ПРОБЛЕМЫ ЯДЕРНЫХ МОДЕЛЕЙ И источники фрагментации гигантских резонансов

Успехи в интерпретации структуры резонансов

- 1.Конфигурационное и изоспиновое расщепление резонансов.
- 2."Ground state correlations"-спаривание и т.д.
- 3. Многочастичная модель оболочек (ММО)

Е1 резонанс в ядре ¹⁸0 (фототочка)

Проблемы модели ядерных оболочек

• 1. Вид и форма потенциальной ямы ядра ?

- 2. Существование орбитальных квантовых чисел движения нуклона в ядре?
- (См. Э.Ферми. Лекции о пи-мезонах и нуклонах. М.: ИЛ, 1956)

2. Существование орбитальных квантовых чисел движения нуклона в ядре? СВЕРХТЕКУЧЕСТЬ!

Возбужденные состояния системы нуклонов и ММО

G. Brown, M.Bolsterli // Phys.Rev.Lett. 3 (1959)472

E1 резонанс в ядре О-16-Создание многочастичной модели оболочек=ММО-

G. Brown, M.Bolsterli // Phys.Rev.Lett. 3 (1959)472

Частица-Состояние Конечного Ядра (ЧСКЯ) Particle Core Coupling Shell Model=PCCSM

$$\left|J_{f,T_{f}}\right\rangle = \sum_{(J'),j'} \alpha_{f}^{(J'),j'} \left| (J'E'T')_{A-1} \times (n'l'j') : J_{f},T_{f} \right\rangle$$

$$|J_{i,T_{i}}\rangle = \sum_{(J'),j} C_{i}^{(J'),j} | (J'E'T')_{A-1} \times (nlj) : J_{i,T_{i}}\rangle$$

Структура основных состояний?

$$\left| J_{i,T_{i}} \right\rangle = \sum_{(J^{'}),j} C_{i}^{(J^{'}),j} \left| (J^{'}E^{'}T^{'})_{A-1} \times (nlj) : J_{i},T_{i} \right\rangle;$$

$$C_{i}^{(J^{'}),j} = ? \Longrightarrow C_{i} \approx \sqrt{\frac{S_{i}}{\sum S_{i}}}$$

 S_i –

Спектроскопический фактор прямой реакции подхвата нуклона

E1 in ²⁴Mg at photopoint

B. S. Ishkhanov, I. M. Kapitonov, et al., Nucl. Phys.A186(1972)438

E(¹⁵ N)	JP	S(p,d) (Exp.)	S(p,d) (ESPSM)
0	1⁄2-	1.8	2
5.271	5/2+	0.11	
5.299	1/2+	0.02	
6.324	3/2-	2.6	4
7.155	5/2+	0.02	
7.301	3/2+	0.02	
7.566	7/2+	0.03	
9.152	3/2-	0.04	
9.929	3/2-	0.18	
		$\sum S_n = 4.82$	

Е1 резонанс в ядре О-16 (в модели ЧСКЯ)

•¹⁶O(p,d) from *Firestone M.A. et al*// Nucl.Phys. (1976) **A258**, P.317

•¹⁶O(γ, n) B.L.Berman *et al* // *Phys.Rev.C,1983,V.27*

•В.В.Варламов, Б.С.Ишханов et al , ЯФ 67, 2131(2004)

Расщепление глубоких подоболочек сферических ядер <u>s</u>† P. Doll et al,⁴⁰Ca(d,t)³⁹Ca at 52 MeV Nucl.Phys.A263(1976)210 3.5 1f 7/2 3 1d 3/2 2s 1/2 2.5 1d 5/2 2 1.5 1 0.5 2 3 1 4 5 6 7 8 9 E. MeV ⁴⁰Ca SPSM

Расщепление оболочек

ГДР

Таблица 1. Числа заполнения нейтронных подоболочек в ядрах ⁴⁰Са и ⁴⁸Са.

N		2p3n2	1 <i>fn</i> 2	1 <i>d</i> 3.12	2s 1/2	1ds12
⁴⁰ Ca,	(d , t)	0	0.36	3.74	1.74	5.41
⁴⁸ Ca,	[1]	0.02	6.8	3.78	1.9	0.95
<i>N</i> , согласно МО		0	0 (⁴⁰ Ca) 8 (⁴⁸ Ca)	4	2	б

[1] P. Martin, M. Buenerd, Y. Dupont, M. Chabre, Nucl. Phys A, V.185, I 2, 465, 1972

B.L.Clausen, R.A.Lindgren et al., Phys.Rev.Lett.65 (1990)547, Phys.Rev.C48(1993)1632

M6 in sd-shell nuclei : ³²S

Расщепление глубоких подоболочек сферических ядер

• J.Vernotte *et al*, Nucl. Phys. **A655**(1999)415

³²S(d,³He)³¹P

E1 excitations ³²S

НГ+Н.Машутиков//ВМУ,сер.3 (2011)84

,

Exp: B.S.ISHKHANOV et al,2002.

*M*6 in sd-shell nuclei : ⁴⁰Ca **Splitting of Deep Nuclear Shells**

$$E_{bind} \approx a_1 A - a_2 A^{2/3} - a_3 \frac{Z(Z-1)}{A^{1/3}} + \dots; a_2 \cong \sigma$$

v.Weizsäcker C.F. //Zs.f.Phys. (1935)96,431

<u>Оценка коэффициентов</u> поверхностного натяжения

1. Жесткость ядер =C (Rigidity)

$$\hat{H}_{\text{coll.vib.}} = \frac{1}{2D} \sum_{\lambda,m} \left| \hat{b}_{\lambda,m} \right|^2 + \frac{C}{2} \sum_{\lambda,m} \left| \hat{a}_{\lambda,m} \right|^2$$

$$(\lambda = 2) \qquad C = \frac{5\hbar\omega}{2\beta^2} = \frac{5E(2^+)}{2\beta^2}$$

$$\begin{split} & \frac{\text{Estimation of } \mathbf{O}}{\mathbf{\hat{H}}_{\text{coll.vib.}}} = \frac{1}{2\mathbf{D}} \sum_{\lambda,m} \left| \hat{\mathbf{b}}_{\lambda,m} \right|^2 + \frac{C}{2} \sum_{\lambda,m} \left| \hat{\mathbf{a}}_{\lambda,m} \right|^2; (\lambda = 2). \\ & \left| C = \frac{5E(2^+)}{2\beta^2} \right| \qquad \beta^2 = \langle J = 2 |\sum_m |\hat{a}_m|^2 | J = 2 \rangle \\ & \beta = ??? \\ & W(E2, 2^+ \Rightarrow 0^+)_{coll.vib} = W_{sp} \cdot \frac{5Z^2}{4\pi} \beta^2. \end{split}$$

•Raman S., Nestor Jr. C.W., et al.// At.Data & *Nucl.Data Tables. 2001.78, 1 •Pritychenko B., et al*// At.Data & *Nucl.Data Tables. 2016.107,1*

Оценка коэффициентов о

Bohr A.//Dan.Mat.Fys.Medd.22#14 (1952);

Phys. Part. Nucl.,2019, 50, #5, P.532;BMY,2020,№5,58

Neutron skin?

σ в изотопах Cr, Fe, Ni, Zn

For all nuclei with A from 152 up to 196 σ < 1.8 MeV / Fm²

σ в изотопах Hg, Pb

Особенно резкое возрастание σ при добавлении пары протонов к четночетному ядру имеет место для ядер ²⁰⁴Hg -²⁰⁶Pb – более чем в 5 раз!

Поверхностное натяжение в легких ядрах

Если при добавлении к ядру пары протонов создается замкнутая по протонам подоболочка, коэффициент о испытывает, как правило, заметный рост: $\sigma({}^{54}Fe) < \sigma({}^{56}Ni)$. Если в результате добавления пары протонов создается «дважды магическое» ядро, рост поверхностного натяжения особенно значителен. К таким выводам приводит сравнение коэффициентов поверхностного натяжения в ядрах ${}^{38}Ar - {}^{40}Ca$, ${}^{88}Sr - {}^{90}Zr$. Особенно резкое возрастание о при добавлении пары протонов к четно-четному ядру имеет место для ядер ${}^{204}Hg - {}^{206}Pb$ – более чем в 5 раз!

<u>Добавление пары нейтронов к замкнутой по нейтронам</u> <u>подоболочке приводит, как правило, к уменьшению коэффициента о</u>. Примерами таких случаев являются пары ${}^{16}O_8 - {}^{18}O_{10}, {}^{38}Ar_{20} - {}^{40}Ar_{22}, {}^{40}Ca_{20} - {}^{42}Ca_{22}, {}^{90}Zr_{50} - {}^{92}Zr_{52}, {}^{140}Ce_{82} - {}^{142}Ce_{84}.$

Добавление пары протонов к ядру с «магическим» числом протонов также приводит к уменьшению поверхностного натяжения. ($^{18}O-^{20}Ne$, $^{48}Ca-^{50}Ti$, $^{90}Zr-^{92}Mo$, $^{96}Zr-^{98}Mo$.)

Но

 $\sigma(^{70}\text{Ge}_{38}) > \sigma(^{72}\text{Ge}_{40}) \text{ (N=40)}$

И

σ(¹⁶O)< σ(¹⁴C) (?!)