«Угловые распределения и выходы гамма-квантов в реакциях под действием нейтронов с энергией 14.1 МэВ (проект ТАНГРА)»

Н.А. Федоров

25.02.2021

Проект «TANGRA» (TAgged Neutrons and Gamma RAys)

Для исследования нейтрон-ядерных реакций в ЛНФ ОИЯИ был создан проект «TANGRA» (TAgged Neutrons and Gamma RAys). Цели проекта следующие:

- Создание/развитие базы данных по сечениям реакций взаимодействия нейтронов с энергией 14.1 МэВ с ядрами различных элементов и характеристическим γ-линиям для расширения применимости метода ММН для идентификации широкого круга сложных химических веществ.
- Разработка методики на базе ММН для исследования элементного состава грунтов и минералов с целью определения содержания в них легких элементов и редкоземельных элементов.
- Исследование (n, x γ) и, впоследствии, (n, 2n) реакций с помощью метода меченых нейтронов.
- Разработка алгоритмов и программ для анализа экспериментальной информации, поступающей с детекторов нейтронного и *γ*-излучений
- Тестирование различных теоретических подходов, описывающих изучаемые процессы

История

- Начало исследования нейтрон-гамма корреляций на ¹²C, ⁵⁶Fe и других ядрах (1957)
- Появление теоретических подходов для расчета угловых распределений γ-квантов в реакциях неупругого рассеяния нейтронов (1958, Satchler)
- В. Валковичем и др. предложен метод ассоциированных частиц, заключающийся в регистрации заряженных частиц, рождающихся в реакциях синтеза совместно с нейтроном (1969).
- Начало разработки промышленных установок для быстрого элементного анализа, использующих нейтронные генераторы (1970)
- Начало проекта EURITRACK, в рамках которого разрабатываются устройства, использующие ММН для поиска опасных веществ в грузовиках (2004)
- Создание установки nELBE для исследования нейтрон-ядерных реакций с испусканием γ-квантов в широком диапазоне энергий налетающего нейтрона 0,1-10 МэВ (2006)
- Организация компании «Диамант», разрабатывающей методы быстрого элементного анализа с помощью метода меченых нейтронов (2014)
- Создание проекта TANGRA (2014)

Проект «TANGRA» (TAgged Neutrons and Gamma RAys)

Проект «TANGRA» реализуется уже на протяжении 6 лет. За это время

- протестированы 3 конфигурации экспериментальной установки с различными типами детекторов
- проведены измерения угловых распределений *ү*-квантов, испущенных в реакциях (n, x*ү*) на 13 элементах для наиболее интенсивных переходов.
- проведены эксперименты по измерению выходов *γ*-квантов с использованием НРGе детектора на 19 элементах, ведется работа по получению сечений.

Метод меченых нейтронов

- $d + t \rightarrow \alpha + n + 17.6$ M
эB
- В СЦМ нейтрон и альфа-частица разлетаются в противоположные стороны.
- Для регистрации α-частиц с энергией 3.5 МэВ используется 64-х пиксельный кремниевый детектор с размером пикселя 6×6 мм. Регистрация α-частицы позволяет определить направление вылета нейтрона.

Конфигурации экспериментальных установок

Протестированные конфигурации экспериментальных установок (слева направо: NaI(R=450мм), BGO(R=750мм), HPGe);

Накопление данных

Все сигналы с детекторов оцифровываются и сохраняются на жестком диске для последующего анализа. Для оцифровки используются 2 типа АЦП:

ADCM 32/64

- частота дискретизации: 100МГц
- макс. скорость счета: < 10⁵ соб/с, недостаточно для счета нейтронов
- использовался с детекторами NaI и BGO

ЦРС 6/32

- частота дискретизации: 200МГц
- макс. скорость счета: 10⁵ соб/с, позволяет подсчитывать нейтроны
- использовался с детектором HPGe

Постановка эксперимента

В мишеней качестве в «Ромашкой» экспериментах с блоки использовались размерами $10 \times 10 \times 5$ см³, остальных экспериментах в были блоки использованы либо твердых веществ, ИЗ коробочки ИЗ апюминиевой фольги, заполненные порошками. На фото:

- 1. нейтронный генератор
- 2. образец
- 3. держатель образца
- 4. держатель генератор
- 5. ВGО детектор
- 6. HPGe детектор

Анализ временных спектров

Сцинтилляторы обладают хорошим временным разрешением, поэтому возможно провести разделение событий, соответствующим реакциям в образце и вне его. Пик 1 соответствует γ , родившимся в коллиматоре/корпусе и подставке генератора, 2- γ из образца, 3-нейтроны, попавшие в детектор. Увеличенный R детекторной системы в случае BGO улучшает это разделение. Временное разрешение HPGe недостаточно для такого разделения, и процедура выделения событий из образца несколько отличается.

Анализ временных спектров (Сцинтилляторы)

Выделение событий, соответствующим реакциям в образце, существенно уменьшает уровень фона, и, кроме того, удаляет фоновые пики. Полный спектр и спектр событий в окне показаны слева. Видно, что соотношение пик/подложка для 12 С существенно выше на спектре в окне. Также, в окне отсутствуют события от 16 О, вызываемые нейтронами, попавшими в детектор.

Анализ энергетических спектров (Сцинтилляторы)

Для анализа спектров со сцинт. детекторов используется специализированная функция отклика (ФО), учитывающая физические процессы, происходящие в детекторе. В настоящее время используется ФО, состоящая из 7 компонент, из которых 6 зависит от самого сцинтиллятора, а седьмая (т.н. "внешний комптон") зависит от окружения.

Анализ энергетических спектров (Сцинтилляторы)

Пример применения ФО для анализа эксперимента на железе: пик 1 соответствует 846.8 кэВ, 2 -1238.3, пик 3 сформирован тремя линиями: 1289.5, 1303.4, 1316.4 кэВ

Хорошее энергетическое разрешение позволяет различать фоновые и полезные пики на спектрах по энергии и наблюдать значительно менее интенсивные γ -переходы *a*); временное разрешение НРGе детектора существенно хуже, чем у сцинтилляторов, и разделение событий от *n* и γ по времени пролета становится невозможным (ToF спектр δ). Также остается возможность выделения событий, произошедших в окружающей среде, т.к. их временное распределение изотропно.

В силу особенностей сбора заряда в HPGe, временное разрешение и положение пика совпадений зависят от энергии регистрируемого γ -кванта, поэтому для построения спектров в окрестности пика совпадений выбирались энергетические окна *a*), внутри которых определялись положение *б*) и ширина пика совпадений *в*), которые затем аппроксимировались и использовались для построения спектров событий в образце.

Линией показана граница выбранного временного окна. События внутри окна, в основном, соответствуют реакциям в образце, вне окна-реакциям в окружающих предметах.

Использование временных окон позволяет отсеять значительное число фоновых γ -квантов, испущенных в нейтрон-ядерных реакциях в окружающей среде, тем не менее, внутри временного окна присутствуют следы фоновых пиков, которые необходимо учитывать при аппроксимации.

Пример успешного вычитания антисовпадений, при котором пропадает фоновый пик *a*) (происхождение не установлено), и ситуация, когда фоновый пик от реакции 208 Pb(n, n') 208 Pb не может быть вычтен полностью δ),из-за того, что он образуется частично при попадании упруго рассеянных нейтронов в свинцовый коллиматор. Чистый спектр антисовпадений (зеленый) приведен для сравнения.

В нашем эксперименте использовались крупные образцы, поэтому коррекция на поглощение и рассеяние нейтронов необходима. Использование большого числа пучков сильно усложняет геометрию эксперимента и не позволяет рассчитать эти поправки аналитически, поэтому мы использовали Geant4 для проведения моделирования эксперимента. Кроме того, для проведения расчетов необходима информация о расположении меченых пучков, которая была получена с помощью отдельного эксперимента.

Измерение профиля меченых пучков

- Информация о пространственном распределении меченых пучков важна для корректной обработки экспериментальных данных.
- Для измерения профиля меченых пучков использовался кремниевый стриповый детектор заряженных частиц.
- Регистрация нейтронов производилась с помощью реакций 28 Si (n, α) и 28 Si(n, p).

Коррекция угловых распределений

Коррекция угловых распределений проводилась следующим образом: в Geant4 проводилось моделирование эксперимента, в процессе которого угловое распределение γ -квантов устанавливалось изотропным, в результате чего расчетное угловое распределение определялось исключительно поглощением и рассеянием в образце. Результатами этого расчета были площади фотопиков A_{ij} . Расчетная анизотропия $K_{ij} = \frac{A_{ij}}{\langle A_i \rangle}$ и есть искомая поправка, применяемая к экспериментальным данным (*a*))) как: $W_{ij} = \frac{W_{ij}}{K_{ij}}$, где W_{ij} -поправленная анизотропия (*b*))

Учет поглощения γ -квантов и рассеяния нейтронов в экспериментах с HPGe

В наших экспериментах с HPGe результатами являются выходы и сечения испускания γ -квантов. На измеряемые величины выходов влияют:

- Поглощение γ -квантов в веществе образца
- Распределение нейтронов, а следовательно, распределение точек излучения *γ*-квантов по образцу

Размер области, испускающей γ -кванты, соответствующей одному меченому пучку, составляет $\approx 13 \times 140 \times l$ мм (*l*-толщина образца по направлению пучка), она имеет трапециидальную форму с гауссовым распределением интенсивности по ширине, что делает затруднительным расчет поправок на поглощение аналитически. Для коррекции получаемых данных мы вводим величину ϵ :

$$\epsilon = \frac{A}{N_{\gamma}} \tag{1}$$

где A-расчетная площадь фотопика, N_{γ} -расчетное число испущенных γ -квантов, при этом получается, что в ϵ учитываются совместно поглощение γ , нейтронов и эффективность детектора.

Результаты для ⁵⁶Fe, угловое распределение

Измеренное угловое распределение для линии 846.8 кB a), 1238.3 кB b)

TANGRA-закрашенные точки

треугольники-А.Р. Dyagterev, Proceedings of the 4th All-Union Conference on Neutron Physics, Kiev 1977

квадраты-U. Abbondanno et al., J. Nucl. Energ. 27, 227 (1973)

выколотые точки-J. Lachkar et al., Nucl. Sci. Eng. 55, 168 (1974).

Результаты для ⁵⁶Fe (выход>5%)

E_{γ} ke this work	V ENDF	Reaction	Initial state $J_i^P(E_i, \text{keV})$	Final state $J_f^P(E_f, \text{keV})$	this work	Y_{γ} , % TALYS-1.9	[1]	[2]
$123.5(4)^*$ $126.0(4)^*$	$123.5 \\ 126.0$	56 Fe (n, p) 56 Mn 56 Fe (n, d) 55 Mn	5^+ (335.5) $\frac{7}{2}^-$ (125.9)	4^+ (212.0) $\frac{5}{2}^-$ (0)	6(1)	5.8		
211.9(2)	$212.0 \\ 212.0$	54 Fe $(n, p)^{54}$ Mn 56 Fe $(n, p)^{56}$ Mn	5^+ (368.2) 4^+ (212.2)	$4^+(156.3)$ $0^+(0)$	5.9(8)	4.81		
411.2(2)	411.9	$^{56}\mathrm{Fe}(n,2n)^{55}\mathrm{Fe}$	$\frac{1}{2}^{-}$ (411.4)	$\frac{3}{2}^{-}(0)$	5.3(7)	7.05	6.8(8)	
846.86(2)	846.8	56 Fe (n, n') 56 Fe 57 Fe $(n, 2n)$ 56 Fe	2+ (846.8)	0 ⁺ (0)	100	100	100	100
931.4(1)	931.3	${}^{56}\mathrm{Fe}(n,2n){}^{55}\mathrm{Fe}$	$\frac{5}{2}^{-}$ (931.3)	$\frac{3}{2}^{-}(0)$	12.0(8)	19.43	10.7(9)	15(5)
1038.1(2)	1037.8	$^{56}\mathrm{Fe}(n,n')^{56}\mathrm{Fe}$	4+ (3123.0)	4+ (2085.1)	8.2(8)	6.48	6.0(5)	10(2)
$1238.53(4)^*$	1238.3	56 Fe (n, n') 56 Fe 57 Fe $(n, 2n)$ 56 Fe	4 ⁺ (2085.1)	2 ⁺ (846.8)	43.8(1.1)	49.90	36(2)	46(5)
1304.0(1)*	1303.4	56 Fe (n, n') 56 Fe 57 Fe $(n, 2n)$ 56 Fe	6+ (3388.6)	4+ (2085.1)	9.2(6)	9.89	9.3(6)	10.1(1.5)
1316.0(2)	1316.4	56 Fe $(n, 2n)$ 55 Fe	$\frac{7}{2}^{-}$ (1316.5)	$\frac{3}{2}^{-}(0)$	5.6(5)	8.65	6.8(8)	7.4(1.2)
1810.7(2)	1810.8	56 Fe $(n, n'){}^{56}$ Fe 57 Fe $(n, 2n){}^{56}$ Fe	2+ (2657.6)	2+ (846.8)	6.7(5)	3.27	4.8(6)	7.7(1.2)

 Table 1: Параметры измеренных γ -переходов. Неразрешенные переходы помечены "*". Все ошибки

 статистические. Красным помечены линии, измеренные впервые. Синим помечены линии с выходами,

 отличающимися от расчитанных в TALYS более, чем на > 30%.

1: S. Simakov et al., INDC(CPP)-0413

2: R.O. Nelson et al., Report No.02-7167 (LA-UR-02-7167)

Результаты для ⁵⁶Fe (выход<5%)

E_{γ} ket this work	V ENDF	Reaction	Initial state $J_i^P(E_i, \text{keV})$	Final state $J_f^P(E_f, \text{keV})$	this work	$Y_{\gamma}, \%$ TALYS-1.9	[1]	[2]
335.7(5)	335.5	${}^{56}\mathrm{Fe}(n,p){}^{56}\mathrm{Mn}$	3 ⁺ (341.0)	2^+ (26.6)	2.2(8)	1.04		
477.4(5)	477.2	$^{56}\mathrm{Fe}(n,2n)^{55}\mathrm{Fe}$	$\frac{7}{2}^{-}$ (1408.5)	$\frac{5}{2}^{-}$ (931.3)	4.6(7)	3.97	6.4(9)	
1289.7(5)	1289.6	${}^{56}\mathrm{Fe}(n,\alpha){}^{53}\mathrm{Cr}$	$\frac{7}{2}^{-}$ (1289.5)	$\frac{3}{2}^{-}(0)$	1.7(5)	1.68		
1408.3(3)*	$1408.1 \\ 1408.5$	54 Fe $(n, n'){}^{54}$ Fe 56 Fe $(n, 2n){}^{55}$ Fe	$2^+ (1408.2)$ $\frac{7}{2}^- (1408.5)$	$0^+ (0)$ $\frac{3}{2}^- (0)$	4.0(6)	6.50	3.0(6)	5.7(1.2)
1670.6(2)	1670.8	${}^{56}\mathrm{Fe}(n,n'){}^{56}\mathrm{Fe}$	6^+ (3755.6)	4^+ (2085.1)	4.5(5)	5.1	6.9(7)	6.3(1.2)
2114.2(6)	2113.1	56 Fe (n,n') 56 Fe	2+ (2960.0)	2+ (846.8)	2.5(7)	1.8	1.9(6)	4.5(1.2)
2524.2(8)	2523.1	56 Fe (n,n') 56 Fe	2+ (3370.0)	2+ (846.8)	2.5(7)	1.37	2.7(6)	
2600.3(5)	2598.5	56 Fe (n,n') 56 Fe	3+ (3445.3)	2 ⁺ (846.8)	3.4(5)	2.07	4.5(6)	

Table 2: Параметры измеренных γ -переходов. Неразрешенные переходы помечены "*". Все ошибки статистические. Красным помечены линии, измеренные впервые. Синим помечены линии с выходами, отличающимися от расчитанных в TALYS более, чем на > 30%.

1: S. Simakov et al., INDC(CPP)-0413

2: R.O. Nelson et al., Report No.02-7167 (LA-UR-02-7167)

^{nat}Fe(n, n' + 2n) ⁵⁶Fe(n, n')⁵⁶Fe Reference 785(48)621(29)[1](Compilation) 333(60) [1,2] 521(45)[1,3] 535(10)TANGRA(Very preliminary) 621.92 656.94TALYS-1.9 663(70)[4] 1280(270) [1,5]

Table 3: Измеренные сечения излучения линии 846.86 кэВ, мб

- 1: S. Simakov et al., INDC(CPP)-0413
- 2: F. Voss et. al. Proc. Int. Conf., Knoxville, 1971, p. 218, cited from[1]
- 3: I. Murata et. al. Int. Conf. on Nucl. Data for Sci. and Tech. (Mito, 1988), p. 275, cited from[1]
- 4: R.O. Nelson et al., Report No.02-7167 (LA-UR-02-7167)
- 5: D. O. Nellis et.al. Phys. Rev., 1970, v. 1, p. 8, cited from[1]

- На установке TANGRA с помощью MMH и детекторов различных типов возможно измерение выходов и угловых распределений γ -лучей, испускаемых в реакциях типа $(n, x\gamma)$ с точностью, не хуже, чем в других экспериментах на специализированных установках.
- Использование большого количества меченых пучков, с одной стороны, существенно усложняет обработку данных, а, с другой, позволяет существенно увеличить количество точек, в которых измерено угловое распределение.
- Получаемые в наших экспериментах результаты, в целом, соотносятся с литературными данными. Следует отметить, что опубликованные результаты других экспериментов могут расходиться в 3 раза между собой.

TOF PFT14 px3 27.0° 3500.0,cm

- Создание установки для измерения сечений излучения γ-линий и быстрого элементного анализа с использованием новых HPGe детекторов
- Проведение экспериментов по измерению угловых распределений рассеянных нейтронов; исследование реакций (n, 2n)

Спасибо за внимание!

Результаты для ⁵⁶Fe, угловое распределение

Table 4. Legandre polynomial approximation coefficients for the γ -quanta angular distributions obtained in this work in comparison with previous measurements.

E_{γ} keV	a_2	a_4	Reference
846.8	0.13(2)	0.02(2)	this work
	0.21(5)	0.07(3)	[32]
	0.36	-0.38	[33]
	0.09	-0.1	[34]
1238.3	0.24(4)	0.16(6)	this work
	0.32(8)	0.16(8)	[32]
	0.37	-0.23	[33]
	0.14	-0.1	[34]

32. A.P. Dyagterev, Yu.E. Kozyr, G.A. Prokopec, Proceedings of the 4th All-Union Conference on Neutron Physics, Kiev, 1977, edited by L.N. Usachev, Vol. 2 (Atominform, Moscow, 1977). 33. U. Abbandanno et al. J. Nucl. Energ. 27, 227 (1973). 34. J. Laghkar et al. Nucl. Sci. Eng. 55, 168.

Результаты для ⁵²Сг, угловое распределение

Измеренное угловое распределение для линии $E_{\gamma} = 935.5$ кэВ (а), 1333.7 кэВ (б), 1434.1 кэВ (в) и 1530.7 кэВ (г). Треугольники — данные из работы J. Nucl. Energy 27, 227 (1973), квадраты — Il Nuovo Cimento A 105, 965 (1992).

E_{γ} l	keV	Reaction	Initial state	Final state		$Y_{\gamma}, \%$	
this work	ENDF		$J_i^P(E_i, \text{keV})$	$J_f^P(E_f, \text{keV})$	this work	TALYS-1.9	[1]
126(3)	$124.45 \\ 125.08$	52 Cr (n, p) 52 V 52 Cr (n, p) 52 V	$1^+ (141.61.2)$ $4^+ (147.84)$	$2^+, 3^+ (17.155)$ $4^+, 5^+ (147.84)$	3.6(3)	2.89	-
321(3)	320.1	$^{52}\mathrm{Cr}(n,d)^{51}\mathrm{V}$	$\frac{5}{2}^+$ (320.1)	$\frac{7}{2}^{-}(0)$	3.2(4)	1.35	
648(3)	647.47	${}^{52}\mathrm{Cr}(n,n'){}^{52}\mathrm{Cr}$	4+ (3415.32)	4+ (2767.77)	9.8(4)	1.60	9.0(5)
747(9)	744.23	${}^{52}Cr(n, n'){}^{52}Cr$	6^+ (3113.86)	$4^+(2369.63)$	11.7(4)	8.34	9.0(5)
141(3)	749.07	${}^{52}Cr(n, 2n){}^{52}Cr$	$\frac{3}{2}^{+}$ (749.1)	$\frac{7}{2}^{+}(0)$	11.7(4)	5.98	5.4(3)
937(3)	935.54	${}^{52}\mathrm{Cr}(n,n'){}^{52}\mathrm{Cr}$	4^+ (2369.63)	2+ (1434.09)	32.3(5)	31.11	30(1)
1249(3)	1246.28	${}^{52}\mathrm{Cr}(n,n'){}^{52}\mathrm{Cr}$	5+ (3615.92)	4+ (2369.63)	5.9(4)	2.87	5.0(5)
1335(3)	1333.65	$^{52}\mathrm{Cr}(n,n')^{52}\mathrm{Cr}$	4+ (2767.77)	2+ (1434.09)	25.5(5)	21.42	26(1)
1436(3)	1434.07	$^{52}\mathrm{Cr}(n,n')^{52}\mathrm{Cr}$	2+ (1434.09)	0+ (0)	100	100	100
1533(3)	1530.67	${}^{52}\mathrm{Cr}(n,n'){}^{52}\mathrm{Cr}$	2+ (2964.79)	2+ (1434.09)	6.9(6)	4.32	5(4)
1728(3)	1727.53	$^{52}\mathrm{Cr}(n,n')^{52}\mathrm{Cr}$	2+ (3161.74)	2+ (1434.09)	5.0(4)	2.48	3.3(1)
2040(5)	2038	$^{52}\mathrm{Cr}(n,n')^{52}\mathrm{Cr}$	3+ (3472.25)	2+ (1434.09)	2.3(4)	1.55	
2339(5)	2337.44	${}^{52}\mathrm{Cr}(n,n'){}^{52}\mathrm{Cr}$	2^+ (3472.25)	2+ (1434.09)	1.8(4)	2.64	

Table 4: Параметры измеренных γ-переходов. Неразрешенные переходы помечены "*". Все ошибки статистические. Красным помечены линии, измеренные впервые. Синим помечены линии с выходами, отличающимися от расчитанных в TALYS более, чем на > 30%.

σ, mb	Reference
361(6)	TANGRA
783(30)	[1](Compilation)
442(65)	[1,2]
658(53)	[1,3]
695(28)	[1,4]
727(100)	[1,5]
757(56)	[1,6]

Table 5: Измеренные сечения излучения линии 1434.07 кэВ, мб

- 1: S. Simakov et al., INDC(CPP)-0413
- 2: I. Murata et. al. Int. Conf. on Nucl. Data for Sci. and Tech. (Mito, 1988), p. 275, cited from[1]
- 3: G. Grenier "Neutron Physics" Obninsk, 1974, v. 3, p. 215 4: S. Hlavac et. al. Nucl. Sci. and Eng. 1997, v. 125, p. 196
- 5: W. Breunlich et. al. Nucl. Phys., 1972, v. A184, p. 253
- 6: U. Abbondano et. al. J. of Nucl. Ener., 1973, v. 27, p. 227

Group

97 98

100 101 102 103

99

93

Np Pu Am Cm Bk Cf Es Fm Md No Lr

94 95 96

90 91

Th Pa