

Сверхтяжелые элементы на Фабрике СТЭ: первые достижения и перспективы

Александр Карпов Лаборатория ядерных реакций им. Г.Н. Флерова ОИЯИ

НИИЯФ МГУ, 2 марта 2023 г.

GREAT PROGRESS

in Synthesis of Superheavy Nuclei

Periodic Table today (since November, 28, 2016)

1																	18
1 H hydrogen 1.0080 +0.0002	JINR has priority for 10 of 18 elements												2 He helium 4.0026				
3 Li lithium 6.94 ±0.06	4 Be beryllium 9.0122 ± 0.0001		atomic num Symbo name abridged standa atomic weigh	ber DI ard	disc	ove	red	sin	ice '	195	6	5 B boron 10.81 ± 0.02	6 C carbon 12.011 ± 0.002	7 N nitrogen 14.007 ± 0.001	8 O oxygen 15.999 ± 0.001	9 F fluorine 18.998 ± 0.001	10 Ne neon 20.180 ± 0.001
11 Na sodium 22.990 ±0.001	12 Mg magnesium 24.305 ± 0.002	3	4	5	6	7	8	9	10	11	12	13 Al aluminium 26.982 ± 0.001	14 Si silicon 28.085 ± 0.001	15 P phosphorus 30.974 ± 0.001	16 S sulfur 32.06 ± 0.02	17 CI chlorine 35.45 ±0.01	18 Ar argon 39.95 ± 0.16
19 K potassium 39.098 ± 0.001	20 Ca calcium 40.078 ± 0.004	21 Sc scandium 44.956 ± 0.001	22 Ti titanium 47.867 ±0.001	23 V vanadium 50.942 ± 0.001	24 Cr chromium 51.996 ± 0.001	25 Mn manganese 54.938 ± 0.001	26 Fe iron 55.845 ± 0.002	27 Co cobalt 58.933 ±0.001	28 Ni nickel 58.693 ± 0.001	29 Cu copper 63.546 ± 0.003	30 Zn zinc 65.38 ± 0.02	31 Ga gallium 69.723 ± 0.001	32 Ge germanium 72.630 ± 0.008	33 As arsenic 74.922 ± 0.001	34 Se selenium 78.971 ± 0.008	35 Br bromine 79.904 ± 0.003	36 Kr krypton 83.798 ± 0.002
37 Rb rubidium 85.468 ±0.001	38 Sr strontium 87.62 ± 0.01	39 Y yttrium 88.906 ±0.001	40 Zr ²¹⁷ ²¹²²⁴ ^{20,002}	41 Nb niobium 92.906 ± 0.001	42 Mo molybdenum 95.95 ± 0.01	43 TC technetium [97]	44 Ru ruthenium 101.07 ± 0.02	45 Rh rhodium 102.91 ±0.01	46 Pd palladium 106.42 ± 0.01	47 Ag silver 107.87 ± 0.01	48 Cd cadmium 112.41 ±0.01	49 In 114.82 ± 0.01	50 Sn 118.71 ± 0.01	51 Sb antimony 121.76 ± 0.01	52 Te tellurium 127.60 ± 0.03	53 iodine 126.90 ± 0.01	54 Xe xenon 131.29 ± 0.01
55 CS caesium 132.91 ± 0.01	56 Ba barium 137.33 ± 0.01	57-71 Ianthanoids	72 Hf hafnium 178.49 ±0.01	73 Ta tantalum 180.95 ± 0.01	74 W tungsten 183.84 ± 0.01	75 Re rhenium 186.21 ±0.01	76 Os osmium 190.23 ± 0.03	77 Ir iridium 192.22 ± 0.01	78 Pt platinum 195.08 ± 0.02	79 Au gold 196.97 ± 0.01	80 Hg mercury 200.59 ± 0.01	81 TI thallium 204.38 ± 0.01	82 Pb lead 207.2 ± 1.1	83 Bi bismuth 208.98 ± 0.01	84 Po polonium [209]	85 At astatine [210]	86 Rn radon [222]
87 Fr francium	88 Ra radium	89-103 actinoids	104 Rf rutherfordium	105 Db dubnium	106 Sg seaborgium	107 Bh bohrium	108 HS hassium	109 Mt meitnerium	110 DS darmstadtium	111 Rg roentgenium	112 Cn copernicium	113 Nh nihonium	114 Fl flerovium	115 Mc moscovium	116 Lv livermorium	117 TS tennessine	118 Og oganesson

INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY

57 La Ianthanum 138.91 ± 0.01	58 Ce cerium 140.12 ± 0.01	59 Pr praseodymium 140.91 ±0.01	60 Nd neodymium 144.24 ±0.01	61 Pm promethium [145]	62 Sm samarium 150.36 ± 0.02	63 Eu europium 151.96 ± 0.01	64 Gd gadolinium 157.25 ± 0.03	65 Tb terbium 158.93 ± 0.01	66 Dy dysprosium 162.50 ± 0.01	67 Ho holmium 164.93 ±0.01	68 Er erbium 167.26 ± 0.01	69 Tm thulium 168.93 ± 0.01	70 Yb ytterbium 173.05 ± 0.02	71 Lu Iutetium 174.97 ± 0.01
89 Ac actinium [227]	90 Th thorium 232.04 ± 0.01	91 Pa protactinium 231.04 ±0.01	92 U uranium 238.03 ±0.01	93 Np neptunium (237)	94 Pu plutonium [244]	95 Am americium [243]	96 Cm curium [247]	97 Bk berkelium (247)	98 Cf californium [251]	99 Es einsteinium [252]	100 Fm fermium [257]	101 Md mendelevium [258]	102 No nobelium (259)	103 Lr lawrencium

FLNR's basic directions of research:

- Heavy and superheavy nuclei
- Radioactive ion-beam research
- Radiation effects and physical groundwork of nanotechnology
- Accelerator technologies

SHE research: Main tasks

Experiments at the extremely low (σ <100 fb) cross sections:

- Synthesis of new SHE with Z = 119 and 120 in reactions with 50 Ti, 54 Cr ...;
- Synthesis of new isotopes of SHE;
- Study of decay properties of SHE;
- Exploring limits the Island of Stability;
- Study of excitation functions.

Experiments requiring high statistics:

- Nuclear spectroscopy of SHE;
- Precise mass measurements;
- Study of chemical properties of SHE.

Beam of ⁴⁸Ca @ DC-280:

- Intensity: up to $6 \cdot 10^{13}$ ions/s, $10 p \mu A$
- Energy: 5 8 A·MeV
- Efficiency: ~50%

Cyclotron DC-280 Factory of superheavy elements

Beam of ⁴⁸Ca

Achieved Intensity: 4.3.10¹³ ions/s

Efficiency: ~50%

Gas-Filled Separator, DGFRS-2

²⁴²Pu 24-cm target wheel 12 sectors

60×240 DSSD & 60×120 SSSD Digital and analog electronics

$^{243}\text{Am} + {}^{48}\text{Ca} \rightarrow {}^{291}\text{Mc}^*$

~60 days

Nov.-Dec. 2020 Jan.-Feb. 2021 Jan.-Feb. 2022

Results of the first experiment ²⁴³Am + ⁴⁸Ca

Technical tasks:

- Transmission
- Background
- Image size on detector
- Systematics of charge states
- Test of digital and analog data acquisition systems

Scientific tasks:

- Excitation function for xn-evaporation channels
- Decay properties
- Cross sections for the pxn channel
- EC branch for ²⁸⁸Mc and ²⁸⁴Nh

 $I = 1.2-1.3 \text{ p}\mu\text{A} \sim (7-8) \cdot 10^{12} \text{ ions/s}$

Transmission

- From ²⁰⁶Pb(⁴⁸Ca,2n)²⁵²No test reaction: 55±7%
- From ²⁴³Am(⁴⁸Ca,2-3n)^{288,289}Mc reaction:

Comparison of results at the same ⁴⁸Ca energy

	DGFRS @ U400	DGFRS-2 @ DC-280
Target thickness, mg/cm ²	0.37	0.43
Beam dose, 10 ¹⁸	3.3	3.4
No decay chains	²⁸⁸ Мс – 6 ²⁸⁹ Мс – 0	²⁸⁸ Mc – 13 ²⁸⁹ Mc – 2
Yield	1	1.8-2.1

Background conditions

²⁰⁶Pb+⁴⁸Ca \rightarrow ²⁵²No+2n (Cross section 0.5 mb)

Background suppression is 200+ higher at the DGFRS-2 than at DGFRS

Energy spectra of all the particles registered by MWPC (top blue line) and of ²⁵²No (bottom black line) nuclei produced in the ²⁰⁶Pb(⁴⁸Ca,2*n*) reaction using separators DGFRS (a) and DGFRS-2 (b).

Results of the first experiment

DGFRS, JINR TASCA, GSI BGS, LBNL

DGFRS-2, JINR

First observation of α-decay of ²⁶⁸Db and new isotope ²⁶⁴Lr

$$b_{\alpha} (^{268}Db) = 55 (^{+20}_{-15}) \% T_{1/2} (^{268}Db) = 16 (^{+6}_{-4}) h T_{1/2} (^{264}Lr, SF) = 4.9 (^{+2.1}_{-1.3}) h$$

Эксперимент по исследованию характеристик распада ядер московия (Z=115), нарабатываемых на Фабрике сверхтяжелых элементов ОИЯИ

энергия (МэВ)	239.1	240.9	242.2	243.9	250.1	259.1	Фабрика СТЭ	было до
²⁸⁶ Mc (5 <i>n</i>)	-	-	-	-	-	1	1	0
²⁸⁷ Mc (4 <i>n</i>)	-	-	2	-	1	1	4	3
²⁸⁸ Mc (<i>3n</i>)	9	16	52	30	3	-	110	31
²⁸⁹ Mc (2 <i>n</i>)	-	1	4	5	-	-	10	18

²⁴³Am(⁴⁸Ca,2-5n)²⁸⁶⁻²⁸⁹Mc Reaction

²⁴³Am(⁴⁸Ca,2-5n)²⁸⁶⁻²⁸⁹Mc Reaction

²⁴³Am(⁴⁸Ca,2-5n)²⁸⁶⁻²⁸⁹Mc Reaction

125 decay chains Decay properties of 22 isotopes

Results of the first experiments Excitation function

DGFRS (open), TASCA (half open), DGFRS-2 (filled)

$^{242}Pu+{}^{48}Ca{\rightarrow}^{290}FI*$

Completed in June 2021

²⁴²Pu(⁴⁸Ca,3-4n)^{286,287}FI and ²³⁸U(⁴⁸Ca,3n)²⁸³Cn

Decay properties of 8 isotopes

- ²⁸⁷FI, ²⁸³Cn, and ²⁷⁹Ds: decay through different states
- 286 FI: α-decay line 9.6 MeV for was not observed
 A. Såmark-Roth et al., PRL (2021)
- ²⁸⁶FI: decay on 2⁺ rotational state ²⁸²Cn or through isomeric states

Presumable α -decay of ²⁸⁶FI on rotational 2⁺-state of ²⁸²Cn

"experiment": *E*₂₊ = 100 - 200 keV 0⁺: 82% and 2⁺: 18%

deduced for 0⁺: 82% and 2⁺: 18% $\beta_2 = 0.13$ $E_{2^+} = 101$ keV

Nucleus	β2	E(21+) (keV)
²⁵⁸ Fm	0.274	51
²⁶² No	0.256	51
²⁶⁶ Rf	0.235	70
²⁷⁰ Sb	0.242	60
²⁷⁴ Hs	0.237	74
²⁷⁸ Ds	0.197	66
²⁸² Cn	0.160	102
²⁸⁶ FI	-0.154	144
²⁹⁰ Lv	0.078	431
²⁹⁴ Og	-0.105	242
²⁹⁸ 120	-0.092	335

Excitation functions

²⁴²Pu(⁴⁸Ca,3-4n)^{286,287}Fl 94 new events

²³⁸U(⁴⁸Ca, 3n)²⁸³Cn 16 new decay chains

Towards element 120: the first experiment ${}^{48}Ca + {}^{232}Th \rightarrow {}^{280}Ds^*$

- Stability and production cross section is expected to have a minimum for the element 110. The fission barrier is predicted to be 3.3 MeV only.
- The same theory predicts 5.1 MeV barrier for the element 120.

Summary of experiments @ Superheavy Element Factory in 2020-2023

Experiments:

 $\label{eq:Am} \begin{array}{l} {}^{243}\text{Am} + {}^{48}\text{Ca} \rightarrow {}^{291}\text{Mc}^{*} \\ {}^{242}\text{Pu} + {}^{48}\text{Ca} \rightarrow {}^{290}\text{Fl}^{*} \\ {}^{238}\text{U} + {}^{48}\text{Ca} \rightarrow {}^{286}\text{Cn}^{*} \\ {}^{232}\text{Th} + {}^{48}\text{Ca} \rightarrow {}^{280}\text{Ds}^{*} \end{array}$

- 239 new events of synthesis of superheavy nuclides;
- Decay properties 36 isotopes;
- New isotopes: ²⁸⁶Mc, ²⁶⁴Lr, ²⁷⁵Ds, ²⁷⁶Ds, ²⁷²Hs, ²⁶⁸Sg, ²⁶⁷Sg;
- New decay modes: ²⁶⁸Db (alphadecay), ²⁷⁹Rg (spontaneous fission);
- Indication of the 1st excited state in ²⁸⁶FI;
- Test of target stability up to 6.5 pµA of ⁴⁸Ca;

by Yu. Oganessian

SHE research program with existing separators @ SHE Factory

- Spectroscopy of SHE;
- Chemical studies for SH nuclei with half-lives longer than 1 sec (114 and lighter);
- Precise mass measurements (new developments are due);

- Synthesis of new SHE;
- Synthesis of new neutron-deficient isotopes of SHE: "shaping" of island of stability;
- Search for rear decay channels in ⁴⁸Ca-induced reactions (EC, pxn, 1-2n): towards island of stability;
- Decay modes, excitation functions, etc.

CHEMISTRY OF SHE

Недостатки: довольно большой объем "стоп" камеры. Трансмиссия сепаратора ~ 35 %.

The relativistic effect and chemistry of SHE

In experiments (R. Eichler et al., 2007), the influence of the relativistic effect on the formation of the compound [CnAu] was studied in comparison with its light homologue [HgAu] at different temperatures.

	Z	Isotope	Half-life
The first experiments	112	²⁸³ Cn	3.6 s
	113	²⁸⁴ Nh	0.9 s
not monotonically with increasing atomic	114	²⁸⁷ Fl	0.5 s
number of SHE. In principle it may be observed today for all SHE from Z=112 to 118.	115	²⁸⁸ Mc	0,16 s
	116	²⁹³ Lv	57 ms
	117	²⁹⁴ Ts	51 ms
	118	²⁹⁴ Og	0.6 ms

Radiochim. Acta 98, 133-139 (2010) / DOI 10.1524/ract.2010.1705 © by Oldenbourg Wissenschaftsverlag, München

Indication for a volatile element 114

By R. Eichler^{1,2,*}, N. V. Aksenov³, Yu. V. Albin³, A. V. Belozerov³, G. A. Bozhikov³, V. I. Chepigin³, S. N. Dmitriev³, R. Dressler¹, H. W. Gäggeler^{1,2}, V. A. Gorshkov³, R. A. Henderson⁴, A. M. Johnsen⁴, J. M. Kenneally⁴, V. Ya. Lebedev³, O. N. Malyshev³, K. J. Moody⁴, Yu. Ts. Oganessian³, O. V. Petrushkin³, D. Piguet¹, A. G. Popeko³, P. Rasmussen¹, A. Serov^{1,2}, D. A. Shaughnessy⁴, S. V. Shishkin³, A. V. Shutov³, M. A. Stoyer⁴, N. J. Stoyer⁴, A. I. Svirikhin³, E. E. Tereshatov³, G. K. Vostokin³, M. Wegrzeck⁵, P. A. Wilk⁴, D. Wittwe² and A. V. Yerenin³

- физисорбция на золоте
- благородный металл или газ

Frontiers | Frontiers in Chemistry

Check for updates

OPEN ACCESS EINTED IN Xianglei King, Xianglei King, Xianglei King, Xinghei King, Xinghei King, Xinghei King, Xinghei King, Xinghei Kinghei Xiang Xinghei Xinghei Xinghei Xiang Xinghei Xinghei Xiang Xinghei TYPE Original Research PUBLISHED 25 August 2022 DOI 10.3389/fchem.2022.976635

On the adsorption and reactivity of element 114, flerovium

A. Yakushev^{12,8}, L. Lens^{1,31}, C. H. E. Düllmann^{12,3},
J. Khuyagbaatar^{1,2}, E. Jäger¹, J. Krier¹, J. Runke^{1,3}, H. M. Albers¹,
M. Asai⁴, M. Block^{1,2,3}, J. Despotopulos⁵, A. Di Nitto^{1,31},
K. Eberhardt³, U. Forsberg⁶¹, P. Golubev⁶, M. Götz^{1,2,3},
S. Götz^{1,2,3}, H. Haba⁷, L. Harkness-Brennan⁸, R.-D. Herzberg⁸,
F. P. Heßberger^{1,2}, D. Hinde⁹, A. Hübner¹, D. Judson⁸,
B. Kindler¹, Y. Komori⁷, J. Konki¹⁰, J.V. Kratz², N. Kurz¹,
M. Laatiaoui^{1,2,3}, S. Lahiri¹¹, B. Lommel¹, M. Maiti¹², A. K. Mistry¹²,
Ch. Mokry^{2,3}, K. J. Moody⁵, Y. Nagame⁴, J. P. Omtvedt¹³,
P. Papadakis⁸¹, V. Pershina¹, D. Rudolph⁶, L.G. Samiento⁶,
T.K. Sato⁴, M. Schädel¹, P. Scharrer^{1,2,7}, B. Schausten¹,
D. A. Shaughnessy⁵, J. Steiner¹, P. Thörle-Pospiech^{2,3},
A. Toyoshima⁴¹, M. Wegrzecki¹⁴, N. Wiehl^{2,3}, E. Williams⁹
and V. Yakusheva^{1,2}

nikolay.aksenov@jinr.ru / Совещание «Сверхтяжелые атомы» / 19.12.2022

CHEMISTRY OF ELEMENTS CN AND FL GRAND (GAS-FILLED RECOIL ANALYZER AND NUCLEI DETECTOR) DGFRS-3

Status:

- Detection setup was developed and installed at the GRAND separator.
- Test experiments were carried out with mercury and nobelium isotopes produced in fusion reactions. The purpose was testing and further setup optimization.

First run (Nov.-Dec. 2022) ⁴⁸Ca + ²⁴²Pu:

- 1 event of the element 112 was observed.
- 1 event of the element 114 was observed.

Second run of the chemical experiment is scheduled for the second half of 2023 following the improvement of the experimental setup.

Перспективы

TARGETS

Synthesis of new elements @ SHE Factory

- Cooperation with Rosatom (Russia) and ORNL (USA):
 Isotopically enriched heavy actinide materials
- Radiochemical laboratory of class 1: Stability studies & Manufacturing and regeneration

BEAMS

- Production of high-intensity beams of ⁵⁰Ti, ⁵⁴Cr and others
- New ECR-28 GHz (2024)

Future of SHE Chemistry

GASSOL – Solenoid-based separator (2025)

- Stopping SH atoms in a small volume of 1-2 cm³
- Chemistry of short-lived SHE $T_{1/2} \ge 30 \text{ ms}$ (up to element 117)

Precise mass measurements of SH isotopes

Measuring masses of SH isotopes with accuracy 10⁻⁷ (30 κeV)

 $T_{1/2} < 0.5 \text{ s}$ Production rate ≤ 1 event/day Background rate ≥ 1 event/s

Requirements for a facility:

- High rate of analysis;
- Low losses;
- High degree of purification;
- Accuracy 10⁻⁷ (30 кеV);
- Mass range 266 294.

The only type of spectrometers gives an opportunity to reach Rm > 1 000 000 at the analysis time < 0.5 s: **MR-TOF Mass-Analyser**

Scheme of the MR-TOF spectrometer

Spectroscopy of SH isotopes (SHE factory)

 $^{48}Ca + {}^{242}Pu \rightarrow {}^{287}Fl +3n$

 $^{48}\text{Ca} + {}^{243}\text{Am} \rightarrow {}^{288}\text{Mc} + 3n$

Cross section ~ 10 pbarn; Target thickness ~ 1.5×10^{18} at/cm²; Beam intensity of ⁴⁸Ca ~ 3.3×10^{13} pps (5 pµA); $\epsilon_{transmission}$ ~ 50 %; **12** events/day

100 days – integral flux about 10²⁰, about 300 events

300 chains \rightarrow 250 gamma quanta detected, acceptable statistics. Important information about level structure, K-isomers.

Studying the ²³⁸U + ²³⁸U reaction

slide by Yu. Oganessian

V.V. Saiko

Forthcoming experiment: ${}^{238}U + {}^{238}U @ E_{lab} = 1666 \text{ MeV} (7 \text{ MeV/n})$

Thank you for your attention

Synthesis of new elements 119 and 120

Synthesis of element 119: ²⁴⁹Bk+⁵⁰Ti

Synthesis of element 120

Predicted cross sections for synthesis of elements 119 and 120

⁵⁰Ti + ²⁴⁹Bk ⁵⁰Ti + ²⁴⁹⁻²⁵¹Cf ⁵⁴Cr + ²⁴⁸Cm

V.I. Zagrebaev et al., Phys. Rev. C 78, 034610 (2008)
K. Siwek-Wilczynska et al., Int. J. Mod. Phys. E 19, 500 (2010).
A.K. Nasirov et al., Phys. Rev. C 84, 044612 (2011).
Ning Wang et al., Phys. Rev. C 84, 061601 (2011).
Nan Wang et al., Phys. Rev. C 84, 061601 (2011).
Z.H. Liu et al., Phys. Rev. C 84, 031602(R) (2011).
K. Siwek-Wilczynska et al., Phys. Rev. C 99, 054603 (2019).
K.P. Santhosh et al., Phys. Rev. C 96, 034610 (2017).

K. Siwek-Wilczynska et al., Phys. Rev. C 86, 014611 (2012).
A.N. Kuzmina et al., Phys. Rev. C 85, 014319 (2012).
Jinjuan Zhang et al., Nucl. Phys. A 909, 36 (2013).
Z.H. Liu, J.D. Bao, Phys. Rev. C 87, 034616 (2013).
V.I. Zagrebaev, W. Greiner, Nucl. Phys. A 944, 257 (2015).
G. G. Adamian et al., Phys. Part. Nucl. 47, 387 (2016).
A. Ansari et al., Int. J. Mod. Phys. E 26, 1750050 (2017).

Preparation to synthesis of elements 119 and 120: ${}^{48}Ca \rightarrow {}^{50}Ti$

nuclei

 $^{245}Cm + ^{48}Ca \rightarrow ^{293}Lv^{*}$ (~3 pb)

Preparation to synthesis of elements 119 and 120: ${}^{48}Ca \rightarrow {}^{54}Cr$

²⁴⁵Cm+⁴⁸Ca → ²⁹³Lv* (~3 pb)

σ=0.015 pb, h_t=0.4 mg/cm², ε_{coll}=0.7+, I_{beam}=3 pµA → ≈3 events per 9 months