Методы машинного обучения в исследовании электромагнитных процессов рождения мезонов на протонах

(по материалам кандидатской диссертации)

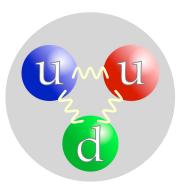
Голда Андрей Васильевич

Специальность: 1.3.15

Научный руководитель: к.ф.-м.н., с.н.с. Исупов Е.Л.

Московский государственный университет им. М.В. Ломоносова Физический факультет, кафедра общей ядерной физики

Москва 2025

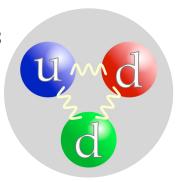

Физика сильного взаимодействия КХД

 $M_p \approx 938.27 \, \text{МэВ}$

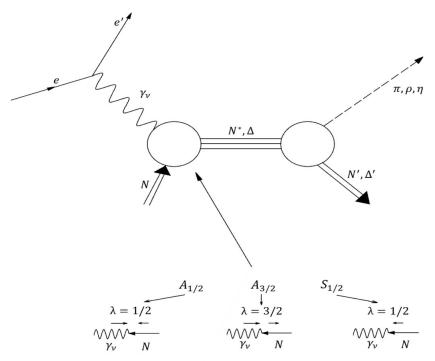
Сумма массы голых кварков:

$$2.16 + 2.16 + 4.67$$

 $= 8.99^{+1.45}_{-0.65} \text{ M} \ni \text{B}$

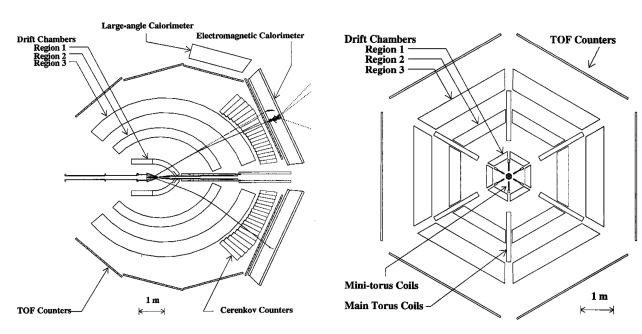


 $M_n \approx 939.56 \, \text{МэВ}$

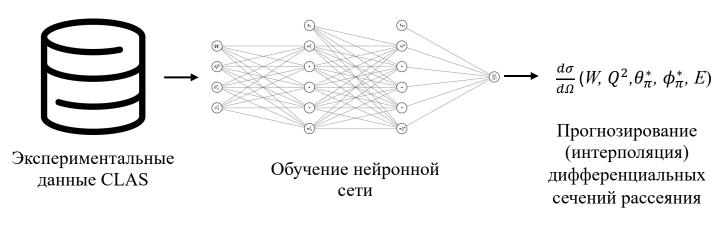

Сумма массы голых кварков:

$$4.67 + 4.67 + 2.16$$

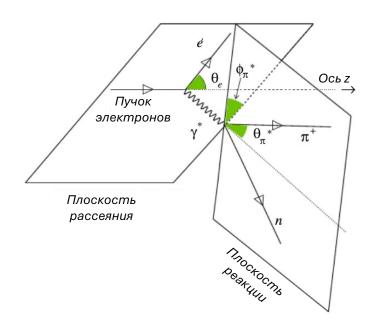
 $= 11.50^{+1.45}_{-0.60} \text{ M} \cdot \text{B}$



Электромагнитное возбуждение нуклонных резонансов


Nucleon Resonance Studies with CLAS12 -T.-S.H. Lee, et al. A New Research Proposal submitted to JLab PAC34

Данные по дифференциальным сечениям рассеяния в детекторе CLAS



The CEBAF Large Acceptance Spectrometer (CLAS). B.A. Mecking, et al. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, vol. 503, 3, 2023

Машинное обучение в прогнозировании дифференциальных сечений и структурных функций электророждения в резонансной области

Кинематика реакции $oldsymbol{\gamma}^* + oldsymbol{p} o oldsymbol{n} + oldsymbol{\pi}^+$

E — энергия налетающего пучка электронов

W - инвариантная масса системы конечных адронов

 Q^2 - виртуальность фотона

сечение рассеяния

 ϕ_{π}^* - угол между плоскостью реакции и плоскостью рассеяния

 $heta_\pi^*$ – полярный угол эмиссии пиона

 $\frac{d\sigma}{d\Omega}\left(W,\ Q^{2},\theta_{\pi}^{*},\ \phi_{\pi}^{*},\ E\right)$ — дифференциальное

Дифференциальное сечение рассеяния реакции электророждения одиночных пионов

$$\frac{d\sigma}{d\Omega}(E, Q^2, W, \cos\theta_{\pi}^*, \phi_{\pi}^*) =$$

$$= \frac{d\sigma_T}{d\Omega}(Q^2, W, \cos\theta_{\pi}^*) + \varepsilon \frac{d\sigma_L}{d\Omega}(Q^2, W, \cos\theta_{\pi}^*) +$$

$$+ \varepsilon \frac{d\sigma_{TT}}{d\Omega}(Q^2, W, \cos\theta_{\pi}^*) \cos 2\phi_{\pi}^* +$$

$$+ \sqrt{\varepsilon(1+\varepsilon)} \frac{d\sigma_{LT}}{d\Omega}(Q^2, W, \cos\theta_{\pi}^*) \cos \phi_{\pi}^* =$$

$$= A(E, Q^2, W, \cos\theta_{\pi}^*) + B(E, Q^2, W, \cos\theta_{\pi}^*) \cos 2\phi_{\pi}^* + C(E, Q^2, W, \cos\theta_{\pi}^*) \cos\phi_{\pi}^*$$

Структурные функции реакции электророждения одиночных пионов

$$A(E, Q^{2}, W, \cos\theta_{\pi}^{*}) = \frac{d\sigma_{T}}{d\Omega} (Q^{2}, W, \cos\theta_{\pi}^{*}) + \varepsilon \frac{d\sigma_{L}}{d\Omega} (Q^{2}, W, \cos\theta_{\pi}^{*})$$

$$B(E, Q^{2}, W, \cos\theta_{\pi}^{*}) = \varepsilon \frac{d\sigma_{TT}}{d\Omega} (Q^{2}, W, \cos\theta_{\pi}^{*})$$

$$C(E, Q^{2}, W, \cos\theta_{\pi}^{*}) = \sqrt{\varepsilon(1+\varepsilon)} \frac{d\sigma_{LT}}{d\Omega} (Q^{2}, W, \cos\theta_{\pi}^{*})$$

$$(2)$$

$$A(E,Q^2,W,\cos\theta_{\pi}^*) = \frac{1}{2\pi} \int_0^{2\pi} \frac{d\sigma(\phi_{\pi}^*)}{d\Omega} d\phi_{\pi}^*$$

(3)
$$B(E,Q^{2},W,\cos\theta_{\pi}^{*}) = \frac{1}{\pi} \int_{0}^{2\pi} \frac{d\sigma(\phi_{\pi}^{*})}{d\Omega} \cos 2\phi_{\pi}^{*} d\phi_{\pi}^{*},$$

$$C(E,Q^2,W,\cos\theta_{\pi}^*) = \frac{1}{\pi} \int_0^{2\pi} \frac{d\sigma(\phi_{\pi}^*)}{d\Omega} \cos\phi_{\pi}^* d\phi_{\pi}^*$$

CLAS Physics Database

Experimental Hall B

CLAS Physics Database

JLab | Search | Overview | Login | Edit | Register Search form for the data related to the CLAS physics

You are not logged in. Login. Select reaction: Beam: Target: Final state: any 🗸 🖺 polarization: polarization: polarization: any Select kinematics range: ☐ Search for average values ^[7] Q2min, [GeV]2: Q2max, [GeV]2: W_{min}, [GeV]: W_{max}, [GeV]: x_{min}: x_{max}: Eymin, [GeV]: Eymax, [GeV]: Select observables: dσ/dΩ (exclusive) dσ/dΩ (quasi-free) Quantity σ (exclusive) measured: sigma sigma (quasi-free) Additional search criteria: Spokespersons: Year: Experiment identifier(s): Text table options ☐ Show results as a plain text table ¹⁷ □ Show average value for W, Q² ranges □ Add W and Q² columns [-] Search Results Table Composition Available fields: Fields selected for output: Final state polarization Measurement identifier Final state Beam polarization Q2min >> Target O2max << Target polarization W min x min x max Up Quantity Ey min Experiment title Ey max Authors Year

А.В. Голда, НИИЯФ МГУ, Москва 2025

Limit: 100 V Clear form Start search Results in a new window

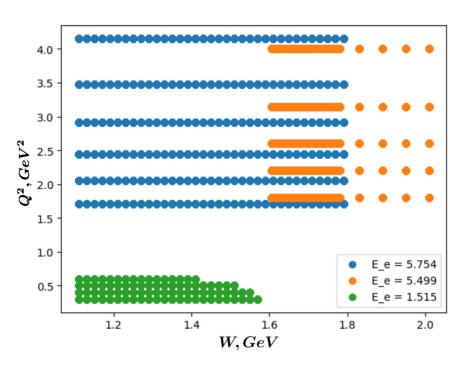
Данные CLAS по реакции $\gamma^* + p \rightarrow n + \pi^+$

	Ebeam	w	Q2	cos_theta	phi	dsigma_dOmega	error	id
0	1.515	1.11	0.3	0.991445	0.261799	15.3700	5.264366	E8M1
1	1.515	1.11	0.3	0.991445	0.785398	4.5110	1.743136	E8M1
2	1.515	1.11	0.3	0.991445	1.308997	4.4780	1.611260	E8M1
3	1.515	1.11	0.3	0.991445	1.832596	5.1360	1.523529	E8M1
4	1.515	1.11	0.3	0.991445	2.356194	5.0780	1.219442	E8M1
98022	5.499	2.01	4.0	0.975000	3.730641	0.1012	0.043165	E141M160
98023	5.499	2.01	4.0	0.975000	3.992441	0.1199	0.076638	E141M160
98024	5.499	2.01	4.0	0.975000	4.646939	0.1578	0.095391	E141M160
98025	5.499	2.01	4.0	0.975000	4.777839	0.2346	0.158557	E141M160
98026	5.499	2.01	4.0	0.975000	6.086836	0.1250	0.077753	E141M160

- 81968 строк после фильтрации
- 5 кинематических переменных

$$(W,\,Q^2,\theta_\pi^*,\,\phi_\pi^*,\,E)$$

• Дифференциальное сечение

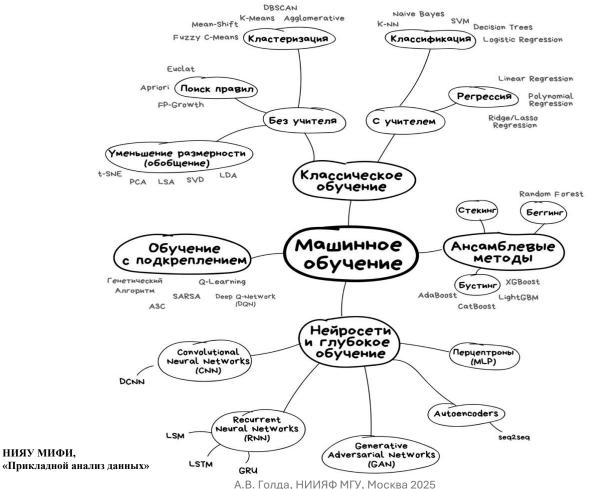

рассеяния $\frac{d\sigma}{d\Omega}$ с экспериментальной

ошибкой
$$\varepsilon\left(\frac{d\sigma}{d\Omega}\right)$$

CLAS Physics Database, URL:

https://clas.sinp.msu.ru/cgi-bin/jlab/db.cgi

Данные CLAS по реакции $\gamma^* + p \rightarrow n + \pi^+$


- E, $\Gamma \ni B \in \{5.754, 5.499, 1.515\}$
- *W*, Γ∍B ∈ [1.1, 2.0]
- Q^2 , $\Gamma \ni B^2 \in [0.3, 4.16]$
- θ_{π}^* , $pao \in [0, \pi]$
- ϕ_{π}^* , $pad \in [0,2\pi]$

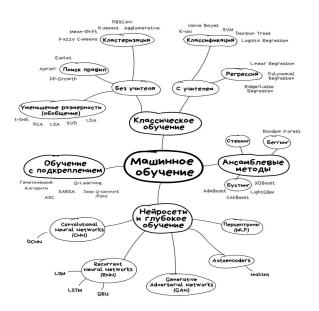
Искусственный интеллект

НИЯУ МИФИ, «Прикладной анализ данных»

Методы машинного обучения

нияу мифи,

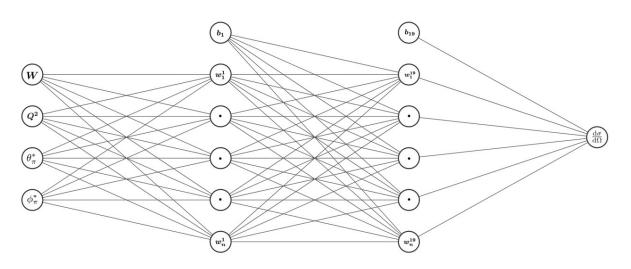
Метод обратного распространения ошибки


$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \qquad B = (W, Q^2, \theta_{\pi}^*, \phi_{\pi}^*, E)$$

$$F(A, B) = \frac{d\sigma}{d\Omega}$$

$$MAE(y) = \frac{1}{N} \sum_{i}^{i=N} |y_i^{experimental} - \hat{y_i}^{predicted}|$$
 (4)

Rumelhart, D., Hinton, G. & Williams, R. Learning representations by back-propagating errors. *Nature* 323, 533–536 (1986). https://doi.org/10.1038/323533a0


Методы машинного обучения

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

$$MAE(y) = \frac{1}{N} \sum_{i}^{i=N} |y_i^{experimental} - \hat{y_i}^{predicted}|$$

Архитектура нейронной сети для моделирования дифференциальных сечений рассеяния

Input Layer $\in \mathbb{R}^4$

19 Hidden Layers of variable length \in [20,2000] neurons

Output Layer $\in \mathbb{R}^1$

Валидация результатов моделирования дифференциальных сечений рассеяния

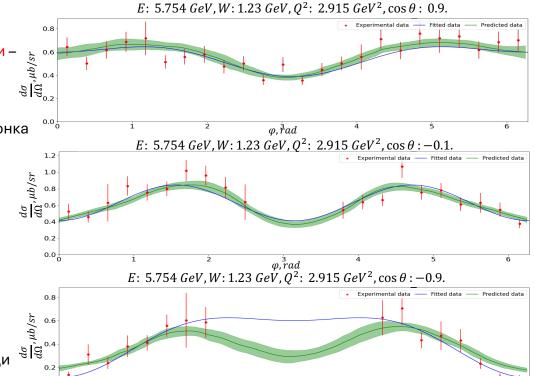
Среднее значение и экспериментальная ошибка определения дифференциальных сечений рассеяния в рассматриваемой реакции:

$$AVG\left(\frac{d\sigma}{d\Omega}\right) = 1.158 \pm 0.2 \text{ мкб/ср}$$

Значение средней абсолютной ошибки моделирования дифференциальных сечений рассеяния в рассматриваемой реакции:

$$MAE\left(\frac{d\sigma}{d\Omega}\right) = \mathbf{0.08} \text{ мкб/ср}$$

$$MAE(y) = \frac{1}{N} \sum_{i}^{i=N} |y_i^{experimental} - \hat{y_i}^{predicted}|$$
 (4)

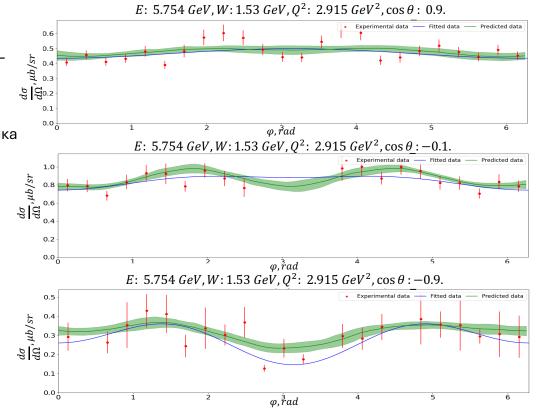

Валидация результатов моделирования дифференциальных сечений электророждения пиона на протоне $E = 5.754 \; \Gamma$ эВ; $Q^2 = 2.915 \; \Gamma$ эВ 2 - первый резонансный максимум

Красные точки с неопределенностями – экспериментальные данные CLAS

Синяя кривая – подгонка экспериментальных данные согласно выражению (1)

Зеленая кривая – моделирование дифференциальных сечений с помощью нейронной сети. Зеленая область неопределенности получена при помощи bootstrap техники

0.0

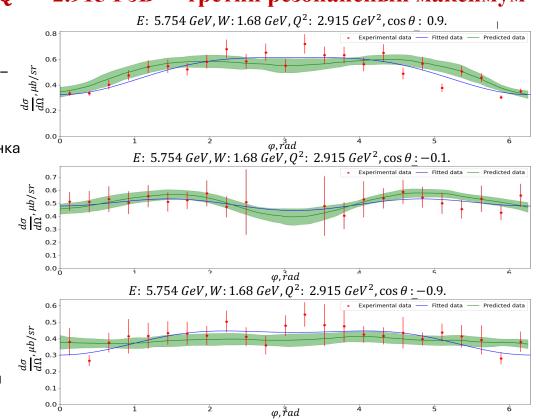

 φ , rad

Валидация результатов моделирования дифференциальных сечений электророждения пиона на протоне $E = 5.754 \; \Gamma$ эВ; $Q^2 = 2.915 \; \Gamma$ эВ 2 - второй резонансный максимум

Красные точки с неопределенностями – экспериментальные данные CLAS

Синяя кривая – подгонка экспериментальных данные согласно выражению (1)

Зеленая кривая – моделирование дифференциальных сечений с помощью нейронной сети. Зеленая область неопределенности получена при помощи bootstrap техники



Валидация результатов моделирования дифференциальных сечений электророждения пиона на протоне $E = 5.754 \; \Gamma$ эВ; $Q^2 = 2.915 \; \Gamma$ эВ 2 - третий резонансный максимум

Красные точки с неопределенностями – экспериментальные данные CLAS

Синяя кривая – подгонка экспериментальных данные согласно выражению (1)

Зеленая кривая – моделирование дифференциальных сечений с помощью нейронной сети. Зеленая область неопределенности получена при помощи bootstrap техники

Структурные функции реакции электророждения одиночных пионов

$$A(E, Q^{2}, W, \cos\theta_{\pi}^{*}) = \frac{d\sigma_{T}}{d\Omega} (Q^{2}, W, \cos\theta_{\pi}^{*}) + \varepsilon \frac{d\sigma_{L}}{d\Omega} (Q^{2}, W, \cos\theta_{\pi}^{*})$$

$$B(E, Q^{2}, W, \cos\theta_{\pi}^{*}) = \varepsilon \frac{d\sigma_{TT}}{d\Omega} (Q^{2}, W, \cos\theta_{\pi}^{*})$$

$$C(E, Q^{2}, W, \cos\theta_{\pi}^{*}) = \sqrt{\varepsilon(1+\varepsilon)} \frac{d\sigma_{LT}}{d\Omega} (Q^{2}, W, \cos\theta_{\pi}^{*})$$

$$(2)$$

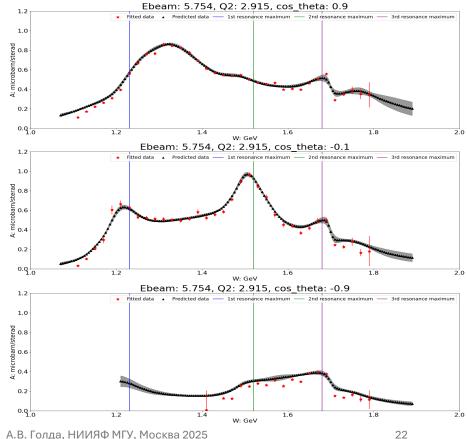
$$A(E,Q^2,W,\cos\theta_{\pi}^*) = \frac{1}{2\pi} \int_0^{2\pi} \frac{d\sigma(\phi_{\pi}^*)}{d\Omega} d\phi_{\pi}^*$$

(3)
$$B(E,Q^{2},W,\cos\theta_{\pi}^{*}) = \frac{1}{\pi} \int_{0}^{2\pi} \frac{d\sigma(\phi_{\pi}^{*})}{d\Omega} \cos 2\phi_{\pi}^{*} d\phi_{\pi}^{*},$$

$$C(E,Q^2,W,\cos\theta_{\pi}^*) = \frac{1}{\pi} \int_0^{2\pi} \frac{d\sigma(\phi_{\pi}^*)}{d\Omega} \cos\phi_{\pi}^* d\phi_{\pi}^*$$

Валидация результатов моделирования структурных функций

электророждения пиона на протоне $E = 5.754 \ \Gamma$ эB; $Q^2 = 2.915 \ \Gamma$ эB² - функция A


Красные точки с неопределенностями - структурные функции (3), полученные путем фитирования выражения (1)

Черная кривая – структурные функции, полученные путем моделирования дифференциальных сечений с помощью нейронной сети. Неопределенность получена при помощи bootstrap техники.

Синяя линия – первый резонансный максимум ($W = 1.23 \, \Gamma э B$)

Зеленая линия - второй резонансный максимум ($W = 1.52 \, \Gamma э B$)

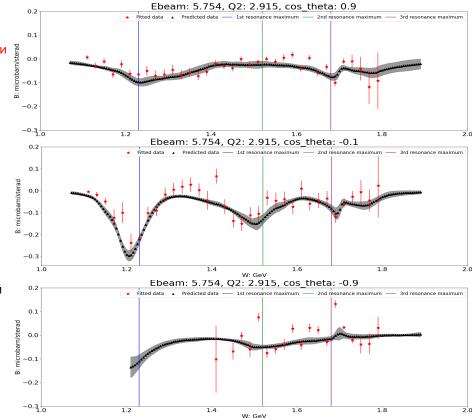
Фиолетовая линия - третий резонансный максимум $(W = 1.68 \,\Gamma)$

Валидация результатов моделирования структурных функций

электророждения пиона на протоне E = 5.754 Гар. $O^2 = 2.015$ Гар.

 $E = 5.754 \ \Gamma э B; \ Q^2 = 2.915 \ \Gamma э B^2 - функция B$

Красные точки с неопределенностями


– структурные функции (3), полученные путем фитирования выражения (1)

Черная кривая – структурные функции, полученные путем моделирования дифференциальных сечений с помощью нейронной сети. Неопределенность получена при помощи bootstrap техники.

Синяя линия – первый резонансный максимум ($W = 1.23 \, \Gamma$ эВ)

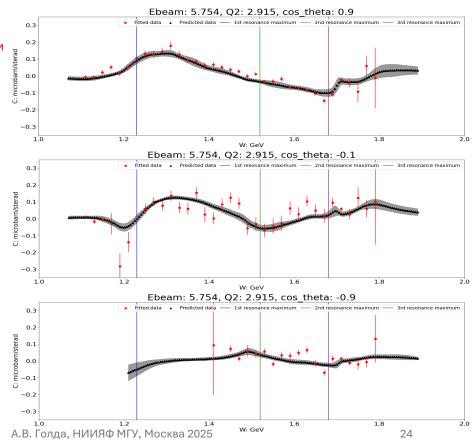
Зеленая линия – второй резонансный максимум ($W=1.52~\Gamma$ эВ)

Фиолетовая линия –третий резонансный максимум ($W=1.68~\Gamma$ эВ)

Валидация результатов моделирования структурных функций электророждения пиона на протоне

электророждения пиона на протоне $E = 5.754 \; \Gamma$ эВ; $Q^2 = 2.915 \; \Gamma$ эВ 2 - функция C

Красные точки с неопределенностями


– структурные функции (3), полученные путем фитирования выражения (1)

Черная кривая – структурные функции, полученные путем моделирования дифференциальных сечений с помощью нейронной сети. Неопределенность получена при помощи bootstrap техники.

Синяя линия – первый резонансный максимум ($W = 1.23 \, \Gamma$ эВ)

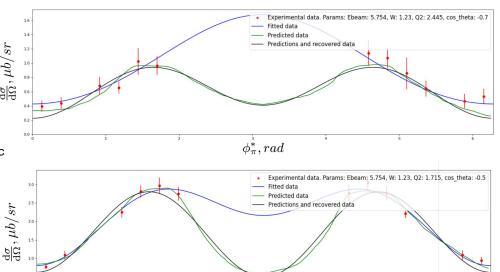
Зеленая линия – второй резонансный максимум ($W=1.52~\Gamma ext{pB}$)

Фиолетовая линия – третий резонансный максимум ($W=1.68~\Gamma$ эВ)

Сравнение классических подходов подгонки с методами машинного обучения

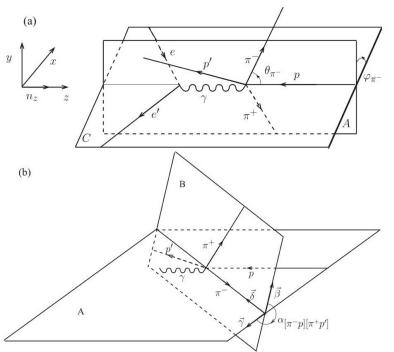
Красные точки с неопределенностями –

экспериментальные данные CLAS


Синяя кривая – подгонка экспериментальных данные согласно выражению (1)

Зеленая кривая -

моделирование дифференциальных сечений с помощью нейронной сети.


Черная кривая -

моделирование дифференциальных сечений помощью нейронной сети, которые затем были восстановлены при помощи подсчета структурных функц согласно (3) и пересчитаны обратно в дифференциальные сечения согласно (1)

 ϕ_{π}^* , rad

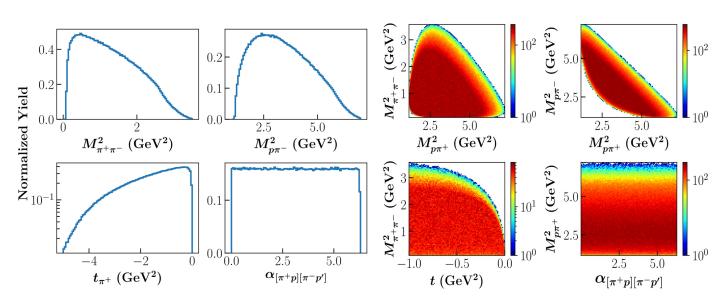
Кинематика реакции $oldsymbol{\gamma}^* + oldsymbol{p} o oldsymbol{\pi}^+ + oldsymbol{\pi}^- + oldsymbol{p}$

First results on nucleon resonance electroexcitation amplitudes from $ep \rightarrow e'\pi^+\pi^-p$ cross sections at W=1.4-1.7~GeV and $Q^2=2.0-5.0~GeV^2$, V.I. Mokeev, et al., Phys. Rev. C, 108, 025204

 $M_{\pi^+\pi^-}$ – инвариантная масса системы двух пионов

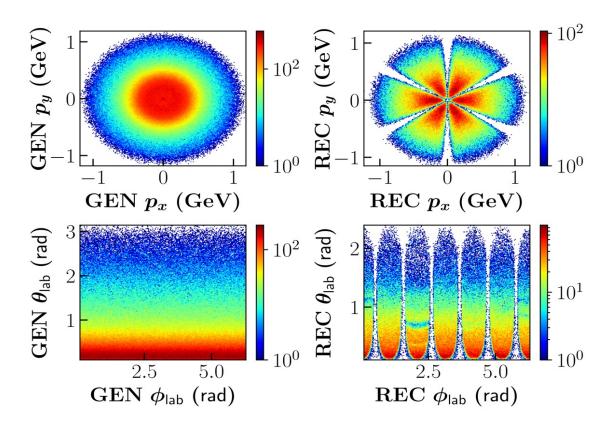
 $M_{p\pi}$ – – инвариантная масса системы протон-пион

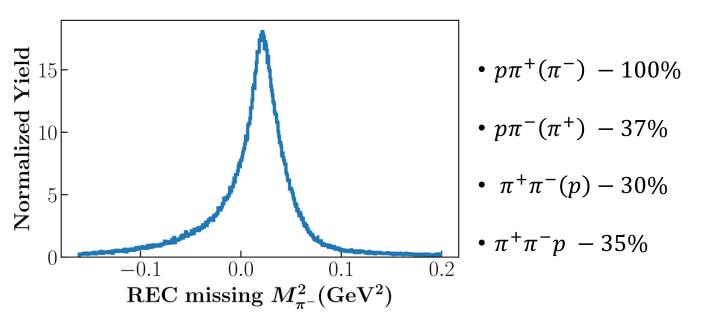
 θ_{π} +
– полярный угол эмиссии π^+
(с осью z, направленной вдоль импульса фотона)

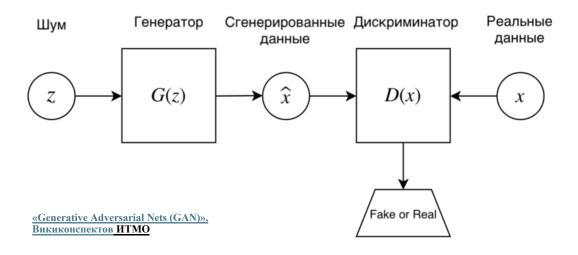

 $lpha_{[\pi^+p][\pi^-p']}$ - угол между плоскостью, содержащей исходный протон-мишень p и импульс π^+ , и плоскостью, содержащей импульсы π^- и рассеянного протона p' рассеяния

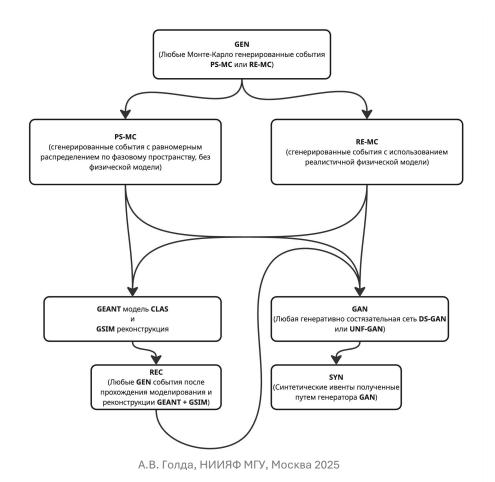
 ϕ — азимутальный угол π^- относительно плоскости, содержащей импульс фотона и вектор его поляризации

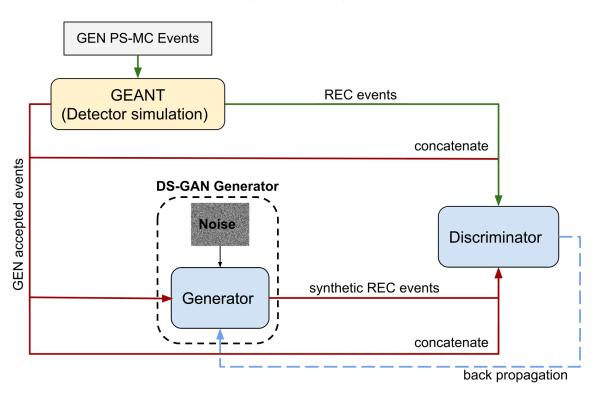
Проблема недостающей статистики

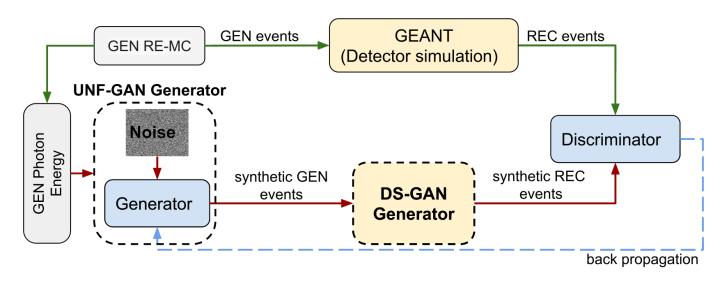

Генератор PS-MC (phase space Monte-Carlo)

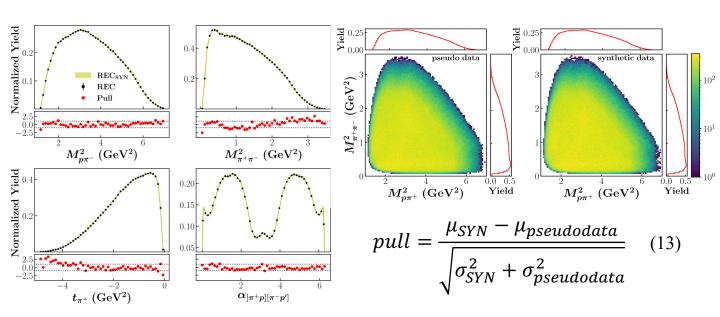

Генератор RE-MC (realistic Monte-Carlo)

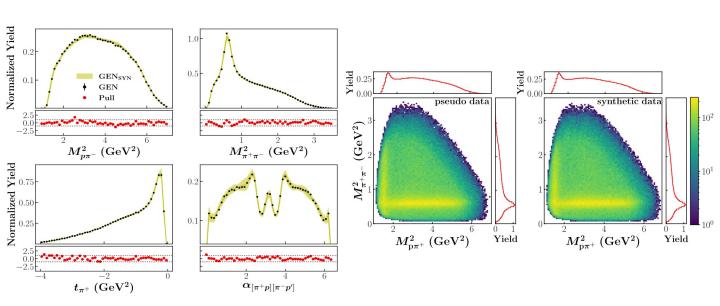

Моделирование детектора CLAS

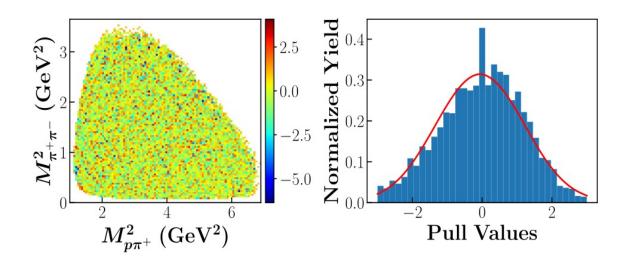

Моделирование детектора CLAS


Генеративно состязательные нейронные сети GAN


PS-MC, RE-MC, REC, GEN, SYN, GEANT, GSIM, DS, UNF, GAN


Генеративно состязательная нейронная сеть восстановления детекторных эффектов (DS-GAN)


Генеративно состязательная нейронная сеть анфолдинга детекторных эффектов (UNF-GAN)


Оценка качества моделирования процессов двухпионного фоторождения в эксклюзивных каналах (DS-GAN)

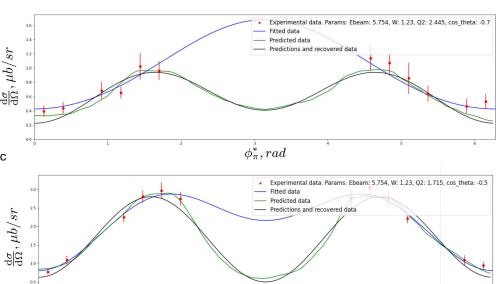
Оценка качества моделирования процессов двухпионного фоторождения в эксклюзивных каналах (UNF-GAN)

Оценка качества моделирования процессов двухпионного фоторождения в эксклюзивных каналах (UNF-GAN)

Сравнение классических подходов подгонки с методами машинного обучения

Красные точки с неопределенностями –

экспериментальные данные CLAS


Синяя кривая – подгонка экспериментальных данные согласно выражению (1)

Зеленая кривая –

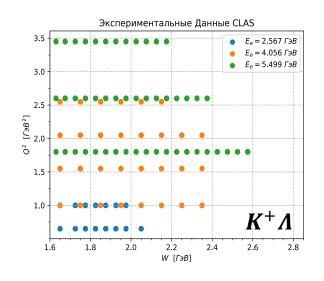
моделирование дифференциальных сечений с помощью нейронной сети.

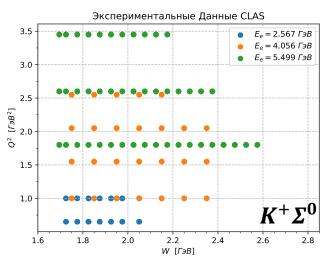
Черная кривая -

моделирование дифференциальных сечений помощью нейронной сети, которые затем были восстановлены при помощи подсчета структурных функц согласно (3) и пересчитаны обратно в дифференциальные сечения согласно (1)

 ϕ_{π}^* , rad

Экспериментальные данные CLAS по электровозбуждению нуклонов


Конечная адронная	W, ГэВ	Q^2 , Гэ B^2	Измеренные
система		100	наблюдаемые
$\pi^+ n$	1.1 - 1.38	0.16 - 0.36	$d\sigma/d\Omega$
	1.1 - 1.55	0.3 - 0.6	$d\sigma/d\Omega$
	1.1 - 1.7	1.7 - 4.5	$d\sigma/d\Omega,A_b$
	1.6 - 2.0	1.8 - 4.5	$d\sigma/d\Omega$
$\pi^0 p$	1.1 - 1.38	0.16 - 0.36	$d\sigma/d\Omega$
	1.1 - 1.68	0.4 - 1.8	$d\sigma/d\Omega,A_b,A_t,A_{bt}$
	1.1 - 1.39	3.0 - 6.0	$d\sigma/d\Omega$
ηp	1.5 - 2.3	0.2 - 3.1	$d\sigma/d\Omega$
$K^+\Lambda$	$M(K^+\Lambda)$ - 2.6	1.4 - 3.9	$d\sigma/d\Omega$
		0.7 - 5.4	P^0,P'
$K^+\Sigma^0$	$M(K^+\Sigma^0)$ - 2.6	1.4 - 3.9	$d\sigma/d\Omega$
		0.7 - 5.4	P'
$\pi^+\pi^-p$	1.3 - 1.6	0.2 - 0.6	9 одномерных
	1.4 - 2.1	0.5 - 1.5	дифференциальных
	1.4 - 2.0	2.0 - 5.0	сечений


 A_b — асимметрия пучка, A_t — асимметрия мишени,

 A_{bt} — двойная асимметрия пучок-мишень;

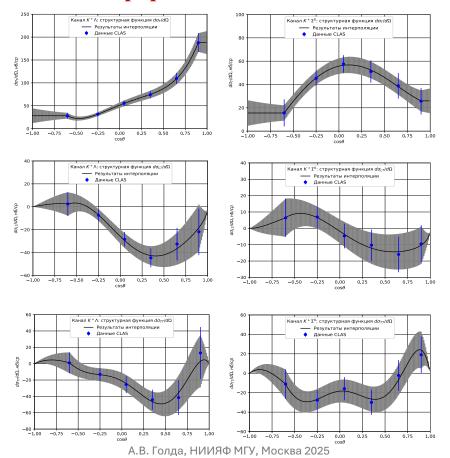
 P^{0}, P' — поляризации гиперона отдачи

Данные CLAS по реакции электророждения $K^+ \Lambda$ и $K^+ \Sigma^0$

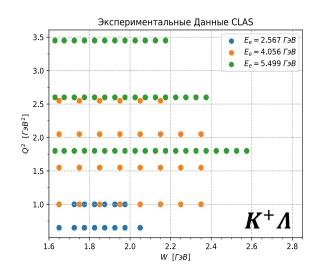
- E, $\Gamma \ni B \in \{2.567, 4.056, 5.499\}$
- *W*, Γ∋B ∈ [1.6, 2.6]
- Q^2 , $\Gamma \ni B^2 \in [0.6, 3.5]$

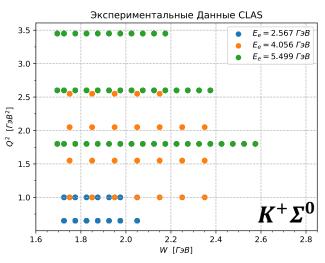
- θ_{π}^* , $pad \in [0, \pi]$
- ϕ_{π}^* , $pad \in [0,2\pi]$

Интерполяция эксклюзивных структурных функций электророждения $K^+ \Lambda$ и $K^+ \Sigma^0$


(5)

$$\frac{d\sigma_{T/L}}{d\Omega_K} = A_{T/L} \cdot P_0(\cos\theta_K^*) + B_{T/L} \cdot P_1(\cos\theta_K^*) + C_{T/L} \cdot P_2(\cos\theta_K^*) + D_{T/L} \cdot P_3(\cos\theta_K^*) + E_{T/L} \cdot P_4(\cos\theta_K^*),$$


$$\frac{d\sigma_{LT}}{d\Omega_K} = \sin\theta_K^* \left[A_{LT} \cdot P_0(\cos\theta_K^*) + B_{LT} \cdot P_1(\cos\theta_K^*) + C_{LT} \cdot P_2(\cos\theta_K^*) + D_{LT} \cdot P_3(\cos\theta_K^*) + E_{LT} \cdot P_4(\cos\theta_K^*) \right],$$


$$\frac{d\sigma_{TT}}{d\Omega_K} = sin^2 \, \theta_K^* \left[A_{TT} \cdot P_0(\cos\theta_K^*) + B_{TT} \cdot P_1(\cos\theta_K^*) + C_{TT} \cdot P_2(\cos\theta_K^*) + D_{TT} \cdot P_3(\cos\theta_K^*) + E_{TT} \cdot P_4(\cos\theta_K^*) \right]$$

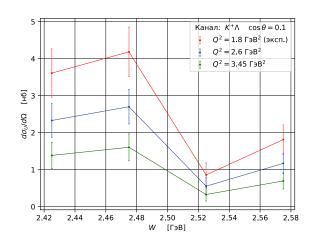
Интерполяция эксклюзивных структурных функций электророждения $K^+ \Lambda$ и $K^+ \Sigma^0$

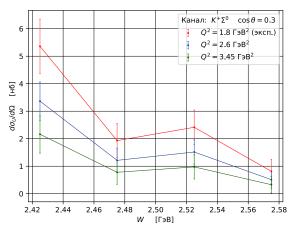
Данные CLAS по реакции электророждения $K^+ \Lambda$ и $K^+ \Sigma^0$

- E, $\Gamma \ni B \in \{2.567, 4.056, 5.499\}$
- *W*, Γ∋B ∈ [1.6, 2.6]
- Q^2 , $\Gamma \ni B^2 \in [0.6, 3.5]$

- θ_{π}^* , $pad \in [0, \pi]$
- ϕ_{π}^* , $pad \in [0,2\pi]$

Экстраполяция эксклюзивных структурных функций электророждения $K^+ \Lambda$ и $K^+ \Sigma^0$ по W и Q^2

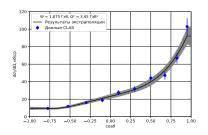

$$\forall Q^2, \frac{W_j(Q^2)}{W_{j+1}(Q^2)} = \frac{W_j(Q^2 = 1.8)}{W_{j+1}(Q^2 = 1.8)} = const$$
 (6)

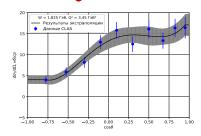

$$\frac{d\sigma_{i}}{d\Omega_{K}} \left(W_{j+1}, Q_{curr}^{2} \Gamma \ni B^{2}, cos(\theta_{K}^{*}) \right)$$

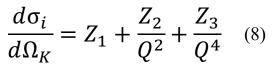
$$= \frac{d\sigma_{i}}{d\Omega_{K}} \left(W_{j+1}, Q^{2} = 1.8 \Gamma \ni B^{2}, cos(\theta_{K}^{*}) \right)$$

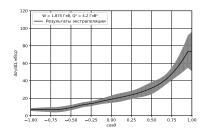
$$\times \frac{d\sigma_{i}}{d\Omega_{K}} \left(W_{j}, Q_{curr}^{2} \Gamma \ni B^{2}, cos(\theta_{K}^{*}) \right) : \frac{d\sigma_{i}}{d\Omega_{K}} \left(W_{j}, Q^{2} = 1.8 \Gamma \ni B^{2}, cos(\theta_{K}^{*}) \right)$$
(7)

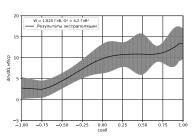
Экстраполяция эксклюзивных структурных функций электророждения $K^+ \Lambda$ и $K^+ \Sigma^0$ по W и Q^2

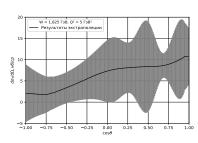





- E, $\Gamma \ni B \in [0, 5.5)$
- *W*, Γ∋B ∈ [2.40, 2.57]
- Q^2 , $\Gamma \ni B^2 \in [1.8, 3.5]$


- θ_{π}^{*} , рад $\in [0,\pi]$
- ϕ_{π}^{*} , рад $\in [0,2\pi]$


Экстраполяция эксклюзивных структурных функций электророждения $K^+ \Lambda$ и $K^+ \Sigma^0$ в области $3.45 < Q^2 < 5.00 \ \Gamma \ni B^2$

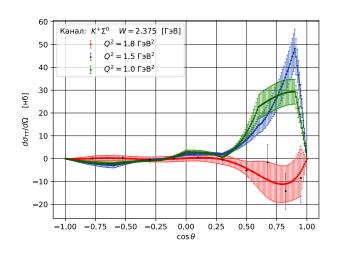


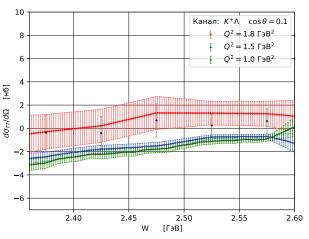
- E, $\Gamma \ni B \in [0, 5.5)$
- W, $\Gamma \ni B \in [M_K + M_Y, 2.65]$
- Q^2 , $\Gamma \ni B^2 \in [3.45, 5]$
- θ_{π}^{*} , рад $\in [0,\pi]$
- ϕ_{π}^{*} , рад $\in [0,2\pi]$

W = 1 875 FaB, O2 = 5 FaB2

Результаты экстралоления

Экстраполяция эксклюзивных структурных функций электророждения $K^+ \Lambda$ и $K^+ \Sigma^0$ в области $Q^2 < 0.65 \ \Gamma$ э 2

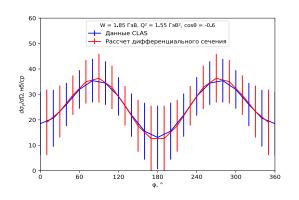

$$\frac{d\sigma_T}{d\Omega_K} = Z_1 \cdot Q^4 + Z_2 \cdot Q^2 + Z_3 \quad (9)$$

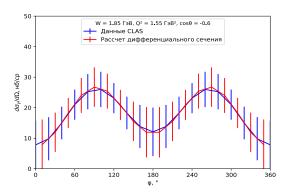

$$\frac{d\sigma_{TT}}{d\Omega_K} (W, Q^2 = 0 \ \Gamma \ni B^2, cos(\theta_K^*)) = (-1) \cdot \Sigma \cdot \frac{d\sigma_T}{d\Omega_K} (W, Q^2 = 0 \ \Gamma \ni B^2, cos(\theta_K^*))$$
(10)

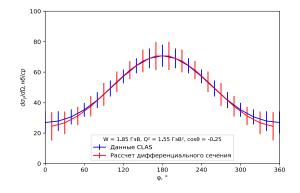
$$\frac{d\sigma_{TT}}{d\Omega_K} (W, Q^2, cos(\theta_K^*)) = \left[\frac{d\sigma_{TT}}{d\Omega_K} : \frac{d\sigma_T}{d\Omega_K} \right] (Q^2, cos(\theta_K^*)) \cdot \frac{d\sigma_T}{d\Omega_K} (W, Q^2, cos(\theta_K^*))$$
(11)

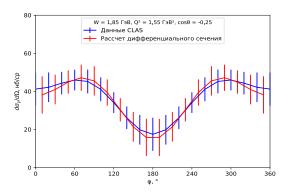
$$\frac{d\sigma_{TT}}{d\Omega_K} : \frac{d\sigma_T}{d\Omega_K} = const \qquad (12)$$

Экстраполяция эксклюзивных структурных функций электророждения $K^+ \Lambda$ и $K^+ \Sigma^0$ в области $Q^2 < 0.65 \ \Gamma$ э 2






- E, $\Gamma \ni B \in [0, 5.5)$
- *W*, Γ∋B ∈ [2.17, 2.57]
- Q^2 , $\Gamma \ni B^2 \in [0, 1.8]$


- θ_{π}^* , $pad \in [0, \pi]$
- ϕ_{π}^* , $pad \in [0,2\pi]$

Алгоритм оценки сечений каналов электророждения $K^+ \Lambda$ и $K^+ \Sigma^0$

Основные результаты работы

- 1. Разработан алгоритм, основанный на нейросетях, способный обеспечить надежную и высокоточную интерполяцию экспериментальных данных (в том числе в областях с низкой плотностью наличия экспериментальных данных) структурных функций и дифференциальных сечений рассеяния виртуального фотона на протоне в реакции $n\pi^+$ в области 1.1 < W < 2 ГэВ, 0.3 < W < 4.1 ГэВ 2 .
- 2. Разработан подход, способный восстанавливать зависимости дифференциальных сечений рассеяния и структурных функций от других кинематических переменных в реакции электророждения $K^+\Lambda$ и $K^+\Sigma^0$ необходимые для точной интерполяции и экстраполяции в области $Q^2 < 5$ ГэВ 2 и W < 2.65 ГэВ.
- 3. Разработан алгоритм, основанный на генеративных состязательных сетях, способный сохранять и воспроизводить с высокой точностью корреляции между кинематическими переменными в многомерном фазовом пространстве реакции двухпионного фоторождения на протонах $\pi^+\pi^-p$.

Публикации

- 1. Alghamdi T., Alanazi Y., Battaglieri M., Golda, A., et. al., «Toward a generative modelling analysis of CLAS exclusive 2π photoproduction», *Phys. Rev. D*, vol. 108, №9, p. 094030, 2023.
- А.В. Голда, А.А. Голубенко, М.М. Давыдов, Е.Л Исупов, В.И. Мокеев, С.А. Савкин, В.В. Чистякова, «Оценка сечений эксклюзивных каналов электророждения К⁺Λ и K⁺Σ⁰ на протонах из данных детектора CLAS», Вестник Московского Университета, №4, 2024.
- 3. Golda, A.V., Rusova, A.A., Isupov, E.L. et al., «Machine Learning Approach in the Prediction of Differential Cross Sections and Structure Functions of Single Pion Electroproduction in the Resonance Region», *Moscow University Physics Bulletin*, vol. 79, №4, p. 608-621, 2024.
- 4. В.В. Чистякова, А.В. Голда, А.А. Русова, Е.Л Исупов, «Машинное обучение в задаче предсказания дифференциальных сечений и структурных функций электророждения пионов в резонансной области», Ученые записки физического факультета Московского Университета, №2, 2025

Основные положения выносимы на защиту

- 1. С использованием алгоритмов машинного обучения получена надежная и высокоточная интерполяция экспериментальных данных (в том числе в областях с низкой плотностью экспериментов) структурных функций и дифференциальных сечений реакции $\gamma^* + p \rightarrow n + \pi^+$ в области 1.1 < W < 2 ГэВ и $0.3 < Q^2 < 4.1$ ГэВ 2 для доступных в эксперименте CLAS значений энергии пучка электронов (E = 1.515, 5.499, 5.754 ГэВ) для полного телесного угла конечных адронов 4π .
- 2. Применение алгоритмов, основанных на разложении структурных функций в ряд по полиномам Лежандра, позволило описать зависимости дифференциальных сечений рассеяния и структурных функций от кинематических переменных в реакции электророждения $K^+\Lambda$ и $K^+\Sigma^0$, а также выполнить точную интерполяцию и экстраполяцию в области $Q^2 < 5$ ГэВ 2 и W < 2.65 ГэВ для доступных в эксперименте CLAS значений начальной энергии пучка электронов (E = 2.567, 4.056, 5.499 ГэВ) для полного телесного угла конечных адронов 4π .
- 3. Разработанная модель на основе генеративных методов искусственного интеллекта способна сохранять и воспроизводить с высокой точностью корреляции между кинематическими переменными в многомерном фазовом пространстве реакции двухпионного фоторождения на протонах в области $W < 2.9 \, \Gamma$ эВ для полного телесного угла конечных адронов 4π .

Спасибо за внимание!

Апробация

Основные результаты работы докладывались автором на следующих конференциях:

- 1. Международная молодежная научная конференция «Технологии ИИ в науке и образовании» (Москва 2023)
- 2. Научная конференция «Ломоносовские чтения» (Москва 2024),
- 3. Научная конференция «Ломоносов» (Москва 2024),
- 4. 8-я международная конференция «Deep Learning in Computational Physics» (Москва 2024),
- 5. Научная конференция имени Б.С. Ишханова «Концентрированные потоки энергии в космической технике, электронике, экологии и медицине» (Москва 2024).

Цели и задачи

Целью настоящей работы является исследование возможности восстановления нелинейных физических корреляций в электромагнитных процессах с использованием алгоритмов машинного обучения на примере задачи многомерной интерполяции дифференциальных сечений и структурных функций в реакции электророждения одиночного мезона на протоне, а также задачи генеративного моделирования для восстановления детекторных эффектов в реакции фоторождения пары заряженных пионов на основе экспериментальных данных детектора CLAS.

Цели и задачи

- 1. Построить способный моделировать значения структурных алгоритм, функций дифференциальных сечений рассеяния реакции $\gamma^* + p \to n + \pi^+$ в области 1.1 < W < 2 ГэВ и $0.3 < Q^2 < 4.1 \, \Gamma$ э B^2 ДЛЯ различных значений энергии пучка электронов $(E=1.515,5.499,5.754\ \Gamma)$ в полного телесного угла конечных адронов 4π . Построить валидационную схему для определения качества моделирования. Определить значения погрешностей, возникающих при моделировании.
- 2. Разработать метод оценки эксклюзивных структурных функций и дифференциальных сечений электророждения $K^+\Lambda$ и $K^+\Sigma^0$ на протонах. Рассчитать статистические и систематические неопределенности оценок, а также области применимости модели. Провести сравнение оценок с экспериментальными данными.
- 3. Построить генеративный алгоритм моделирования процессов фоторождения пар заряженных пионов на протонах для восстановления детекторных эффектов. Провести процедуру тестирования алгоритма на синтетических данных. Определить систематические погрешности, возникающие при работе алгоритма.

Основные положения выносимы на защиту

- 1. С использованием алгоритмов машинного обучения получена надежная и высокоточная интерполяция экспериментальных данных (в том числе в областях с низкой плотностью экспериментов) структурных функций и дифференциальных сечений реакции $\gamma^* + p \rightarrow n + \pi^+$ в области 1.1 < W < 2 ГэВ и $0.3 < Q^2 < 4.1$ ГэВ 2 для доступных в эксперименте CLAS значений энергии пучка электронов (E = 1.515, 5.499, 5.754 ГэВ) для полного телесного угла конечных адронов 4π .
- 2. Применение алгоритмов, основанных на разложении структурных функций в ряд по полиномам Лежандра, позволило описать зависимости дифференциальных сечений рассеяния и структурных функций от кинематических переменных в реакции электророждения $K^+\Lambda$ и $K^+\Sigma^0$, а также выполнить точную интерполяцию и экстраполяцию в области $Q^2 < 5$ ГэВ 2 и W < 2.65 ГэВ для доступных в эксперименте CLAS значений начальной энергии пучка электронов (E = 2.567, 4.056, 5.499 ГэВ) для полного телесного угла конечных адронов 4π .
- 3. Разработанная модель на основе генеративных методов искусственного интеллекта способна сохранять и воспроизводить с высокой точностью корреляции между кинематическими переменными в многомерном фазовом пространстве реакции двухпионного фоторождения на протонах в области $W < 2.9 \, \Gamma$ эВ для полного телесного угла конечных адронов 4π .

Новизна работы

- 1. Моделирование экспериментальных данных по структурным функциям и дифференциальным сечениям рассеяния виртуального фотона на протоне в реакции $\gamma^* + p \to n + \pi^+$ для указанной области впервые получено с точностью в среднем не превышающей ошибки экспериментальных данных.
- 2. Разработан метод моделирования процессов фоторождения пар пионов на протонах для восстановления детекторных эффектов.
- 3. Впервые использован подход генеративного моделирования для воспроизведения событий реакции рассеяния в фазовом пространстве кинематических переменных высокой размерности.