МИКРОСКОПИЧЕСКАЯ ВЕРСИЯ МОДЕЛИ ВЗАИМОДЕЙСТВУЮЩИХ БОЗОНОВ

А. Д. Ефимов ФТИ им. А.Ф. Иоффе, Санкт-Петербург.

Основа: Беляев, Зелевинский [1962, 1964] Соренсен [1966-73]

$$(a_{j}^{+}a_{j}^{+})^{(2)} \sim \sqrt{2 - 4y(j)}d^{+}$$

$$B_{\mu}^{+} = \sum_{12} \psi(\mu 12)a_{1}^{+}a_{2}^{+}; \quad A_{\mu\nu}^{+} = \sum_{123} \psi(\mu 13)\psi(\nu 23)a_{1}^{+}a_{2},$$

$$B_{\mu}^{+} \rightarrow \sum_{\alpha} x_{\mu\alpha}^{(1)}b_{\alpha}^{+} + \sum_{\alpha\beta\gamma} x_{\mu\alpha\beta\gamma}^{(3)}b_{\alpha}^{+}b_{\beta}^{+}b_{\gamma}^{+} + \dots,$$

$$A_{\mu\nu}^{+} \rightarrow y^{(0)}\delta_{J,0} + \sum_{\alpha\beta} y_{\mu\nu\alpha\beta}^{(2)}b_{\alpha}^{+}b_{\beta} + \dots.$$

Коэффициенты $x^{(i)}$, $y^{(i)}$ определяются из условия, что коммутационные соотношения фононных и бозонных операторов одинаковы. Это дает цепочку зацепляющихся нелинейных уравнений для коэффициентов разложения x, y, которые начинаются с $y^{(0)}$. Например, в случае только одного бозона, например, d^+ ,

$$x^{(1)} = \sqrt{2 - 2y^{(0)}}, \ y^{(2)} = -(x^{(3)2} + 2x^{(1)}x^{(3)}), \ \dots$$

Кишимото и Тамура [1971-81]

+ квадрупольное спаривание

+ разложение до б порядка в бозонном гамильтониане

+ вычисления доводились до 30 бозонов и до $I = 8^+$ $(SU(5) \subset R(5) \subset R(3))$

+ учет связи коллективных и неколлективных фононов $|B_{J=2}^+(D^+)^n>$ по теории возмущения в варианте Вигнера

Маршалек [1980] — Кишимото и Тамура [1983]

 + на бозоны необходимо отображать именно коллективные фононные моды, а неколлективные учитывать уже по теории возмущений

Tazaki, Takada, Kaneko, Sakata [1981]

+ доказана жесткая необходимость учета связи коллективных и неколлективных мод возбуждений (учет с $J = 2^+, 4^+$) Yamada, Takada, Tsukuma [1989] (учет с $J = 0^+, 2^+, 4^+$), но описание только до $I = 2^+, 4^+$, далее состояния не описываются.

+ Yamada, Tsukuma [1989] необходимость модификации QRPA ($\sum \varphi^2 \leq 0.05$)

$$[[D_{\mu 1}, D_{\mu 2}^{+}], D_{\mu 3}^{+}] = -\frac{1}{\Omega} (\delta_{\mu 1, \mu 2} D_{\mu 3}^{+} + \delta_{\mu 1, \mu 3} D_{\mu 2}^{+}),$$

$$\begin{split} D^+_{\mu} &= \frac{1}{\sqrt{2}} \sum_{1,2;\tau=n,p} [\psi_{12}a^+_1a^+_2 + \varphi_{12}a_{\bar{2}}a_{\bar{1}}](j_1j_2m_1m_2|2\mu)_{\tau} \\ &= \frac{1}{\sqrt{8}} \sum_{1,2;\tau=n,p;\eta=0;1} z^{(\eta)}_{12}[a^+_1a^+_2 + (-1)^{\eta}a_{\bar{2}}a_{\bar{1}}](j_1j_2m_1m_2|2\mu)_{\tau}; \\ &< [D_{\mu}, \ D^+_{\mu}] > = \sum_{1,2;\tau=n,p} (\psi^2_{12} - \varphi^2_{12}) = \sum_{1,2;\tau=n,p} z^{(0)}_{12}z^{(1)}_{12} = 1, \end{split}$$

которое позволяет найти выражение для Ω , и как оказывается, оно соответствует максимальному числу квадрупольных бозонов.

$$\begin{split} \frac{1}{\Omega} &= \frac{5}{3} \sum_{123} \frac{1}{2j_2 + 1} z_{12}^{(0)} z_{12}^{(1)} (z_{23}^{(1)2} + z_{23}^{(0)2}). \\ D_{\mu}^+ &\longrightarrow d_{\mu}^+ \sqrt{1 - \frac{\hat{n}_d}{\Omega}} = \frac{1}{\sqrt{\Omega}} d_{\mu}^+ \sqrt{\Omega - \hat{n}_d} = \frac{1}{\sqrt{\Omega}} d_{\mu}^+ s; \\ \frac{1}{\aleph_L} (D^+ D^+)^{(L)} &\longrightarrow \frac{1}{\sqrt{2}} (d^+ d^+)^{(L)} ss, \\ | > &\longrightarrow \frac{1}{\sqrt{\Omega!}} (s^+)^{\Omega} | \;); \quad |I > \longrightarrow |I \;), \end{split}$$

где | > – вакуум фононов, |*I* > – фононное состояние со спином *I*, |) – вакуум бозонов, |*I*) – бозонное коллективное состояние со спином *I*, при этом основное состояние |0) не является вакуум бозонов, т.е. |0) \neq |) и аналогично |0 > \neq |>. $H_{\text{IBM}} = \varepsilon_d \hat{n}_d + (k_1 d^+ \cdot d^+ ss + k_2 (d^+ d^+)^{(2)} \cdot ds + \text{H.c.})$

$$+\frac{1}{2}\sum_{L}C_{L}(d^{+}d^{+})^{(L)}\cdot(dd)^{(L)}; \ T_{\mu\mathsf{IBM}}^{(E2)}=e^{*}\left(d^{+}s+s^{+}d+\chi_{\mathrm{E2}}d^{+}d\right)_{\mu}^{(2)}$$

Как решать бозонную задачу

$$egin{aligned} &d^+_{\mu=2} & (1) \ &S_+ &\sim (d^+d^+)_{\mu=0} & \ &(d^+d^+)_{\mu=2} & \ &\Delta^+_3 &\sim (d^+d^+d^+)_{\mu=3} & \ &\Delta^+_0 &\sim (d^+d^+d^+)_{\mu=0} & \end{aligned}$$

$$\begin{aligned} |v \ \omega \ L >= (\Delta_3^+)^{\delta} \sum_{m=0}^{\omega} \sum_{n \ge m} a_n^m (d_2^+)^{\kappa_1 + 2n - 3m} (d^+ d^+)_2^{\kappa_2 - 2n + 3m} \\ \times (\Delta_0^+)^{\omega - m} S_+^n |0> \\ \kappa_1 &= L - v + 3\omega \\ \kappa_2 &= (2v - L - 6\omega - 3\delta)/2 \\ \delta &= (1 - (-1)^L)/2 \\ S_- |v \ \omega \ L >= 0 \end{aligned}$$

Вариационный метод определения энергий коллективных состояний

При построении минимизируемого функционала используется модельный гамильтониан, включающий среднее поле, монопольные и факторизованные квадрупольные частично-частичные и частично-дырочные силы. После стандартного (u, v) – преобразования Боголюбова, переходим от операторов частиц α_1 к операторам квазичастиц a_1 , $\alpha_1^+ = u_1 a_1^+ + v_1 a_{\overline{1}}$. После этого гамильтониан имеет вид

$$\tilde{H} = H - \sum_{\tau=\rho,n} \lambda_{\tau} \hat{N}_{\tau} = \Phi_{00} + H_{11} + H_{20+02} + V_{22} + V_{40+04} + V_{31+13},$$

 Φ_{00} — энергия квазичастичного вакуума.

 $\lambda_{
m p}, \ \lambda_{
m n}$ — протонный и нейтронный химические потенциалы, $h_{
m RPA} = H_{11} + \hat{V}_{22} + \hat{V}_{40+04},$

Вариационный метод определения энергий коллективных состояний

Параметры бозонного гамильтониана будем получать с помощью процедуры Марумори, когда сравниваются м.э. от квазичастичного гамильтониана по фононным функциям с м.э. от бозонного гамильтониана по бозонным функциям, рассматривая только минимальное число фононов и бозонов.

$$\begin{split} \varepsilon_{d}^{(0)} &= < |[D_{\mu}, [h_{RPA}, D_{\mu}^{+}]]| >; \\ 2 \Big(k_{1} \sqrt{\Omega(\Omega - 1)} \Big)^{(0)} &= \frac{1}{5} \sqrt{\frac{2}{\aleph_{0}}} \sum_{\mu} < |[[h_{RPA}, D_{\mu}^{+}], D_{\mu}^{+}]| >; \\ (k_{2} \sqrt{\Omega - 1})^{(0)} &= \frac{1}{\sqrt{2\aleph_{2}}} \sum_{m1,m2} < |[[[D_{M}, H_{20+02} + \hat{V}_{31+13}], D_{m1}^{+}], D_{m2}^{+}]| > \\ C_{L}^{(0)} &= \sum_{m1,m2,m3,m4} \frac{1}{\aleph_{L}} < |[D_{m2}, [D_{m1}, [[h_{RPA}, D_{m3}^{+}], D_{m4}^{+}]]]| > \\ \times (22m_{1}m_{2}|LM)(22m_{3}m_{4}|LM). \end{split}$$

Вариационный метод определения энергий коллективных состояний Квазичастичный гамильтониан только с учетом *D*-фононов удобно представить в виде:

$$\begin{split} \tilde{H} &\longrightarrow E_0^{(\mathrm{qp-ph})} + H_{\mathrm{IBM}}; \\ H_{\mathrm{IBM}} &= \varepsilon_d(\underline{\varepsilon_d^{(0)}}) \hat{n}_d + 2 \bigg(k_1(\underline{k_1^{(0)}}) \sqrt{\Omega(\Omega-1)} \bigg) \hat{P}_1 \\ &+ (k_2 \sqrt{\Omega-1}) \hat{P}_2 + \sum_L C_L \hat{C}_L, \end{split}$$
где $E_0^{(\mathrm{qp-ph})}$ есть энергия квазичастичного и фононного

вакуумов, а бозонные операторы имеют вид

$$\hat{n}_{d} = \sum_{\mu} d_{\mu}^{+} d_{\mu}; \quad \hat{P}_{1} = \frac{1}{2\sqrt{\Omega(\Omega-1)}} (d^{+} \cdot d^{+} ss + s^{+} s^{+} d \cdot d);$$

$$\hat{P}_{2} = \frac{1}{\sqrt{\Omega-1}} \left((d^{+} d^{+})^{(2)} \cdot ds + d^{+} s^{+} \cdot (dd)^{(2)} \right);$$

$$\hat{C}_{L} = \frac{1}{2} (d^{+} d^{+})^{(L)} \cdot (dd)^{(L)}.$$

Вариационный метод определения энергий коллективных состояний

$$n_d(I) = (I|\hat{n}_d|I), P_1(I) = (I|\hat{P}_1|I), P_2(I) = (I|\hat{P}_2|I), < C_L >_I = (I|\hat{C}_L|I).$$

 $E_0^{
m (qp-ph)}$ включает Φ_{00} и энергию корреляций фононного вакуума $E_0^{(B)}.$

$$\begin{split} E_{0(\lambda=2)}^{(B)} &= 5 \sum_{\tau 12} e_{12} \varphi_{12\tau}^2 + \sum_{\eta \tau 12} \frac{(-1)^{\eta}}{2} |G_{\tau}^{(2)}| P_{\tau}^{(\eta)} < 1 ||\widetilde{q}|| 2 >_{\tau} (-1)^{l_2} M_{12}^{(\eta)} \varphi_{12} \\ &+ \frac{1}{2} \sum_{\tau \tau' 12} |\kappa_{\tau \tau'}| Q_{\tau'} < 1 ||q|| 2 >_{\tau} (-1)^{l_2} L_{12}^{(0)} \varphi_{12}. \\ \text{Если использовать стандартный вариант КМСФ, то} \end{split}$$

$$E_0^{(B)}(\lambda=2) \longrightarrow 5/2\varepsilon_d,$$

1 – это нормировка *D*-фононов.

2 — Бозонные волновые функции представимы в виде

$$|I\rangle = \sum_{n_d, v, \omega_{\Delta}} \alpha_d(n_d, v, \omega_{\Delta}, I) \frac{1}{\sqrt{(\Omega - n_d)!}} (s^+)^{\Omega - n_d} | n_d, v, \omega_{\Delta}, I\rangle,$$

где $|n_d, v, \omega_{\Delta}, l\rangle$ есть нормированные функции квадрупольных бозонов, соответствующие неприводимому представлению группы SU(5) с квантовыми числами, соответствующими числу квадрупольных бозонов (n_d) , бозонному сениорити (v), то есть числу квадрупольных бозонов, не связанных в нулевой угловой момент, число троек v, связанных в нулевой угловой момент (ω_{Δ}) . В этом случае условие нормировки имеет вид

$$(I|I) = \sum_{\mathbf{n}_d, \mathbf{v}, \omega_{\Delta}} \alpha_d^2(\mathbf{n}_d, \mathbf{v}, \omega_{\Delta}, I) = 1,$$

 $3 - u_1^2 + v_1^2 = 1$ 4 — число частиц в среднем через $\lambda_{\tau}(I)$. 5 — Полное число бозонов Ω – неизменность и целостность

Таким образом, мы имеем три набора неизвестных величин: параметры преобразования Боголюбова (u, v), фононные амплитуды ψ , φ или $z^{(\eta)}$ и амплитуды $\{\alpha_D\}$, характеризующие фононный состав волновых функций |I>.

Такой способ определения этих величин приводит к тому, что все три набора параметров оказываются взаимосвязанными и зависящими от спина состояния *I*.

Возникает задача их взаимного согласования, что оказывается невозможным. Кроме того

$$y_j = 1 - n_j/(j + 1/2),$$

где n_j есть среднее число квазичастиц на уровне сферического поля j, y_j есть вероятность того, что уровень jlm свободен от квазичастиц, т.е. $0 < y_j < 1$.

Достичь самосогласования всех трех определяемых амплитуд $(z^{(\eta)}, u(v), \{\alpha_d\})$ оказывается невозможно как при использовании стандартного варианта КМСФ, где амплитуды φ часто оказываются значительными, так и в приближении ТД. Чтобы самосогласование стало возможным, необходимо оставаясь в рамках КМСФ, обеспечить малость амплитуд φ . Выполнение этого условия при фиксированных значениях силовых констант осуществляется введением слагаемого, регулирующего величину суммы квадратов φ :

$$\Phi_{\varphi} \sim \chi \Big(\sum_{\tau 12} \varphi_{12\tau}^2 + \frac{1}{2} \Big) \sim \chi \left(\sum_{\tau 12} (z_{12}^{(1)2} + z_{12}^{(0)2})_{\tau} \right).$$

 $0.03 < \sum arphi^2 < 0.05$

$$\begin{split} \Phi' &= -\frac{1}{5}\omega(n_d(l) + 5/2)\sum_{\mu} < |[D_{\mu}, D_{\mu}^+]| > -\sum_{\tau} \lambda_{\tau} N_{\tau} - \sum_{\tau,j} e_{\tau j}(u_j^2 + v_j^2)_{\tau} \\ &- E_I \sum_{n_d, v, \omega} \alpha_d^2(n_d, v, \omega, l) + \frac{6}{5} \frac{1}{\Omega(z^{(\eta)})} \omega'(n_d + 5/2) \\ &+ \frac{1}{2} \chi(n_d(l) + 5/2) \sum_{\tau 12} (z_{12}^{(1)2} + z_{12}^{(0)2})_{\tau} - \frac{1}{2} \sum_{\tau 1} ((2j_1 + 1)\eta_1 y_1)_{\tau} \\ &= -\omega(n_d(l) + 5/2) \sum_{\tau 12} (z_{12}^{(1)} z_{12}^{(0)})_{\tau} - \sum_{\tau} \lambda_{\tau} N_{\tau} - \sum_{\tau,j} e_{\tau j} (u_j^2 + v_j^2)_{\tau} - \\ &- E_I \sum_{n_d, v, \omega_{\Delta}} \alpha_d^2(n_d, v, \omega_{\Delta}, l) + 2\omega' \sum_{\tau 12} (z_{12}^{(1)2} z_{12}^{(0)} n_2^{(1)})_{\tau} \left(n_d(l) + 5/2 \right) \\ &+ \frac{1}{2} \chi(n_d(l) + 5/2) \sum_{\tau 12} (z_{12}^{(1)2} + z_{12}^{(0)2})_{\tau} - \frac{1}{2} \sum_{\tau 1} ((2j_1 + 1)\eta_1 y_1)_{\tau}, \end{split}$$

Связь коллективных и неколлективных состояний

Рис.: Диаграммы, иллюстрирующие члены $C_I^{(0)}$.

Однофононная энергия E_1 , с учетом рассматриваемых поправок, определяется из уравнения

$$\begin{split} \varepsilon_{d}^{(0)} &- E_{1} = R_{1}(E_{1}) + R_{2}(E_{1}), \\ R_{1}(E_{1}) &= \sum_{iJ} \frac{|v_{iJ}^{(1)}|^{2}}{\omega_{i} + \varepsilon_{d}^{(0)} - E_{1}}, \ R_{2}(E_{1}) = \sum_{i\lambda J} \frac{|v_{i\lambda J}^{(2)}|^{2}}{\omega_{i} + 2\varepsilon_{d}^{(0)} + C_{\lambda}^{(0)} - E_{1}}. \\ v_{i,J}^{(1)} &= < D|H|B_{J}^{+}D^{+} >, \ v_{i,\lambda,J}^{(2)} = < D|H|B_{J}^{+}(D^{+}D^{+})^{(\lambda)} >_{n}, \end{split}$$

Связь коллективных и неколлективных состояний

Рис.: Двухфононная энергия $E_2^{(L)}$ $2\varepsilon_{d}^{(0)} + C_{L}^{(0)} - E_{2}^{(L)} = R_{2}^{(L)}(E_{2}^{(L)}) + R_{4}^{(L)}(E_{2}^{(L)}) + R_{5}^{(L)}(E_{2}^{(L)}) + R_{6}^{(L)}(E_{2}^{(L)}),$ $R_{3}^{(L)}(E_{2}^{(L)}) = \sum_{i} \frac{|v_{iL}^{(3)}|^{2}}{\omega_{i} - E_{2}^{(L)}}, \quad R_{4}^{(L)}(E_{2}^{(L)}) = \sum_{i,l} \frac{|v_{iLJ}^{(4)}|^{2}}{\omega_{i} + \varepsilon_{-l}^{(0)} - E_{2}^{(L)}},$ $R_{5}^{(L)}(E_{2}^{(L)}) = \sum_{i > J} \frac{|v_{iL\lambda J}^{(5)}|^{2}}{\omega_{i} + 2\varepsilon_{J}^{(0)} + C_{\lambda}^{(0)} - E_{2}^{(L)}}, \ R_{6}^{(L)}(E_{2}^{(L)}) = \sum_{i > J} \frac{|v_{iL\lambda J}^{(6)}|^{2}}{\omega_{i} + E_{3\lambda}^{(0)} - E_{2}^{(L)}},$ $v_{i,l}^{(3)} = \langle (DD)_n^{(L)} | H | B_l^+ \rangle, \ v_{i,l}^{(4)} = \langle (DD)_n^{(L)} | H | (B_l^+ D^+)^{(L)} \rangle_{\perp n},$ $v_{i,l,\lambda,l}^{(5)} = \langle (DD)_{n}^{(L)} | H | B_{l}^{+} (D^{+}D^{+})_{n}^{(\lambda)} \rangle,$ $v_{i,L}^{(6)} = \langle (DD)_{n}^{(L)} | H | B_{L}^{+} (D^{+}D^{+}D^{+})_{n}^{(\lambda)} \rangle,$

Связь коллективных и неколлективных состояний

Рис.:

озонное описание пересечения полос

$$\Psi(I) = \psi_{c}(I) + \sum_{i1,c1} \alpha_{i1,c1} | (b_{i1}^{+}\psi_{c1})^{(I)} > + \dots,$$

$$H_{b} = H_{b1} + H_{b2}; H_{b1} = H_{IBM} + \sum_{i} \omega_{i} b_{i}^{+} b_{i} + V^{(1)}; H_{b2} = V^{(2)} + V^{(3)}.$$

$$V^{(1)} \sim \left(d^{+}d + \alpha d^{+}d^{+}\right)^{(J)} \cdot b_{J}; (d^{+}dd + \beta d^{+}d^{+}d)^{(J)} \cdot b_{J};$$

$$V^{(2)} \sim (d^{+}d^{+}d^{+})^{(J)} \cdot b_{J}; V^{(3)} \sim (b_{J1}^{+}b_{J2})^{(L)} \cdot \left(d^{+} + \alpha d^{+}d^{+} + \beta d^{+}d\right)^{(L)}$$

$$\int_{a}^{b} \int_{a}^{b} \int_$$

Б

Рис.: І раф. представление матр. элем. взаимод. *D*- и *B*-фононов. Волнистой линией обозначается фонон, тонкой линией квазичастица, вертикальной — взаимод. $V^{(1)}$ — (a), (b), (c), (d); $V^{(2)}$ — (e); $V^{(3)}$ — (f), (g), (h). Сверхтекучие свойства ядра при развитой коллективности

$$2(2j_{i}+1)y_{i}\left(\epsilon_{i}-\lambda\right)u_{i}v_{i}-\left((2j_{i}+1)y_{i}\widetilde{\Delta}+0.4n_{d}\bar{Q}_{\tau}q_{ii}\right)(u_{i}^{2}-v_{i}^{2})=\bar{a}_{i}u_{i}-\bar{b}_{i}v_{i},$$

$$\bar{a}_{i}(\bar{b}_{i})=0.4n_{d}\bar{Q}_{\tau}\sum_{1\neq i}q_{1i}u_{1}(v_{1}),\ q_{12}=<1||\frac{\partial V(r)}{\partial r}Y_{2}(\Omega)||2>(-1)^{l_{2}}z_{12}^{(1)},$$

$$Q_{\tau}=\sum_{12}q_{12}(u_{1}v_{2}+u_{2}v_{1})_{\tau},\ \bar{Q}_{\tau}=\sum_{\tau'}|\kappa_{\tau\tau'}|Q_{\tau'},\ \tilde{\Delta}=\frac{G}{2}\sum_{1}(2j_{1}+1)u_{1}v_{1}y_{1}.$$

$$e_{i}=(\epsilon_{i}-\lambda)(u_{i}^{2}-v_{i}^{2})+2\Delta u_{i}v_{i},\ \Delta=\frac{G}{2}\sum_{1}(2j_{1}+1)u_{1}v_{1}.$$

Возникает возможность расчета амплитуд u_i и v_i при полной блокировке одночастичного уровня, когда $y_i = 0$. Величины $y_j v_j^2$ являются вероятностью того, что нуклон на уровнях сферического среднего поля jlm участвует в образовании куперовской пары вне всякого условия.

Сверхтекучие свойства ядра при развитой коллективности

Асимптотически, по мере заполнения уровней квазичастицами, формирующими многофононное состояние, они выпадают из формирования сверхтекучести, но при этом сохранятся ненулевые значения параметров u_j и v_j , необходимые для сохранения частично-дырочного характера коллективных фононов, формирующих многофононное состояние.

Финальные параметры бозонного гамильтониана

В описанном подходе энергия квазичастично-фононного вакуума $E_0^{(\text{qp-ph})}$ и параметры H_{IBM} ($\tilde{\varepsilon}_d$, \tilde{k}_1 , k_2 , C_L) довольно сильно зависят от энергии возбуждения или спина *I*. Были перегруппированы члены в E_l (полная энергия) ε_d , k_1 , k_2 , C_L .

$$E_{I} = \overline{E}_{I} + (I|H_{\text{IBM}}(\tilde{\varepsilon}_{d}, \tilde{k}_{1}, k_{2}, C_{L})|I), \ \overline{E}_{I} = E_{I}^{(\text{q.p.})} + E_{0}^{(D)} + \sum_{\tau} (\lambda_{\tau} - \lambda_{0\tau})N_{\tau},$$

где $E_{I}^{(\text{q.p.})} = \Phi_{00}$ – энергия квазичастичного вакуума, $E_{0}^{(D)}$ –
корреляционная энергия, определяемая *D*-фононом. Внебозонная
энергия \overline{E}_{I} заметно растет с ростом спина. Для того, чтобы \overline{E}_{I}
оставалась неизменной для всех рассматриваемых состояний ядра,
т.е. $\overline{E}_{I} = \overline{E}_{0}$.

$$\begin{cases} \overline{E}_0 = \overline{E}_I - \xi_1 n_d - \xi_2 P_1, \ I \ge 2^+; \\ \varepsilon_d = \widetilde{\varepsilon}_d + \xi_1; \ 2k_1 \sqrt{\Omega(\Omega - 1)} = 2\widetilde{k}_1 \sqrt{\Omega(\Omega - 1)} + \xi_2, \end{cases}$$

Финальные параметры бозонного гамильтониана. Бозонный оператор

Е2-перехода

 $\xi_2 = (2\widetilde{k}_1\sqrt{\Omega(\Omega-1)})_{(I=0)} - (2\widetilde{k}_1\sqrt{\Omega(\Omega-1)})_{(I)},$ $\overline{E}_I = \overline{E}_{I=0},$ т.е. $\xi_1 n_d(I) = \overline{E}_I - \overline{E}_{I=0} - \xi_2 P_1(I).$ Полная энергия, отсчитанная от $\Sigma \lambda_{0\tau} N_{\tau}$ равна

$$E_I = \overline{E}_0 + (I|H_{\rm IBM}|I), \ \Delta E_I = E_I - E_0.$$

Рассмотрена совокупность процессов, определяющих параметры бозонного оператора квадрупольных переходов в представлении MBБ1. Учет этих процессов позволил при описании абсолютных значений B(E2) не вводить эффективные заряды. Проведенные численные оценки показали, что разумным оказалось ограничиться одним дополнительным членом к E2-оператору по отношению к тому, что традиционно используется в MBБ1. Используемый в расчетах оператор имеет вид

$$\hat{T}(E2) = e^* \left(d^+ s + s^+ d + \chi_{E2} d^+ d \right)^{(2)} + e_0^* \left(s^+ (d^+ d)^{(0)} d + d^+ (d^+ d)^{(0)} s \right)^{(2)}.$$

Перенормировка парам по гамильтониана МВБ *Е*_d, МэВ 0.50 2 3 0,45 1.6 0,40 *С*₀, МэВ $\varepsilon_d^{(0)}$ 1,4 - $C_{0}^{(0)}$ 0,35 0,30 1.2 -0.25 0,20 ¹²⁶Ba 1,0 -¹²⁶Ba 0,15 0,10 0,8 \mathcal{E}_{d} 3 0,05 0,6 0,00 -0,05 0,4 - $\tilde{\varepsilon}_d$ -0,10 C_0 2 -0,15 0.2 --0,20 -Рис.: Перен. и переопр. ε_d . **Рис.**: Перенор. *С*₀.

Результаты расчетов в самосогласованной схеме

озонное описание пересечения полос

$$\Psi(I) = \psi_{c}(I) + \sum_{i1,c1} \alpha_{i1,c1} | (b_{i1}^{+}\psi_{c1})^{(I)} > + \dots,$$

$$H_{b} = H_{b1} + H_{b2}; H_{b1} = H_{IBM} + \sum_{i} \omega_{i} b_{i}^{+} b_{i} + V^{(1)}; H_{b2} = V^{(2)} + V^{(3)}.$$

$$V^{(1)} \sim \left(d^{+}d + \alpha d^{+}d^{+}\right)^{(J)} \cdot b_{J}; (d^{+}dd + \beta d^{+}d^{+}d)^{(J)} \cdot b_{J};$$

$$V^{(2)} \sim (d^{+}d^{+}d^{+})^{(J)} \cdot b_{J}; V^{(3)} \sim (b_{J1}^{+}b_{J2})^{(L)} \cdot \left(d^{+} + \alpha d^{+}d^{+} + \beta d^{+}d\right)^{(L)}$$

$$\int_{a}^{b} \int_{a}^{b} \int_$$

Б

Рис.: І раф. представление матр. элем. взаимод. *D*- и *B*-фононов. Волнистой линией обозначается фонон, тонкой линией квазичастица, вертикальной — взаимод. $V^{(1)}$ — (a), (b), (c), (d); $V^{(2)}$ — (e); $V^{(3)}$ — (f), (g), (h).

Рис.: Энергии состояний ираст-полосы для $^{120}\rm Xe$ и в $^{124}\rm Xe.$ "IBM" соответствует без $V^{(2)}$ и $V^{(3)}.$

Рис.: Эффект. моменты инерции от $(\hbar\omega)^2$ для $^{120-124}$ Ва и для $^{126-130}$ Ва.

Рис.: Теор. и эксп. знач. энергий в изотопах Ва.

Бозонное описание пересечения полос 10000 6000 $B(E2; I \rightarrow I-2), e^2 \oplus M^4$ $B(E2; I \rightarrow I-2), e^2 \phi M^4$ th. exp 8000 ¹²⁸Bə ¹²⁶Ba exp 4000 6000 4000 2000 2000 0 F 10 12 14 16 2 6 10 14 16 Рис.: Теор. и эксп. зн. *B*(*E*2) для ¹²⁶Ва и ¹²⁸Ва. 6000 $B(E2; I \rightarrow I - 2), e^2 \Phi M^2$ - th 5000- 130 Ba exp (amp. 10_)² 1,0 -

Таблица: Параметры, используемые в расчетах для изотопов Ва.

A	G ⁽²⁾	κ_{nn}	κ_{np}	ζ
120	1.50	0.390	1.56	0.975
122	1.55	0.390	1.56	0.960
124	1.50	0.393	1.57	0.920
126	1.50	0.393	1.57	0.906
128	1.80	0.375	1.50	0.837
130	1.82	0.395	1.58	0.814