

Поиск легких частиц тёмной материи в эксперименте DarkSide-50

Сергей Чашин НИИЯФ МГУ

Научный семинар ОЭПВАЯ, 28 сентября 2023, Москва

Тёмная материя

Оптическое и рентгеновское изображения кластера 1E0657 558. Кривыми показаны контуры плотности массы, восстановленные с помощью гравитационного линзирования

Карта флуктуаций реликтового излучения по данным космической обсерватории «Планк»

Ротационные кривые для галактики М33

Программа DarkSide

Серия экспериментов на базе аргона, направленных на прямой поиск частиц типа WIMP

- Направление поиска: частицы тёмной материи, распространенные в нашей галактике и рассеивающиеся на атомах аргона
- Детекторы: двухфазные (жидкость и газ) времяпроекционные камеры (ТРС).
- Расположение: Подземные (3800 метров водного эквивалента) залы Национальной лаборатории Гран-Сассо, Италия

DarkSide-10

2010-2012 Уменьшенный прототип Масса мишени 10 кг Проверка и отработка методов работы

Darkside-50

2013-2019 Масса мишени 46 кг Получение множества физических результатов (PRD98,102006, PRL121,081307,...)

2026-... Масса мишени 20 тонн Внедрение ряда новых технологий и приближение к «нейтринному полу»

Darkside-20k

Darkside-LowMass

Масса мишени 1 тонна Масса мишени ~300 тонн Поиск в области Достижение малых масс «нейтринного пола»

Эксперимент DarkSide-50

Эксперимент DarkSide-50

Двухфазная времяпроекционная камера (ТРС)

- Энергия отдачи→ сцинтилляционные фотоны и ионизационные *е*-
- Величина S1+S2 → калориметрия
- Определение частицы с помощью отбора по форме сигнала (PSD)
- Время дрейфа (между S1 и S2) → Z координата 28.09.2023

GAr

PSD и время дрейфа <u>не доступны</u>

Усиление в

позволяет фиксировать сигналы с

большей эффективностью → <u>ниже энергетический порог</u>

Механизм передачи энергии

Отбор по форме сигнала позволяет крайне эффективно отделять рассеяния на электронах (ER, фоновые взаимодействия с заряженными частицами) от рассеяний на ядрах

Предыдущие результаты поиска

Верхний предел на сечение взаимодействия тёмной материи с веществом по результатам эксперимента DarkSide-50 был опубликован в 2018 году

Каналы поиска: упругое рассеяние

Рассеяние на ядре(NR)

Область высоких масс DM: ~5 ГэВ/с² до 10 ТэВ/с²

Рассеяние на электроне (ER)

Область низких масс DM: ~30 МэB/с² до 5 ГэB/с²

Каналы поиска: неупругое рассеяние

Электронная оболочка следует за ядром рассеяния с запаздыванием, поэтому атом после взаимодействия DM с ядром может поляризоваться, что может привести к следующим эффектам:

Данные DarkSide-50

- Измерения за первые 9 месяцев не использовались, за это время распадался космогенный изотоп ³⁷Ar
- Набор данных состоит из измерений за 653.1 активных дней (12 тонн-дней) с UAr, набранных с 12.12.2015 по 24.02.2018 со средней частотой 1.54 Гц (примерно в 1.8 раз большая экспозиция относительно предыдущего анализа)
- В течение всего 26-месячного периода детектор продемонстрировал высокую стабильность:
- δT = ±0.02 K, δP < ±0.005 psi,
- δ(S1) ~0.4%, δ(S2) <1%
- Отсутствие значимых поломок и остановок (за исключением нескольких калибровочных кампаний)

Критерии отбора

Геометрия:

- Исключаются события вне 7 центральных ФЭУ для уменьшения влияния фонов от материалов камеры
- Учитывается влияние термического сжатия (~1%)

Множественные события:

- Используются данные о ширине и времени роста импульса для исключения возможности регистрации нескольких низкоэнергетических импульсов как одного импульса
- При энергиях выше 4е⁻ эффективность более 95%

^{83m}Kr Data

Фоновые α-частицы:

- Используется отношение S2/S1 для отделения сигналов от α-частиц, схожих с сигналами от взаимодействий с низкой энергией
- Данные сигналы
 характеризуются большой
 величиной S1 относительно S2

Критерии отбора

- После некоторых событий может быть зафиксировано несколько запаздывающих электронов: "Spurious Electrons (SE)"
- В случае DS-50 было установлено, что количество SE экспоненциально убывает в области между 5 мс и 50 мс
- Для обеспечения оптимального соотношения между сигналом и фоном ко всем событиям применяется следующий критерий отбора: ΔT > 20 мс

Применение критериев отбора

14

Калибровка

- Для определения соотношения между энергией отдачи ядра и числом образованных ионизационных электронов (Qy) использовались данные нейтронных калибровок (AmC и AmBe), а также данные экспериментов SCENE и ARIS
- Рассматривалось несколько теоретических моделей потери энергии ядра отдачи в веществе с сопутствующей ионизацией и рекомбинацией
- Была принята наиболее «консервативная» модель

Модель фона: ³⁹Ar и ⁸⁵Kr

ş

E

[50

svents

- Ограничения на величины активностей получены с использованием измерений высокоэнергетичных спектров и проверки на совпадения событий β+γ
- ⁸⁵Kr : 1.8 ± 0.1 мБк/кг
- ³⁹Ar : 0.7 ± 0.1 мБк/кг

Модель фона: внешние фотоны

- Для построения модели фотонного фона на основании измерений активности материалов ФЭУ и криостата было у прентгент произведено моделирование вклада данных материалов
- Криостат Это позволило оценить значения активностей данных **у и рентген** источников с точностью до 10%
- Расширение диапазона энергии, используемого в анализе, позволяет уточнить данные результаты апостериори

ΦЭУ

Модель фона для DarkSide-50

- Внутренний фон обусловлен
 ³⁹Ar и ⁸⁵Kr
- Внешний фон обусловлен примесями в материалах ФЭУ и криостата
- Запаздывающие электроны (SE)

Phys. Rev. D 107, 063001 (2023)

Стандартный поиск в области низких масс

Анализ по сигналам S1+S2, исследуются рассеяния на ядре с использованием PSD

Для увеличения чувствительности поиска в области низких масс были использованы:

- Расширенная экспозиция
- Усовершенствованные критерии отбора
- Более точная калибровка
- Улучшенное моделирование фона

Стандартный поиск в области низких масс

Phys. Rev. D 107, 063001 (2023)

Поиск с использованием только сигналов S2

- Использование в анализе только сигналов S2 позволяет увеличить чувствительность к низкоэнергетичным взаимодействиям (что критично для поиска в области низких масс), но PSD и реконструкция Z координаты становятся недоступными
- Сигналы S2, усиленные в GAr, позволяют зарегистрировать даже отдельные электроны

Поиск с использованием только сигналов S2

- Использование сигналов S1+S2 существенно повышает степень отбраковки фона, но устанавливает нижний порог энергии ~3–4 КэВ
- Использование только сигналов S2 позволяет добиться лучшего нижнего порога энергии ~0.6 кэВ, но накладывает высокие требования к точности моделей отклика детектора и фона

Рассеяние тёмной материи на электронах

Ряд моделей тёмной материи допускают возможность взаимодействия тёмной материи с электронами:

- Фермионная или скалярная бозонная лёгкая DM (LDM) взаимодействует посредством векторного медиатора → ионизация
- Псевдоскалярная DM (аксионоподобные частицы) или векторная бозонная DM (темные фотоны) поглощаются электронами в оболочках атома → моноэнергетический сигнал, величина которого зависит от массы частицы
- Стерильные нейтрино неупруго рассеиваются на связанных электронах → ионизация

Рассеяние тёмной материи на электронах

Самый строгий предел на сечение взаимодействия DM с электроном был установлен в области масс [16, 56] МэВ/с² для тяжелого медиатора и выше 80 МэВ/с² для легкого медиатора

Рассеяние тёмной материи на электронах

Для остальных моделей тёмной материи пределы устанавливались на параметры модели:

- Постоянная взаимодействия аксиона и электронад Ае
- Кинетическая постоянная смешивания фотона и тёмного фотона к
- Угол смешивания стерильного нейтрино |U_{e4}|²

Эффект Мигдала и тормозное излучение

- Эффект Мигдала (ME): запаздывающее движение электронных оболочек за ядром отдачи → поляризация атома → ионизация и испускание фотонов
- Тормозное излучение: ускоренное движение ядра отдачи в поле его электронных оболочек → испускание фотонов (слабый эффект)

Эффект Мигдала

Phys. Rev. Lett. 130, 101001 (2023)

Научный семинар ОЭПВАЯ

Эффект Мигдала

 Данный подход позволил установить наиболее строгий предел на сечение взаимодействия в диапазоне Мχ = [0.04, 3.6] ГэВ/с²

 Эффект полностью обусловлен эффектом Мигдала вплоть до 0.5 ГэВ/с²; также, предел в этом диапазоне масс не зависит от выбора модели флуктуации квенчинга

Phys. Rev. Lett. 130, 101001 (2023)

Заключение

- Детекторы с двухфазными времяпроекционными камерами на базе аргона, такие как DarkSide-50, способны существенно увеличить возможности поиска тёмной материи в области низких масс
- Усовершенствованные методы анализа и внедрение в анализ атомных эффектов, таких как эффект Мигдала, способствуют увеличение чувствительности поиска легких частиц тёмной материи
- Увеличение экспозиции критично для поиска тёмной материи в области низких масс, и это будет достигнуто в рамках экспериментов со значительно большей массой мишени, таких как DarkSide-LowMass и DarkSide-20k – следующих стадиях программы DarkSide