Поиск новых векторных бозонов в рр взаимодействиях при энергии 13 ТэВ

Студ. Н.М.Артемьева, асп. И.А.Кочергин, проф. Л.Н.Смирнова,

студ. Б. .Фадеенко

Ломоносовские чтения 2022, 21 апреоя

Мотивация поиска

- 2022г. десять лет с момента открытия бозона Хиггса и успешного завершения создания Стандартной модели (СМ) описания электрослабых и сильных фундаментальных взаимодействий
- Всё это время измерения на БАК успешно подтверждают справедливость предсказаний СМ до высоких порядков электрослабой теории (ЕW) и квантовой хромодинамики (КХД) NNNL
- Теоретики предлагают новые модели, включающие открытый бозон
 Хиггса как частный случай большего семейства бозонов и другие
 классы частиц, определяемые как свидетельства «новой физики»
- Мотивацию поиска определяют общее несовершенство СМ, космологические данные, нейтринные осцилляции, ...

Методы поиска резонансных состояний

 Безмодельный анализ распределений инвариантных масс групп частиц, поиск избытка событий над общим гладким распределением

- 2. Использование событий, моделированных методом Монте-Карло, для сигнальных и фоновых событий для проверки конкретных моделей новой физики путем сравнения с экспериментальными распределениями в областях верификации фонов и области ожидаемого сигнала
- 3. Применение методов нейронных сетей для выделения сигнала при высоком уровне фоновых событий СМ и использование машинного обучения для безмодельного поиска резонансов

Поиск новых резонансов в системе двух адронных струй в рр взаимодействиях при 13 ТэВ JHEP 03 (2020)145, arxiv;1910.08447

Событие pp соударения с образованием двух струй с pт 3,0 и 2,9 ТэВ и η = - 1,2 и 0,9, масса m_{ii} = 9,5 ТэВ

5

Display of a dijet event (Run=329716, Event=8575822452) with m_{jj} =9.5 TeV, produced in pp collisions at \sqrt{s} =13 TeV data collected in 2017.

Нижние границы для резонансов в конкретных моделях

6

Table 2: The lower limits on the masses of benchmark signals at 95% CL.

Category	Model	Lower limit on signal mass at 95% CL		
		Observed	Expected	
Inclusive	q^*	6.7 TeV	6.4 TeV	
	QBH	9.4 TeV	9.4 TeV	
	W'	4.0 TeV	4.2 TeV	
	W^*	3.9 TeV	4.1 TeV	
	DM mediator Z' , $g_q = 0.20$	3.8 TeV	3.8 TeV	
	DM mediator Z' , $g_q = 0.50$	4.6 TeV	4.9 TeV	
1b	b^*	3.2 TeV	3.1 TeV	
2 <i>b</i>	DM mediator $Z' g_q = 0.20$	2.8 TeV	2.8 TeV	
	DM mediator Z' , $g_q = 0.25$	2.9 TeV	3.0 TeV	
	SSM Z' ,	2.7 TeV	2.7 TeV	
	graviton, $k/\overline{M}_{\rm PL} = 0.2$	2.8 TeV	2.9 TeV	

 α^{-1} 60 α, 50 40α, 30 20-10 10¹⁶ 10¹⁰ 10¹³ 10¹⁹ 10¹ 10⁷ μ [GeV] M..Chizhov et al. arXiv: 1509.07610

В событиях с большим числом тяжелых кварков t, b ведется поиск экзотических бозонов W* и Z*. Эти новые бозоны должны существовать, если мы ожидаем унификации констант электромагнитного, сильного, и слабого взаимодействий при Планковской энергии M_{PL} ≈ 1,2·10¹⁹ ГэВ. Такие возбужденные бозоны отличаются по своим кинематическим характеристикам от рассмотренных выше W'. Поиск таких состояний выполнен пока при 8 ТэВ. Установлены нижние границы масс W* 3,21 ТэВ и Z* 2,85 ТэВ. Анализ при 13 ТэВ выполняется при участии асп. И.Кочергина

Моделирование сигналов векторных бозонов W* и Z* в pp взаимодействиях при 13 ТэВ

Сечение рождения нейтрального бозона Z* очень мало и данный процесс имеет очень сложную сигнатуру. Например, для Z^*_{μ} с массой M = 0,7 TeV при энергии $\sqrt{s} = 13$ TeV сечение рождения порядка 10 fb, которое можно сравнить с $\sigma^{SM} = 12,0 \pm 2,4$ fb и $\sigma^{exp} = 24^{+7}_{-6}$ fb

8

ATLAS Collaboration, Eur. Phys. J. C 80 (2020) 1085

Поэтому рассматривается другой процесс – рождение заряженного бозона W*: $gg \rightarrow t\bar{b}W^{*-} \rightarrow t\bar{t}b\bar{b}$ (4FS). Тогда, например, для W^*_{μ} с массой M = 0,7 TeV при энергии $\sqrt{s} = 13$ TeV сечение рождения порядка 230 fb. Конечное состояние совпадает с ассоциированным рождением бозона Хиггса с парой top кварков и последующим распадом Хиггса на bottom кварки, однако имеет абсолютно другую кинематику.

Распад заряженного BSM Хиггса на top и bottom кварки имеет почти такую же кинематику, что и W*.

Запрошена и осуществлена генерация fastsim samples W* -> tb MC 4FS для масс W* 700, 800, 900, 1000 и 1200 ГэВ по 1.0 M events (250K+320K+430K) каждый.

Точки в 700 и 900 ГэВ новые, и добавляются в анализ в настоящее время.

Из-за технической ошибки были сгенерированы fullsim samples для периода MC16d (2017 г), поэтому вместе с новыми точками были сгенерированы и соответствующие fastsim samples.

Монте-Карло моделирование фоновых процессов для поиска W* и Z*

Physics process	ME generator	PS generator	Normalisation	PDF set	Simulation
$t\bar{t}$ + jets	Powheg-Box v2	Рутніа 8.230	NNLO+NNLL	NNPDF3.0NLO	Fast
Single-top <i>t</i> -chan	Powheg-Box v2	Рутніа 8.230	aNNLO	NNPDF3.0NLOnf4	Full
Single-top <i>tW</i>	Powheg-Box v2	Рутніа 8.230	aNNLO	NNPDF3.0NLO	Full
Single-top s-chan	Powheg-Box v2	Рутніа 8.230	aNNLO	NNPDF3.0NLO	Full
V + jets	Sherpa 2.2.1	Sherpa 2.2.1	NNLO	NNPDF3.0NNLO	Full
$t\bar{t}V$	MG5_aMC 2.3.3	Рутніа 8.210	NLO	NNPDF3.0NLO	Full
tŦH	Powheg-Box v2	Рутніа 8.230	NLO	NNPDF3.0NLO	Full
Diboson	Sherpa 2.2	Sherpa 2.2	NLO	NNPDF3.0NNLO	Full
tHjb	MG5_aMC 2.6.0	Рутніа 8.230	NLO	NNPDF3.0NLOnf4	Full
tHW	MG5_aMC 2.6.2	Рутніа 8.235	NLO	NNPDF3.0NLO	Full
tZq	MG5_aMC 2.3.3	Рутніа 8.212	NLO	CTEQ6L1LO	Full
tZW	MG5_aMC 2.3.3	Рутніа 8.212	NLO	NNPDF3.0NLO	Full
Four top quarks	MG5_aMC 2.3.3	Рутніа 8.230	NLO	NNPDF3.1NLO	Fast

11

L2Ntplus распределения

Используется asetup AnalysisBase,21.2.182

В качестве фоновых событий – ttbar (did 410470)

 Нормализация осуществляется применением функции root со значениями sigma из XSextion-MC16 file (аналогично AMI)

Для сигнала hist->scale(1/hist->Integral(), "width")
 Для фона hist->scale(sigmattbar/sigma*1/ko*1/hist->Integral(), "width")

Background was reduce (ko=): for 600GeV – 4000 times for 1000GeV – 30000 times for800GeV – 12000 times for 1200GeV – 68000 times Распределения: $\Delta(\eta_{jet \, lead} - \eta_{jet \, sublead})$ Centrality b-jet p_T leading b-jet p_T H_T H₁^{All} p_T^{jet5} Mbb_mindR

Области:

5j3b (=5 jet, =3 b) 5j4bin (=5 jet, \ge 4 b) 6jin3b (\ge 6 jet, =3 b) 6jin4bin (\ge 6 jet, \ge 4 b)

24.02.20

hdbbeta 10-Entries 5000 1.147 Mean 0.8631 Std Dev 10-М_{₩*} = 80 ГЭВ 12 М _{w*} = 60 ГЭВ $\Delta(\eta_{jet \ lead} - \eta_{jet \ sublead})$ Для сравнения: Validation plots from MC and TRUTH3 event generation 4FS 1.5 2 2.5 3 3.5 5 2 2.5 3 3.5 $|\eta_1 - \eta_2|$ between leading and subleading b-jets $|\eta_1 - \eta_2|$ between leading and subleading b-jets hdbbeta Моделирование Entries 5000 M_{W*} = 1000 ГэВ Mean 1.347 450 Std Dev 0.938 СИГНОЛОВ 400 F векторных 350 М_{w*} = 1200 ГэВ бозонов W* и Z* в 300 250 pp 200 взаимодействиях 150 при 13 ТэВ 100 50 5 1 1.5 2 2.5 3 3 0 0.5 3.5 un den de celere de c 25 3.5 $|\eta_1 - \eta_2|$ between leading and subleading b-jets $|\eta_1 - \eta_2|$ between leading and subleading b-jets

hdbbeta

5000

1.275

0.9102

hdbbeta

0.9

Entries

Std Dev

Mean

Entries

Mean

Std Dev

Red – signal
Blue– background5j3b, $\Delta(\eta_{jet \, lead} - \eta_{jet \, sublead})$ Background reduce:
for 600GeV – 4000 times for 1000GeV – 30000 times
for 800GeV – 12000 times for 1200GeV – 68000 times

Анализ открытых данных ATLAS при 13 ТэВ

Используются материалы сайта:

http://opendata.atlas.cern/

Публикации:

15

1. The ATLAS Collaboration,

Review of the 13 TeV ATLAS Open Data release, ATL-OREACH-PUB-2020-001;

2. The ATLAS Collaboration,

Review of ATLAS Open Data 8 TeV datasets, tools and activities, ATL-OREACH-PUB-2018-001

Исследование одиночного рождения † кварка в † канале на открытых данных 13 ТэВ

Диаграммы электрослабого процесса рождения одиночного † кварка в рр взаимодействиях, сечение 217,0^{+9.0}-7,7

Задачи: - проверка СМ; - Измерение V_{tb}; - Уточнение структурных функций протона через измерение R_t = σ(t)/σ(t) определяет отношение υ/d кварков; Измерение поляризации и массы t

17

Зарегистрировано 5 июня 2015: t-channel single top-quark production in the muon plus jets channel.

Мюон с рт = 30 ГэВ показан красным Зеленым и желтым отмечены две струи от кварков с рт около 30 ГэВ и 50 ГэВ, вторая образована b кварком Потерянная поперечная энергия около 40 ГэВ

Аифференциальные сечения событий с одиночным рождением t (канал tq) $t \rightarrow lvb + q$

Распределения по псевдобыстроте для b струй и лептонов

20

Заключение

- Показана актуальность поиска новых резонансов в рр взаимодействиях
- Приведены новые результаты ATLAS поиска резонансов в системе двух адронных струй
- Представлены новые модельные распределения для поиска векторных резонансов W* и Z* в рр взаимодействиях при энергии 13 ТэВ
- Представлены первые результаты для характеристик событий одиночного рождения † кварка по открытым данным ATLAS при 13 ТэВ