Мощные ускорители непрерывного действия для комплекса радиационной обработки полимерных изделий

Прикладные ускорители

Area	Application	Beam	Accelerator	Beam ener- gy/MeV	Beam current/ mA	Number
Medical	Cancer therapy	е	linac	4-20	102	>14000
		р	cyclotron, synchrotron	250	10-6	60
		С	synchrotron	4800	10-7	10
	Radioisotope production	р	cyclotron	8-100	1	1600
Industrial	lon implantation	B, As, P	electrostatic	< 1	2	>11000
	lon beam analysis	p, He	electrostatic	<5	10-4	300
	Material processing	е	electrostatic, linac, Rhodatron	≤10	150	7500
	Sterilisation	е	electrostatic, linac, Rhodatron	≤ 10	10	3000
Security	X-ray screening of cargo	е	linac	4-10	?	100?
	Hydrodynamic testing	е	linear induction	10-20	1000	5

Applications of particle accelerators in Europe, EuCARD-2, 2017.

Модификация материалов

Преимущественное направление в использовании ускорителей для модификации материалов – радиационная сшивка полимеров. С ее помощью можно улучшить эксплуатационные характеристики продукции: механическую прочность, стойкость к тепловым, химическим воздействиям. Радиационная сшивка используется для обработки кабельной продукции,

термоусаживающихся пленок и трубок, при изготовлении шин, полиэтиленовых труб и т.д.

Для данной области нужны ускорители с большой производительностью (большой мощностью пучка).

Источники ионизирующего излучения для модификации материалов

- 1. Электронный пучок: ускорители электронов.
- высокая производительность
- может быть обеспечена хорошая однородность дозы по глубине при двусторонней обработке (зависит от облучаемой продукции)
- низкая проникающая способность (около 4 см в воде при 10 МэВ)
- 2. Тормозное излучение (ТИ): конверсия электронный пучок -> ТИ.
- высокая проникающая способность
- низкая производительность (конверсия ~7%)
- низкая однородность дозы по глубине
- максимальная энергия электронного пучка для конверсии 5 МэВ (в некоторых странах 7.5 МэВ)

3. Гамма источники.

- низкая производительность
- излучение во все стороны, нет выделенного направления
- нельзя выключить, излучение есть всегда

Тормозное излучение, однородность дозы

Utilization of X-ray stream

Conversion of scanned beam: (5 MeV; Ta target 0.8 mm; scan 100 cm; water layer 40 cm)

Z. Zimek, Comparison between eb, gamma, and x-rays facilities for radiation processing

Тормозное излучение, однородность дозы

Utilization of X-ray stream

Four passes irradiation system

Surface dose distribution: a – first pass, b – second pass with 180° rotation, c – total surface dose.

Z. Zimek, Comparison between eb, gamma, and x-rays facilities for radiation processing

Ускорители для модификации материалов

1. Ускорители прямого действия.

Часто используются для малых энергий пучка (сотни кэВ – 1-2 МэВ). Мощность пучка: десятки – сотни кВт. Высокий КПД, до 80-90%.

2. Резонаторные ускорители.

Основные модели, значительно различающиеся по принципу работы и параметрам пучка: ИЛУ (Новосибирск, ИЯФ СО РАН), Rhodotron (IBA).

3. Импульсные СВЧ ускорители.

Компактные, несложно получить энергии пучка вплоть до 10 МэВ. Максимальная мощность пучка – десятки кВт.

4. Ускорители непрерывного действия.

Низкий ускоряющий градиент по сравнению с импульсными ускорителями; высокая мощность пучка.

В последних трех случаях общий КПД ускорителя определяется в основном электронным КПД и КПД источника ВЧ или СВЧ. $\eta \approx \eta_e \eta_{RF}$

$$P_{RF} = P_b + P_w + P_{refl}, \eta_e = \frac{P_b}{P_{RF}}$$

Резонаторные ускорители. ИЛУ, Новосибирск.

Ускорение производится в одном резонаторе, работающем в метровом диапазоне длин волн (118 МГц для ИЛУ-6).

Мощность пучка – десятки кВт, энергия до 4 МэВ для ускорителей с одним резонатором.

ИЛУ-6, https://www.inp.nsk.su/~tararysh/accel/ilu_r.html

Резонаторные ускорители. Родотрон (IBA).

Мощность пучка – сотни кВт, энергия 5-10 МэВ.

Ускорители непрерывного действия

Двухсекционный ускоритель 1.2 МэВ/60 кВт

Ускоритель 1 МэВ/25 кВт

Основные параметры ускорителей

	Ускоритель 1	Ускоритель 2
Режим облучения	ТИ	ТИ / электроны
Энергия пучка, МэВ	5	5 / 5-10
Мощность пучка, кВт	200	200 / 50-100
Максимальный ток электронов, мА	40	40 / 10
Макс. ширина облучаемой продукции, м	1	1

Клистроны КУ-2.45-200, АО «НПП «Исток» им. Шокина»

Напряжение катода	-46 кВ
Выходная мощность	200 кВт
Макс. потребляемая мощность	450 кВт
Рабочая частота	2450 MГ⊔
Питание соленоида	18-30 A

Источники питания, НПП «ЛМ Инвертор»

Ферритовые вентили 200 кВт, «НПП «Феррит»

Pcp.=20 kBm

Первый запрос: два одинаковых ускорителя 5 МэВ/200 кВт

Первый вариант ускоряющей структуры

Несимметричный ввод мощности

Основные сложности

- 1. Высокая мощность пучка. Потери частиц на стенках структуры или на элементах транспортировки пучка могут привести к разрушению этих элементов.
- 2. Высокие СВЧ потери в стенках структур могут привести к неупругим деформациям резонаторов.
- 3. Фазирование структур друг относительно друга. Система СВЧ питания.
- 4. Неоднородность дозы в случае облучения тормозным излучением.
- 5. Нагрузка током пучка заметно отличается для режимов облучения электронами и тормозным излучением.

Расчеты динамики Пучок на входе в первую ускоряющую структуру

 $E_{gun}=15$ кэВ

 DISTANCE, m
 0.

 Es, MeV
 0.015

 PHs, degr.
 229.67

 NPARTICLES
 10000

0.
0.015
229.67
10000

Расчеты динамики Распределение поля, 5 МэВ/200 кВт

Расчеты динамики. Спектры пучка.

Охлаждение ускоряющих структур

< 70 кВт/м СВЧ потерь в стенках структуры: достаточно периферического охлаждения. От 70 (~2.2 МэВ/м) до 210 кВт/м (~3.5 МэВ/м): можно достичь периферическим охлаждением + каналами между ячейками.

J.-P. Labrie and H. Euteneuer, Power handling capability of water cooled CW linac structures, Nucl. Instrum. Methods A247, 281 (1986)

Расчеты динамики. СВЧ потери в стенках структур.

Расчеты динамики. Поперечный размер пучка.

Расчеты динамики. Потери частиц пучка на стенках.

Расчеты динамики. Фаза «равновесной» частицы.

Результаты расчетов Parmela+Superfish

	5 МэВ	10 МэВ
Ток пушки, мА	80	20
Энергия пика спектра E_0 , МэВ	5.0	10.0
Доля частиц, $E > 0.9E_0$	0.538	0.517
Доля частиц, $E < 0.9E_0$	0.076	0.076
Мощность частиц, $E > 0.9 E_0$, кВт	214.5	102.8
Мощность частиц, $E < 0.9 E_0$, кВт	22.4	10.1
Мощность потерь частиц, кВт	4.1	1
Мощность СВЧ потерь в стенках, кВт	114	272
Суммарная СВЧ мощность, кВт	354	385
Электронный КПД	0.61	0.27

Результаты по отдельным структурам

	Первая секция	Вторая секция 5МэВ/200кВт	Вторая секция 10МэВ/100кВт	Третья секция 10МэВ/100кВт
Длина, м	1.177	1.882		1.891
Прирост энергии, МэВ	1.98	3.03	4	4
Средний уск. градиент, МэВ/м	1.68	1.61	2.13	2.12
СВЧ потери в стенках, кВт	51.9	61.8	109.8	109.8
Затраты мощности на пучок, кВт	95.9	143.9	46.1	46.1
Суммарная СВЧ мощность, кВт	147.8	205.7	155.9	155.9
Эфф. шунтовое сопротивление, МОм	75.8	148.5	145.7	145.7
Оптимальный коэффициент связи β	2.85	3.33	1.42	1.42
Отраженная мощность при β=2.5, кВт		4.5	11.4	

Расположение третьей ускоряющей структуры: 1. На оси двух первых структур.

+ Простота конструкции.

+ Отсутствие дополнительных потерь низкоэнергетичной части спектра пучка.

Минусы связаны с прохождением пучка 5 МэВ/200 кВт через невозбужденную третью структуру:

- Силы пространственного заряда больше для пучка 5 МэВ/40 мА по сравнению с пучком 6-10 МэВ/10 мА. Для снижения потерь пучка на стенках третьей структуры нужны дополнительные линзы.

- Потери даже небольшой части пучка 5 МэВ/200 кВт на стенках третьей структуры приведут к ее разрушению.

- Пучок, пролетающий через третью структуру будет наводить в ней поле, приводящее к его замедлению. Если структура в резонансе:

$$\Delta E \approx -\frac{1}{1+\beta} I_b z_{eff} L \approx -1.67 \text{ M}$$
 эВ

Расположение третьей ускоряющей структуры: 2. Структура вынесена в сторону.

+ К третьей структуре поворачивается менее мощный пучок 6 МэВ/60 кВт. Мощность потерь низкоэнергетичной части спектра пучка на первом поворотном участке (несколько кВт) не является критической.

+ После первого поворотного участка отсеется низкоэнергетичный хвост, при дальнейшей транспортировке пучка потери будут минимальны.

- Более сложная в разработке и настройке система.
- Высокий радиационный фон в помещении с ускорителем.

- В случае каких-либо сбоев пучок 6 МэВ/60 кВт все еще достаточно разрушителен для ускоряющей структуры.

Равномерность дозы тормозного излучения

Спасибо за внимание!