward Si + STS planes
Experiment al status	technical run	technical run	technical run+physics	stage1 physics	stage2 physics

Статус и ближайшие планы

- В эксперименте BM@N течении 2014-2022 реализована конфигурация установки с полным аксептансом детекторов
- Проведены экспериментальные сеансы в пучках дейтронов, ядер углерода и аргона
- Выполнен анализ рождения Л гиперонов в углерод-ядерных взаимодействиях при энергиях 4 и 4.5 АГэВ
- Подготовлена публикация по исследованию рождения π+ и К+ мезонов в аргон-ядерных взаимодействиях при энергии 3.2 АГэВ
- Проведен физический сеанс в пучке ядер ксенона с энергией 3.8 и 3 АГэВ на мишени Csl
- Ближайшие планы:

анализ рождения гиперонов, мезонов, легких ядерных фрагментов во взаимодействиях Xe+CsI;

определение классов центральности взаимодействий анализ коллективных потоков протонов, пионов, легких ядерных фрагментов при энергии 3 АГэВ поиск легких гиперядер _лН³, _лН⁴

 → Необходимы активные исследователи - анализаторы данных: опытные и молодые с перспективой защиты на данных, полученных в пучке ксенона
 → вклад НИИЯФ МГУ приветствуется

Планы по развитию и проведению физических сеансов

- В начале 2024 возможен физический сеанс в пучке ядер ксенона: скан по энергии пучка в диапазоне 2-3 АГэВ
- → та же конфигурация центрального трекера на основе кремниевых и GEM детекторов
- → полная замена внешних дрейфовых камер на катодные стриповые
- Физический сеанс в пучке ядер Ві возможен после 2024, зависит от реализации планов по коллайдеру NICA
- Для готовности к эксперименту в пучке Ві необходимо дальнейшее развитие центрального трекера: инсталляция дополнительных станций кремниевых детекторов → вклад НИИЯФ МГУ необходим
- Планируется ввод в действие 3х координатного нейтронного детектора высокой гранулярности для измерения выходов и коллективных потоков нейтронов

3D High Granularity Neutron detector

BM@N experiment

Thank you for attention!

M.Kapishin

BM@N: Estimated hyperon yields in Au+Au collisions

4 A GeV min. bias Au+Au collisions, multiplicities from statistical model, Beam intensity 2.5·10⁵/s , DAQ rate 2.5·10³/s, accelerator duty factor 0.25

 $1.8 \cdot 10^9$ interactions $1.8 \cdot 10^{11}$ beam ions

Particle	E _{thr} NN	М	М	3	Yield/s	Yield / 800
	GeV	central	m.bias	%	m. Bias	hours
						m. Bias
Ξ	3.7	1.10 ⁻¹	2.5·10 ⁻²	1	2.5	4.5·10 ⁵
Ω	6.9	2·10 ⁻³	5·10 ⁻⁴	1	5·10 ⁻²	0.9·10 ⁴
Anti- Λ	7.1	2·10 ⁻⁴	5·10 ⁻⁵	3	1.5·10 ⁻²	2700
Ξ +	9.0	6·10 ⁻⁵	1.5·10 ⁻⁵	1	1.5·10 ⁻³	270
Ω^+	12.7	1.10 ⁻⁵	2.5·10 ⁻⁶	1	2.5·10 ⁻⁴	45
					_^3H	0.9·10 ⁵

Simulation of hybrid central tracker for heavy ion runs: STS +GEM

QGSM model, Au+Au, $T_0 = 4 \text{ AGeV}$

BM@N

Hybrid STS + GEM tracker:
▶ 4 times increase in number of reconstructed ∧ hyperons

Azimuthal acceptance of the BM@N experiment

Centrality determination at BM@N

• Fit results are good both for MC-Glauber and Inverse Γ -fit methods

• Impact parameter distributions in centrality classes are well-reproduced

EOS of dense symmetric nuclear matter: The heavy-ion constraint

Grey area:

Data: transverse and elliptic proton flow (AGS) E895: C. Pinkenburg et al., Phys. Rev. Lett. 83 (1999) 1295 E877: P. Braun-Munzinger et al., Nucl. Phys. A638

(1998) 3c

Theory:

P. Danielewicz, R. Lacey, W.G. Lynch, Science 298 (2002) 1592

Yellow area:

KaoS: Subthreshold K⁺ production (GSI)
C. Sturm et al., Phys. Rev. Lett. 86 (2001) 39,
Theory: RQMD

Ch. Fuchs et al., Phys. Rev. Lett. 86 (2001) 1974 FOPI: Elliptic flow of protons and light fragments A. Le Fevre et al., Nucl. Phys. A945 (2016) 112

BM@N \rightarrow collective flow, hyperon production