Научно-исследовательский институт ядерной физики имени Д.В. Скобельцына Московского государственного университета имени М.В. Ломоносова

Исследование фотоядерных реакций на изотопах диспрозия

«Ломоносовские чтения 2025»

Доклад <u>асп. Фурсовой Н.Ю.</u>, нач.лаб. Алиева Р.А., ассистента Белышева С.С., доцента Кузнецова А.А., ст.науч.сотр. Ханкина В.В

Москва, 2025 год

Цель: получение новых экспериментальных данных для фотоядерных реакций на природной смеси изотопов диспрозия.

Задачи:

- подготовка и проведение экспериментов по облучению мишеней из диспрозия натурального изотопного состава на импульсном разрезном микротроне НИИЯФ МГУ с энергией 55 МэВ;
- измерение и обработка спектров остаточной активности, получение экспериментальных выходов фотонейтронных и фотопротонных реакций;
- сравнение экспериментальных выходов фотоядерных реакций с расчетами, выполненными на основе комбинированной модели фотонуклонных реакций и по программе TALYS.

155Dy	156Dy	157Dy	158Dy	159Dy	160Dy	161Dy	162Dy	163Dy	164Dy
9.92 h	STABLE	8.14 h	STABLE	145.3 d	STABLE	STABLE	STABLE	STABLE	STABLE
ε+β+=100%	0.056%	ε+β+=100%	0.095%	ε=100%	2.329%	18.889%	25.475*	24.896%	28.26%
154Tb 21.5 h ε+β+=100%	155Tb 5.32 d e=100%	156Tb 5.35 d ε+β+=100%	157Tb 71 y ε=100%	158Tb 180 y ε+β+=83.4% β ⁻ =16.6%	159Tb STABLE 100%	160Tb 72.3 d β ⁻ =100%	161Tb 6.96 d β ⁻ =100%	162Tb 7.6 min β ⁻ =100%	163Tb 19.5 min β ⁻ =100%
153Gd	154Gd	155Gd	156Gd	157Gd	158Gd	159Gd	160Gd	161Gd	162Gd
240.41 d	STABLE	STABLE	STABLE	STABLE	STABLE	18.479 h	STABLE	3.66 min	8.39 min
ε=100%	2.18%	14.8%	20.47%	15.65%	24.84%	β ⁻ =100%	21.86%	β ⁻ =100%	β ⁻ =100%

В современной медицине изотоп ¹⁶¹Тb рассматривается как возможная альтернатива ¹⁷⁷Lu, благодаря схожим физическим и химическим свойствам.

- ➤ Электроны с энергией 154 кэВ, испускаемые при распаде ¹⁶¹Тb, подходят для терапии.
- ▶ γ-излучение с энергиями 25.7 кэВ (23%), 48.9 кэВ (17%) и 74.6 кэВ (10%) можно применять для однофотонной эмиссионной компьютерной томографии (ОФЭКТ).
- ➤ Особенностью распада ¹⁶¹Тb является дополнительное испускание значительного числа конверсионных и оже-электронов с энергиями ≤ 40 кэB, что увеличивает терапевтическую эффективность данного нуклида по сравнению с ¹⁷⁷Lu.

Методика проведения эксперимента

- эксперимент проводился на тормозном пучке импульсного разрезного микротрона НИИЯФ МГУ с максимальной энергией электронов 55 МэВ;
- тормозная мишень из вольфрама толщиной 1 мм;
- > для контроля параметров облучения использовался монитор из кобальта;
- ▶ время облучения составляло 3359 с, средний ток 103 нА.

Спектры *γ*-квантов измерялись в диапазоне энергий от 35 кэВ до 3.7 МэВ на детекторе из сверхчистого германия Canberra GC3019 с цифровым многоканальным анализатором InSpector 1250.

Образовавшиеся в результате фотоядерных реакций изотопы идентифицировались по энергии *γ*-квантов и периоду полураспада образовавшихся изотопов.

Изотоп	T _{1/2}	Е _ү , кэВ (І _ү , %)
¹⁵⁵ Dy	9.92 ч	184.56 (3.39), 226.92 (68.7), 664.17 (2.25), 999.68 (2.45), 1155.47 (2.1)
¹⁵⁷ Dy	8.14 ч	182.42 (1.33), 326.34 (93)
¹⁵⁹ Dy	145.3 дн	58.0 (2.27)
¹⁵⁵ Tb	5.32 дн	86.55 (32.0), 105.32 (25.1)
¹⁶⁰ Tb	72.3 дн	298.58 (26.1), 879.38 (30.1), 962.31 (9.81), 966.17 (25.1), 1177.96 (14.9), 1271.87 (7.44)
¹⁶¹ Tb	6.9584 дн	74.57 (10.2)
¹⁶² Tb	7.6 мин	260.05 (80.0), 807.53 (42.8), 882.32 (13.4), 888.20 (38.7)
¹⁶³ Tb	19.5 мин	250.8 (6.7), 316.4 (8.3), 347.8 (6.2), 351.2 (26.0), 354.3 (4.6), 386.3 (4.5), 389.8 (24.0), 401.9 (2.5), 415.0 (5.4), 421.9 (11.5), 427.6 (3.5), 475.4 (2.9), 494.5 (22.5), 507.5 (4.6), 533.0 (9.5), 559.5 (2.0), 583.9 (7.0), 608.3 (3.7)

Зависимости интенсивностей максимумов при энергиях 260, 326 и 495 кэВ в спектре остаточной активности образца Dy от времени

Е _γ , кэВ	Изотоп	Т _{1/2 эксп}	Т _{1/2 теор}
260	¹⁶² Tb	8.00 ± 0.05 мин	7.6 мин
326	¹⁵⁷ Dy	8.1 <u>±</u> 0.05 ч	8.14 ч
495	¹⁶³ Tb	19.2 <u>+</u> 0.29 мин	19.5 мин

Методика расчета выходов одноканальных фотоядерных реакций

Экспериментальные выходы реакций рассчитывались по площадям фотопиков *S* в спектрах остаточной активности с учетом мертвого времени детектора, тока ускорителя во время облучения и нескольких каналов распада, приводящих к образованию исследуемых изотопов:

$$Y_1(E^m) = \frac{N_{10}}{e^{-\lambda_1 t} \int_0^{t_1} I(t) e^{\lambda_1 t} dt} = \frac{\lambda_1 N_{10}}{I_{cp}(1 - e^{-\lambda_1 t_1})},$$

где $N_{10} = \frac{S}{I_{\gamma} \varepsilon_{\gamma} (e^{-\lambda_1 (t_2 - t_1)} - e^{-\lambda_1 (t_3 - t_1)})}$ - число ядер исследуемого изотопа на момент

окончания облучения, λ_1 - постоянная распада изотопа, I_{γ} - квантовый выход, ε_{γ} - эффективность детектора, I(t) - ток ускорителя, t_1 - время облучения, t_2 - время начала измерения спектров, t_3 - время окончания измерения спектров.

Методика расчета выходов двухканальных фотоядерных реакций

Часть ядер образуются не только в ходе фотоядерной реакции на стабильном изотопе, но и в результате распада других ядер на изучаемый изотоп.

Примером может служить образование ¹⁵⁵Tb в результате фотоядерных реакций $^{nat}Dy(\gamma,in1p)^{155}Tb$ и распада родительского изотопа ¹⁵⁵Dy. В таком случае выход ¹⁵⁵Dy рассчитывается по одноканальной формуле, а выход ¹⁵⁵Tb по двухканальной:

$$Y_{2} = \frac{\lambda_{2}}{I_{cp}(1 - e^{-\lambda_{2}t_{1}})} \left(N_{20} - \frac{\chi \lambda_{1} N_{10}}{\lambda_{2} - \lambda_{1}} \left(e^{-\lambda_{1}t_{1}} - e^{-\lambda_{2}t_{1}} \right) \right)$$

где
$$N_{20} = \frac{S}{I_{\gamma}\varepsilon_{\gamma}(e^{-\lambda_2(t_2-t_1)}-e^{-\lambda_2(t_3-t_1)})} + \frac{\chi N_{10}}{\lambda_2-\lambda_1} \left(\lambda_1-\lambda_2\frac{\left(e^{-\lambda_1(t_2-t_1)}-e^{-\lambda_1(t_3-t_1)}\right)}{\left(e^{-\lambda_2(t_2-t_1)}-e^{-\lambda_2(t_3-t_1)}\right)}\right) - \frac{S}{I_{\gamma}\varepsilon_{\gamma}(e^{-\lambda_2(t_2-t_1)}-e^{-\lambda_2(t_3-t_1)})}$$

число ядер ¹⁵⁵Tb на момент окончания облучения, λ_1 и λ_2 - постоянные распада изотопов ¹⁵⁵Dy и ¹⁵⁵Tb, χ – коэффициент распада ¹⁵⁵Dy на ¹⁵⁵Tb.

Выходы фотоядерных реакций на стабильных изотопах диспрозия

Изотон	т	Мишень 1	Мишень 2	
	1 1/2	Y _{exp} , 1/e	Y _{exp} , 1/e	
¹⁵⁵ Dy	9.92 ч	$(3.97\pm0.35)\ 10^{-9}$	$(8.26 \pm 0.74) \ 10^{-9}$	
¹⁵⁷ Dy	8.14 ч	$(3.02\pm0.26)\ 10^{-8}$	$(6.48 \pm 0.56) \ 10^{-8}$	
¹⁵⁹ Dy	145.3 дн	-	$(1.69\pm0.29)\ 10^{-6}$	
¹⁵⁵ Tb	5.32 дн	$(5.55\pm2.64)\ 10^{-10}$	$(1.14\pm0.23)\ 10^{-9}$	
¹⁶⁰ Tb	72.3 дн	(1.91±0.17) 10 ⁻⁸	$(5.00\pm0.27)\ 10^{-8}$	
¹⁶¹ Tb	6.89 дн	$(7.91 \pm 0.84) \ 10^{-8}$	$(8.74 \pm 0.87) \ 10^{-8}$	
¹⁶² Tb	7.6 мин	$(1.78\pm0.01)\ 10^{-8}$	-	
¹⁶³ Tb	19.5 мин	$(1.46 \pm 0.11) \ 10^{-8}$	-	

Для сравнения экспериментальных данных с расчетами на основе комбинированной модели фотоядерных реакций и по программе TALYS были рассчитаны относительных выходы фотонуклонных реакций, нормированные на выход ¹⁵⁵Dy на природной смеси изотопов диспрозия:

$$Y_{\text{отн}} = \frac{Y_k^{-1}}{Y_{155Dy}^{prod}},$$
 где $Y_k^{prod} = \alpha \sum_i \eta_i \int_{E_{ithr}}^{E^m} \sigma(E, E^m) \sigma_i(E) dE, \eta_i$ - процентное содержание изотопа в природной смеси, $\sigma(E, E^m)$ - сечение Зельтцера-Бергера, $\sigma_i(E)$ - сечение исследуемой реакции.

wprod

Изотоп	Реакции образования изотопа	У _{отн} (эксп)	Y _{отн} (КМФР+ТАLYS	S) $Y_{\text{OTH}}(\text{TALYS})$
¹⁵⁵ Dy	$\label{eq:mat} \begin{array}{l} {}^{nat}Dy(\gamma,in) = \\ 0.00056^{\cdot 156}Dy(\gamma,1n) \\ + 0.00095^{\cdot 158}Dy(\gamma,3n) \\ + 0.02329^{\cdot 160}Dy(\gamma,5n) \\ + 0.18889^{\cdot 161}Dy(\gamma,6n) \end{array}$	1	1 0.67 0.03 0.12 0.18	1 0.65 0.03 0.13 0.19
¹⁵⁷ Dy	$\label{eq:asymptotic} \begin{array}{l} {}^{nat}Dy(\gamma,in) = \\ 0.00095^{.158}Dy(\gamma,1n) \\ + 0.02329^{.160}Dy(\gamma,3n) \\ + 0.18889^{.161}Dy(\gamma,4n) \\ + 0.25475^{.162}Dy(\gamma,5n) \\ + 0.24896^{.163}Dy(\gamma,6n) \\ + 0.2826^{.164}Dy(\gamma,7n) \end{array}$	7.61±0.94	7.47 1.15 0.92 3.12 1.80 0.48 0.003	7.72 1.15 0.87 3.29 1.90 0.51 0.004
¹⁵⁹ Dy	$\label{eq:attraction} \begin{array}{l} {}^{nat}Dy(\gamma,in) = \\ 0.02329^{\cdot160}Dy(\gamma,1n) \\ + 0.18889^{\cdot161}Dy(\gamma,2n) \\ + 0.25475^{\cdot162}Dy(\gamma,3n) \\ + 0.24896^{\cdot163}Dy(\gamma,4n) \\ + 0.2826^{\cdot164}Dy(\gamma,5n) \end{array}$	205.3±40.1	112.80 27.84 65.39 12.48 4.60 2.48	110.35 26.98 65.24 10.92 4.69 2.52
155Dy 9.92 h ε+β+=100%	156Dy 157Dy 15 STABLE 8.14 h ST. 0.056% 0.0	8 Dy 159Dy ABLE 145.3 d 095 0 ε=100%	160Dy 161Dy 162D STABLE STABLE STABLE 2.329% 18.889% 25.47	y 163Dy 164Dy E STABLE STABLE 5% 24.896% 28.26%

Изотоп	Реакции образ изотопа	вования а	У _{отн} ((эксп)	У _{отн} (КМ	ΛΦP+TALYS	5) Y	_{oth} (TALYS)	
¹⁵⁵ Tb	^{nat} Dy(γ,in1] 0.00056· ¹⁵⁶ Dy +0.00095· ¹⁵⁸ Dy	p) = $\gamma(\gamma, 1p)$ $(\gamma, 2n1p)$	0.137±0.03			0.023 0.020 0.003		0.003 0.002 0.001	
¹⁶⁰ Tb	$\begin{array}{r} {}^{nat}Dy(\gamma,in1p) = \\ 0.18889 \cdot {}^{161}Dy(\gamma,1p) \\ + 0.25475 \cdot {}^{162}Dy(\gamma,1n1p) \\ + 0.24896 \cdot {}^{163}Dy(\gamma,2n1p) \\ + 0.2826 \cdot {}^{164}Dy(\gamma,3n1p) \end{array}$		6.06±0.64			5.43 3.63 1.11 0.53 0.18		1.04 0.25 0.46 0.23 0.10	
¹⁶¹ Tb	$\begin{array}{l} {}^{nat}Dy(\gamma,in1p) = \\ 0.25475 \cdot {}^{162}Dy(\gamma,1p) \\ + 0.24896 \cdot {}^{163}Dy(\gamma,1n1p) \\ + 0.2826 \cdot {}^{164}Dy(\gamma,2n1p) \end{array}$		10.58±1.42 6 4 1 0		6.57 4.53 1.44 0.60		1.10 0.31 0.52 0.27		
¹⁶² Tb	$\begin{array}{r} {}^{nat}Dy(\gamma,in1p) = \\ 0.24896 \cdot {}^{163}Dy(\gamma,1p) \\ + 0.2826 \cdot {}^{164}Dy(\gamma,1n1p) \end{array}$		4.50 <u>-</u>	<u>+</u> 0.47	5.12 4.10 1.02			0.74 0.27 0.47	
¹⁶³ Tb	0.2826· ¹⁶⁴ Dy(γ,1p)		3.69 <u>-</u>	<u>+</u> 0.42	4.02			0.25	
15 ST 0.	56Dy 157Dy ABLE 8.14 h 056% ε+β+=100%	158Dy STABLE 0.095%	159Dy 145.3 d ε=100%	160Dy STABLE 2.329%	161Dy STABLE 18.889%	162Dy STABLE 25.475%	163Dy STABLE 24.896%	164Dy STABLE 28.26%	
15 5. z=	55Tb 156Tb 32 d 5.35 d 100% ε+β+=100%	157Tb 71 y ε=100%	158Tb 180 y ε+β+=83.4%	159Tb Stable 100%	160Tb 72.3 d β ⁻ =100%	161Tb 6.96 d β ⁻ =100%	162Tb 7.6 min β ⁻ =100%	163Tb 19.5 min β ⁻ =100%	

Сечение реакции ¹⁶⁴Dy(γ,1p)¹⁶³Tb, рассчитанное на основе комбинированной модели фотонуклонных реакций (с компонентами) и по программе TALYS

Сравнение экспериментальных данных, полученных в данной работе и работах [1-3], с расчетами в рамках комбинированной модели фотонуклонных реакций и по программе TALYS

Изотоп	Е, МэВ	Υ _{отн}	Y _{OTH} present work	Y_{OTH} (ΚΜΦΡ+TALYS)	
	12	1.85 ± 0.23 [1]	_	2.20	
	14	1.98 ± 0.78 [2] 1.42 ± 0.15 [1]	_	1.90	
157 D v	16	1.88 ± 0.19 [1]	_	1.81	
Dy	55	8.06 ± 1.53 [3]	7.61 <u>±</u> 0.94	7.47	
	65	6.39 ± 1.09 [1]	_	5.18	
	75	5.40 ± 1.12 [1]	_	3.60	
¹⁵⁹ Dy	55	—	205.3 ± 40.1	112.80	
	65	60.20 ± 12.57 [1]	—	57.64	
	75	42.96 ± 8.87 [1]	—	34.93	
¹⁶⁰ Tb	55	7.18 ± 1.38 [3]	6.06±0.64	5.43	
¹⁶¹ Tb	55	9.56 ± 1.74 [3]	10.58 ± 1.42	6.57	
¹⁶³ Tb	55	2.84 ± 0.63 [3]	3.69±0.42	4.02	

[1] Naik H., Kim G.N., Schwengner R. et al. // Eur.Phys. J. A 56, N 264 (2020).

[2] Vagena E., Stoulos S. // Eur. Phys. J. A 53 (2017).

[3] Fedotova A.O., Aliev R.A., Egorova B.V. et al.// Applied Radiation and Isotopes 198, 110840(2023).

Спасибо за внимание!