Измерение параметров СР-нарушений в распадах B(s) мезонов в эксперименте ATLAS

Мешков Олег Васильевич

Семинар ОЭПВАЯ 3.06.2021

Научный руководитель: профессор Смирнова Л.Н.

Цель работы

- Измерение параметров СР-нарушений в распаде В_s → J/ψφ, зарегистрированных в эксперименте ATLAS в pp-взаимодействиях при 13 ТэВ (инт. свет. 80.5 фб⁻¹)
 - Измеряемые параметры: ϕ_s и $\Delta\Gamma_s$
- Предыдущий анализ был проведен при энергиях pp-взаимодействий 7 и 8 ТэВ (инт. свет. 19.2 фб⁻¹)

<u>JHEP 08 (2016) 147</u>

Результаты предыдущих измерений на Теватроне и Большом адронном – колайдере(БАК)

Детектор ATLAS

- Детектор ATLAS:
- Внутренний детектор
 - Пиксельный(pixel), микростриповый(SCT), трековый детектор переходного излучения (TRT)
- Калориметры (электромагнитный и адронный)
- Мюонный спектрометр

Детектор переходного излучения

- Рабочий элемент трубка диаметром 4 мм
- В центре анодная проволка
- Газовые смеси на основе Ar и Xe в отдельных модулях
- Измерение расстояния по времени дрейфа
- Разрешение ~130 мкм

Принимал участие в тестовых испытаниях на прототипах детектора TRT с целью его подготовки к работе во время Run-2 (2016 г.)

Триггер детектора ATLAS

ATLAS работает с большими потоками данных, соответствующих 10⁹ соударений протонов в секунду. Только некоторые из этих событий содержат интересную информацию, поэтому нужен триггер.

Триггер детектора ATLAS во время второго сеанса работы:

- Триггер первого уровня (L1) снижает поток событий до 100 кГц
- Триггер высокого уровня (HLT) снижает до 1 кГц (поток В-физики ~200 Гц)

Триггер В-физики

Основные триггерные алгоритмы триггера В-физики:

- J/ψ и ψ(2S) 2.5 4.3 ГэВ; (Jpsimumu)
- Y(nS) 8 12 ГэВ;(Upsimumu)
- Редкие распады B(s) 4 8.5 ГэВ; (Bmumu)
- В → µµХ (BMuMuX) 1.5 14 ГэВ (использует трековую информацию внутреннего детектора)

1. $B^0 \rightarrow \mu \mu K^{*0}$

2.
$$B^{0}_{s} \rightarrow \mu\mu\phi$$

3. $B^{+}_{c} \rightarrow \mu\mu D_{s}^{*+}(K^{+}K^{-}\pi^{+})$

Для регистрации распадов $\mathsf{B}_{_{S}} \to J/\psi \phi$ используется триггер J/ψ

Системы мониторинга триггера В-физики

- В процессе эксплуатации детектора ATLAS проводится мониторинг систем триггера:
- •онлайн мониторинг
 - •количество ядер центрального процессора
 - •среднее время обработки событий
 - •гистограммы кинематических переменных
- •Офлайн мониторинг
 - •отслеживаются следующие переменные: прицельные параметров треков d₀ и z₀, координаты вершины рождения В-адрона, η, φ, p_т, как для отдельного мюона, так и для реконструированного кандидата в В-адрон и др.

Офлайн мониторинг

TrigBphys_HLT_mu11_mu6_bBmumuxv2_d0mu1

dx(3

Две группы в Веб Дисплее:

- Эксперт (expert)
- Наблюдатель (shifter)

Используется два теста контроля:

- Сравнение с предыдущим запуском
- Уровень заполнения гистограмм

Гистограмма для прицельного

параметра $d_{\scriptscriptstyle 0}$ для алгоритма B $\,\rightarrow\,\mu\mu X$

Dispersive the second s

p_ (trk)[GeV

Вид гистограмм до и после внесения исправлений:

- Красные круги заполненные нулем, а синие круги пустые гистограммы
- Гистограммы для η и ϕ нулевые, а гистограммы для p_{τ} , $d_{_0}$, $z_{_0}$ для треков пустые

Достигнутое улучшение регистрации пар мюонов в офлайн мониторинге

В алгоритмах триггера В-физики офлайн мониторинга построения кандидатов в Вадрон одни и те же пары мюонов записывались несколько раз, что порождало выбросы количества событий

Достигнуто улучшение при регистрации пар мюонов, этот эффект исключен Примеры для алгоритмов В → µµХ

Программа В-физики в эксперименте ATLAS proton - (anti)proton

- Проверка предсказаний на основе КХД:
 - измерение сечений,
 - спектроскопия, кварконий,
 - экзотические адроны(тетракварк и пентакварк),
 - исследования поляризации, асимметрии распада

Проверка электрослабой физики и поиск новой физики это области, где СМ предсказывает редкие процессы или небольшие эффекты:

- Слабая фаза ϕ_s в $B_s \rightarrow J/\psi \phi$
- Редкие распады $B_{s,d} \rightarrow \mu\mu$
- Нарушение лептонного аромата (R(K^{*}))
- Распад т → 3µ

СР-нарушения в $B_s \rightarrow J/\psi \phi$

 В распаде В_s → J/ψφ, СР-нарушения происходят за счет интерференции между прямыми распадами и распадами посредством B_s - B_s осцилляций

- На левом рисунке основные диаграммы Фейнмана для В_s - В_s осцилляций
- Справа диаграмма прямого распада $B_s \rightarrow J/\psi \phi$

Измеряемые параметры СР-нарушений

- Слабая фаза ϕ_s , которая определяется как разница слабых фаз между амплитудой $B_s \overline{B}_s$ смешивания и амплитудой распада b $\rightarrow c\overline{c}s$
- В СМ фаза ϕ_s мала, а ее значение связанно с величинами элементов матрицы Кабиббо — Кобаяси — Маскавы(ККМ) посредством соотношения $\phi_s \approx -2\beta_s$ и равно: <u>Phys. Rev. D 91 (2015) 073007</u>

•
$$\varphi_s \equiv -2\beta_s = -2\arg(\frac{-V_{ts}V_{*_{tb}}}{V_{cs}V_{*_{cb}}}) = -0.03696 \frac{+0.00072}{-0.00082} pad$$

- Другая характеристика B_s смешивании это разность ширин распадов легкого B_L и тяжелого B_H мезонов: $\Delta \Gamma_s = \Gamma_L \Gamma_H$.
 - ΔГ_s не чувствительна к проявлениям новой физики, является контрольным параметром измерений

Данные для анализа

Eur. Phys. J. C 81 (2021) 342

- Использована интегральная светимость 80.5 фб⁻¹, набранная в Run-2 в период 2015-2017гг. при энергии 13 ТэВ
- Триггерные алгоритмы основаны на идентификации распадов J/ψ → μμ с порогами на поперечные импульсы мюонов 4 или 6 ГэВ
- Использовались моделированные Монте-Карло (МК) наборы распадов:
 - $B_s \rightarrow J/\psi \phi$
 - $B_d \to J/\psi K^*, B_d \to J/\psi K\pi$ и $\Lambda_b \to J/\psi pK$ для оценки фоновых событий

Реконструкция и отбор событий

Отбор событий			
 Хотя бы одна первичная вершина, образованная по меньшей мере четырьмя треками во внутреннем детекторе Не менее одной пары µ⁺µ⁻, реконструированных с использованием внутреннего детектора и мюонного спектрометра 			
Реконструкция J/ѱ → μ⁺μ⁻	Реконструкция ф → К⁺К⁻		
 Двухмюонный вершинный фит χ²/d.o.f. < 10 Три двухмюонных массовых окна для разных частей мюонного спектрометра BB/ BE/EE (центральная часть(Barrel),торцевая часть(Endcap) детектора) 	 р_т(К) > 1 ГэВ, не идентифицированных как мюоны 1008.5 МэВ < m(КК) < 1030.5 МэВ 		

Реконструкция $B_s \rightarrow J/\psi(\mu\mu)\phi(KK)$

• р_т(В_s) > 10 ГэВ

- Четверка треков объединялась в один фит с условием $\chi^2/d.o.f. < 3$
- Использовался кандидат с наименьшим значением χ²/d.o.f. в событии
- 5150 MeV < m(B_s) < 5650 MeV \rightarrow всего отобранно 2 977 526 B_s кандидатов
- Нет отбора по времени жизни разделение фона и сигнала проводилось с помощью фитирования

Анализ угловых распределений распада $B_s \rightarrow J/\psi(\mu\mu)\phi(KK)$ Eur. Phys. J. C 81 (2021) 342

- Распад псевдоскалярного нейтрального В_s → J/ψ(μμ)φ(КК) на конечное состояние с двумя векторными мезонами
- Конечное состояние: суперпозиция из СР-нечетных (L = 1) и СР-четных (L = 0, 2) состояний
- Статистическое разделение всех этих состояний возможно благодаря угловому анализу продуктов распада

Схематическое изображение распада $B_s \rightarrow J/\psi(\mu\mu)\phi(KK)$ в системах покоя J/ ψ и ϕ -мезонов. Отмечены поперечные углы ($\theta_{\tau}, \phi_{\tau}, \psi_{\tau}$)

Метод мечения В_s (типа b-кварка)

- Начальный аромат нейтрального В-мезона может быть восстановлен с использованием информации от противоположного В-адрона, содержащего парный к исходному b-кварк (opposite-side tagging, OST)
- Методы мечения:
 - электрический заряд электрона
 - электрический заряд мюона
 - электрический заряд струи b-адрона (если отсутствует лептон)

В мечение аромата Eur. Phys. J. C 81 (2021) 342

5 MeV

ATLAS

350 √s=13 TeV, 80.5 fb⁻¹

- Используем b-b кореляцию для определения начального аромата Вмезона
 - b → I переход чистый метод
 - b → c → I и осциляции нейтрального Вмезона разбавляют мечение
- Для выбранного мюона, электрона или струи строится заряд:

$$Q_x = \frac{\sum_{i}^{N \text{ tracks}} q_i \cdot (p_{\text{T}i})^{\kappa}}{\sum_{i}^{N \text{ tracks}} (p_{\text{T}i})^{\kappa}} \longrightarrow \mathsf{P}(\mathsf{Q}|\mathsf{B}^{\pm}) \ \mathsf{Q} \in <-1,1>$$

- Распад В[±] → J/ψК[±] использовался для калибровки мечения аромата
- Вероятность того, что В-мезон образуется в состоянии, содержащем анти b-кварк • $P(B|Q_x) = P(Q_x|B^+)/(P(Q_x|B^+) + P(Q_x|B^-))$

5.6

Качество процедуры мечения

Eur. Phys. J. C 81 (2021) 342

Tag method	ϵ_x [%]	D_x [%]	T_x [%]
Tight muon	4.50 ± 0.01	43.8 ± 0.2	0.862 ± 0.009
Electron	1.57 ± 0.01	41.8 ± 0.2	0.274 ± 0.004
Low- $p_{\rm T}$ muon	3.12 ± 0.01	29.9 ± 0.2	0.278 ± 0.006
Jet	12.04 ± 0.02	16.6 ± 0.1	0.334 ± 0.006
Total	21.23 ± 0.03	28.7 ± 0.1	1.75 ± 0.01

- Эффективность ε_x : отношение числа В-кандидатов, меченных данным методом, к полному числу кандидатов: $\varepsilon_x = \frac{N_{tagged}}{N}$
- Коэффициент разбавления D_x (dilution) : D = (1 2w), где w вероятность ошибочного мечения
- Мощность мечения T_x (tagging power) : показатель качества работы мечения
 - Зависит от разбавления и эффективности: $TP = \epsilon D^2 = \epsilon (1 - 2w)^2$

Фит методом наибольшего правдоподобия

Eur. Phys. J. C 81 (2021) 342

Комбинаторные фоновые

Проводится одновременное фитирование массы, времени жизни и угловых распределений методом наибольшего правдоподобия

$$\ln \mathcal{L} = \sum_{i=1}^{N} w_i \cdot \ln[f_s \cdot \mathcal{F}_s(m_i, t_i, \sigma_{m_i}, \sigma_{t_i}, \Omega_i, P_i(B|Q_x), p_{T_i})] + f_s \cdot f_{B^0} \cdot \mathcal{F}_{B^0}(m_i, t_i, \sigma_{m_i}, \sigma_{t_i}, \Omega_i, P_i(B|Q_x), p_{T_i}) + f_s \cdot f_{A_b} \cdot \mathcal{F}_{A_b}(m_i, t_i, \sigma_{m_i}, \sigma_{t_i}, \Omega_i, P_i(B|Q_x), p_{T_i})$$

Физические параметры:

етры: Переменные:

• Фаза ф

- Ширины распада: ΔГ_s, Г_s
- Амплитуды распада: $|A_0(0)|^2$, $|A_{\parallel}(0)|^2$, δ_{\parallel} , δ_{\perp}
- S-волна: |A_s(0)|², δ_s
- $\Delta m_s фиксировано (PDG)$

• Базовые переменные: m_i , t_i , Ω_i

+ $(1 - f_{\mathrm{s}} \cdot (1 + f_{B^0} + f_{\Lambda_b}))\mathcal{F}_{\mathrm{bkg}}(m_i, t_i, \sigma_{m_i}, \sigma_{t_i}, \Omega_i, P_i(B|Q_x), p_{\mathrm{T}_i})],$

процессы

- Переменные для каждого кандидата:
 - Неопределенность : σ_{m} , σ_{t}
 - Вероятность тагирования и метод: P(B|Q)

Функции плотности вероятности (probability density function, PDF)

$$\ln \mathcal{L} = \sum_{i=1}^{N} \{ w_i \cdot \ln(f_{\mathrm{s}}\mathcal{F}_{\mathrm{s}} + f_{\mathrm{s}}f_{B^0}\mathcal{F}_{B^0} + f_{\mathrm{s}}f_{\Lambda_b}\mathcal{F}_{\Lambda_b} + (1 - f_{\mathrm{s}}(1 + f_{B^0} + f_{\Lambda_b}))\mathcal{F}_{\mathrm{bkg}} \}$$

- Вклад от $B_{d} \rightarrow J/\psi K^{*}, \, B_{d} \rightarrow J/\psi K\pi$ и $\Lambda_{b} \rightarrow J/\psi pK$
- Эти распределения моделируются с учетом эффектов аксептанса и затем описываются с помощью полиномов Лежандра
- Фиксированы в основном фите
- Доли f(B_d)=(4.3±0.5)% и f(Λ_b)=(2.1±0.6)%
 - Эффективности отбора и аксептанс, используя МК
 - Парциальные ширины (Br) из PDG
 - Вероятности фрагментации b-кварка из предыдущих измерений
- Комбинаторные фоновые процессы:
 - Масса: экспонента+константа
 - Время: дельта-функция и 3 экспоненты, используя σ_t
 - Углы: Лежандра полиномы в боковых областях спектра, фиксированы в основном фите

Систематические неопределенности

ϕ_s	$\Delta\Gamma_s$	Γ_s	$ A_{\parallel}(0) ^2$	$ A_0(0) ^2$	$ A_{S}(0) ^{2}$	δ_{\perp}	δ_{\parallel}	$\delta_{\perp} - \delta_S$
) 342 [10 ⁻³ rad]	$[10^{-3} \text{ ps}^{-1}]$	$[10^{-3} \text{ ps}^{-1}]$	$[10^{-3}]$	$[10^{-3}]$	$[10^{-3}]$	$[10^{-3} \text{ rad}]$	$[10^{-3} \text{ rad}]$	[10 ⁻³ rad]
19	0.4	0.3	0.2	0.2	1.1	17	19	2.3
0.8	0.2	0.5	< 0.1	< 0.1	< 0.1	11	7.2	< 0.1
0.5	0.3	< 0.1	1.0	0.9	2.9	37	64	8.6
0.2	0.2	0.5	< 0.1	< 0.1	0.1	3.0	5.7	0.5
election 0.4	1.6	1.3	0.1	1.0	0.5	2.3	7.0	7.4
les model:								
function 2.5	< 0.1	0.3	1.1	< 0.1	0.6	12	0.9	1.1
bins 1.3	0.5	< 0.1	0.4	0.5	1.2	1.5	7.2	1.0
ass window 9.3	3.3	0.2	0.4	0.8	0.9	17	8.6	6.0
lebands intervals 0.4	0.1	0.1	0.3	0.3	1.3	4.4	7.4	2.3
grounds:								
2.6	1.1	< 0.1	0.2	3.1	1.5	10	23	2.1
1.6	0.3	0.2	0.5	1.2	1.8	14	30	0.8
1.0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	15	4.0	< 0.1
g frac 1.4	1.1	0.5	0.5	0.6	0.8	12	30	0.4
bins 0.7	0.5	0.8	0.1	0.1	0.1	2.2	14	0.7
se 0.3	< 0.1	< 0.1	< 0.1	< 0.1	0.2	8.0	15	37
5.7	1.3	1.2	1.3	0.4	1.1	3.3	19	0.3
22	4.3	2.2	2.3	3.8	4.6	55	88	39
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Систематическим погрешности, связанным с методикой калибровки процедуры тагирования Угловой аксептанс рассчитывается с помощью модельных сигнальных событий в бинах по углам и поперечному импульсу

Угловые распределения для фона: выборы функции фитирования, количества бинов, интервала массы

Вклад событий ${\rm B_d} \,{\rightarrow}\, J/\psi K^*$, ошибочно реконструированных как ${\rm B_s} \,{\rightarrow}\, J/\psi \phi$

Вклад событий $\Lambda_{h} \rightarrow J/\psi Kp$, ошибочно реконструированных как $B_{s} \rightarrow J/\psi \phi$

Вариации модели фита. Систематические эффекты, связанные с выбором модели фита

Проекции и результаты фита

 $\int^{xy} m^B$

 $p_{T_{P}}$

Проводится одновременное фитирование массы, времени жизни и угловых распределений

Parameter	Value	Statistical	Systematic	
		uncertainty	uncertainty	
ϕ_s [rad]	-0.081	0.041	0.022	
$\Delta\Gamma_{\rm s}$ [ps ⁻¹]	0.0607	0.0047	0.0043	
$\Gamma_s [ps^{-1}]$	0.6687	0.0015	0.0022	
$ A_{\ }(0) ^2$	0.2213	0.0019	0.0023	
$ A_0(0) ^2$	0.5131	0.0013	0.0038	
$ A_{S}(0) ^{2}$	0.0321	0.0033	0.0046	
$\delta_{\perp} - \delta_S$ [rad]	-0.25	0.05	0.04	
Solution (a)				
δ_{\perp} [rad]	3.12	0.11	0.06	
δ_{\parallel} [rad]	3.35	0.05	0.09	
Solution (b)				
δ_{\perp} [rad]	2.91	0.11	0.06	
δ_{\parallel} [rad]	2.94	0.05	0.09	

Для сильных фаз δ_{\perp} и δ_{\parallel} найдены два хорошо разделенных локальных максимума правдоподобия с –2 Δ ln(*L*)=0.03

Угловые распределения продуктов распада Еиг. Phys. J. C 81 (2021) 342

Статистическое объединение результатов Run-2 с результатами Run-1

Eur. Phys. J. C 81 (2021) 342

Объединение ATLAS Run 1 & Run 2 (19.2 фб⁻¹ + 80.5 фб⁻¹):

Run 1 (19.2 φб⁻¹) & Run 2 (80.5 φб⁻¹):

Статистическое объединение с Run1 результатами ATLAS :

- 4.9 фб⁻¹ (7 ТэВ, pp 2011)
- 14.3 фб⁻¹(8 ТэВ, pp 2012) статическое объединение с 7 TeV

Последние результаты БАК

Run2 ATLAS:

- $\phi_s = -0.087 \pm 0.036$ (стат.) ± 0.021 (сист.) рад
- ΔГ_s= 0.0657 ± 0.0043 (стат.) ± 0.0037 (сист.) г Run2+Run1 ATLAS:
- φ_s=-0.087 ± 0.036(стат.) ± 0.021 (сист.) рад
- ∆Г_s=0.0657±0.0043(стат)±0.0037(сист) пс⁻¹
 Мировое среднее (HFLAV 2021):
- ΔΓ_s=0.082 ± 0.005 пс⁻¹

$B_s \rightarrow J/\psi KK$	ф _s [рад]
LHCb 4.9 fb ⁻¹ Объединение с 3 другими каналами, EUR. PHYS. J. C 79 (2019) 706	-0.042±0.025
CMS 96.4 fb ⁻¹ Run2 обьединение с Run1, CMS-PAS-BPH-20-001	-0.021±0.045
ATLAS 80.5 fb ⁻¹ • Run2 объединение с Run1, Eur. Phys. J. C 81 (2021) 342	-0.087 ± 0.036 (стат.) ± 0.021 (сист.)

Основные результаты работы

- 1) Проведены работы по улучшению детектора ATLAS во время второго сеанса (Run-2)
 - Участие в тестовых запусках для детектора TRT и калибровка данных (2016 г)
 - Улучшение мониторинга триггера В-физики
- 2) В рамках анализа по измерению параметров СР-нарушения в распадах В_s → J/
 ψφ
 - Проведен расчет доли фоновых событий $B_d \to J/\psi K^*, \, B_d \to J/\psi K\pi$ и $\Lambda_b \to J/\psi pK$
 - Выполнен расчет систематических неопределенностей за счет вклада фоновых процессов и времени жизни В_d и Λ_b
- 3) Проведено измерение параметров ϕ_s и $\Delta\Gamma_s$ CP-нарушений в распадах $~B_s \rightarrow J/\psi \varphi$

Доклады на конференциях

Международные:

- 1. The XXIV International Workshop High Energy Physics and Quantum Field Theory (QFTHEP 2019, 22-29 сентября 2019, Сочи, Россия);
- 2.Moscow International School of Physics 2020 (3-9 марта 2020, Учебный центр "Вороново" НИУ ВШЭ, Россия);
- 3.Conference on Flavour Physics and CP violation (FPCP 2020, 8-12 июня 2020, Испания, онлайн)
- 4. The 5th international conference on particle physics and astrophysics (ICPPA 2020, Россия, онлайн)
- 5.The 10th International Workshop on CHARM Physics (CHARM 2021, 31 мая 4 июня 2021, Мексика, онлайн)

Помимо международных конференций сделаны доклады в «Ломоносовских чтениях», Межвузовской научной школе молодых специалистов «Концентрированные потоки энергии в космической технике, электронике, экологии и медицине» и межинститутской молодёжной конференции «Физика элементарных частиц и космология»

Всего докладов на конференциях: 14

Публикации

Публикации, удовлетворяющие ВАК:

1. Мешков О.В. Системы мониторинга триггера В-физики в эксперименте ATLAS Большого адронного коллайдера// Ученые записки физического факультета Московского Университета, 2019,№ 2, с. 1920202

2. Синецкий В.В., Мешков О.В., Смирнова Л.Н. Исследования нарушения лептонного аромата, СР-инвариантности и R(K*) аномалии в экспериментах на БАК // Ученые записки физического факультета Московского Университета, № 3, 2019, с. 1930404

3. Мешков О.В., Смирнова Л.Н. Газовые детекторы для идентификации частиц при высоких энергиях// Ученые записки физического факультета Московского Университета,2017, № 3, с. 173204-1-173204-8

4. ATLAS Collaboration, Measurement of the CP-violating phase ϕs in $\rightarrow J/\psi \phi$ decays in ATLAS at 13 TeV // Eur. Phys. J. C 81 (2021) 342, arXiv:2001.07115

5. ATLAS Collaboration, Performance of the ATLAS muon triggers in Run 2 // JINST 15 (2020) P09015, arXiv:2004.13447

Дополнительные слайды

Временные и угловые функции

$$\frac{\mathrm{d}^4\Gamma}{\mathrm{dt}\;\mathrm{d}\Omega} = \sum_{k=1}^{10} O^{(k)}(t) g^{(k)}(\theta_T,\psi_T,\phi_T),$$

k	$O^{(k)}(t)$	$g^{(k)}(heta_T,\psi_T,\phi_T)$
1	$\frac{1}{2} A_0(0) ^2 \left[(1+\cos\phi_s) \mathrm{e}^{-\Gamma_{\mathrm{L}}^{(s)}t} + (1-\cos\phi_s) \mathrm{e}^{-\Gamma_{\mathrm{H}}^{(s)}t} \pm 2\mathrm{e}^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s \right]$	$2\cos^2\psi_T(1-\sin^2\theta_T\cos^2\phi_T)$
2	$\frac{1}{2} A_{\parallel}(0) ^{2}\left[(1+\cos\phi_{s})\mathrm{e}^{-\Gamma_{\mathrm{L}}^{(s)}t}+(1-\cos\phi_{s})\mathrm{e}^{-\Gamma_{\mathrm{H}}^{(s)}t}\pm2\mathrm{e}^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2\psi_T(1-\sin^2\theta_T\sin^2\phi_T)$
3	$\frac{1}{2} A_{\perp}(0) ^{2}\left[(1-\cos\phi_{s})\mathrm{e}^{-\Gamma_{\mathrm{L}}^{(s)}t}+(1+\cos\phi_{s})\mathrm{e}^{-\Gamma_{\mathrm{H}}^{(s)}t}\mp2\mathrm{e}^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2\psi_T\sin^2\theta_T$
4	$\frac{1}{2} A_0(0) A_{\parallel}(0) \cos\delta_{\parallel}\left[(1+\cos\phi_s)\mathrm{e}^{-\Gamma_{\mathrm{L}}^{(s)}t}+(1-\cos\phi_s)\mathrm{e}^{-\Gamma_{\mathrm{H}}^{(s)}t}\pm2\mathrm{e}^{-\Gamma_s t}\sin(\Delta m_s t)\sin\phi_s\right]$	$\frac{1}{\sqrt{2}}\sin 2\psi_T\sin^2\theta_T\sin 2\phi_T$
5	$ A_{\parallel}(0) A_{\perp}(0) \left[\frac{1}{2}(\mathrm{e}^{-\Gamma_{\mathrm{L}}^{(s)}t} - \mathrm{e}^{-\Gamma_{\mathrm{H}}^{(s)}t})\cos(\delta_{\perp} - \delta_{\parallel})\sin\phi_{s} \pm \mathrm{e}^{-\Gamma_{s}t}(\sin(\delta_{\perp} - \delta_{\parallel})\cos(\Delta m_{s}t) - \cos(\delta_{\perp} - \delta_{\parallel})\cos\phi_{s}\sin(\Delta m_{s}t))\right]$	$-\sin^2\psi_T\sin 2\theta_T\sin\phi_T$
6	$ A_0(0) A_{\perp}(0) \left[\frac{1}{2}(\mathrm{e}^{-\Gamma_{\mathrm{L}}^{(s)}t} - \mathrm{e}^{-\Gamma_{\mathrm{H}}^{(s)}t})\cos\delta_{\perp}\sin\phi_s \pm \mathrm{e}^{-\Gamma_s t}(\sin\delta_{\perp}\cos(\Delta m_s t) - \cos\delta_{\perp}\cos\phi_s\sin(\Delta m_s t))\right]$	$\frac{1}{\sqrt{2}}\sin 2\psi_T\sin 2\theta_T\cos\phi_T$
7	$\frac{1}{2} A_{S}(0) ^{2}\left[(1-\cos\phi_{s})e^{-\Gamma_{L}^{(s)}t}+(1+\cos\phi_{s})e^{-\Gamma_{H}^{(s)}t}\mp 2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\frac{2}{3}\left(1-\sin^2\theta_T\cos^2\phi_T\right)$
8	$\alpha A_{S}(0) A_{\parallel}(0) \left[\frac{1}{2}(\mathrm{e}^{-\Gamma_{\mathrm{L}}^{(s)}t} - \mathrm{e}^{-\Gamma_{\mathrm{H}}^{(s)}t})\sin(\delta_{\parallel} - \delta_{S})\sin\phi_{s} \pm \mathrm{e}^{-\Gamma_{s}t}(\cos(\delta_{\parallel} - \delta_{S})\cos(\Delta m_{s}t) - \sin(\delta_{\parallel} - \delta_{S})\cos\phi_{s}\sin(\Delta m_{s}t))\right]$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin^2\theta_T\sin 2\phi_T$
9	$\frac{1}{2}\alpha A_{S}(0) A_{\perp}(0) \sin(\delta_{\perp}-\delta_{S})\left[(1-\cos\phi_{s})e^{-\Gamma_{L}^{(s)}t}+(1+\cos\phi_{s})e^{-\Gamma_{H}^{(s)}t}\mp 2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin 2\theta_T\cos\phi_T$
10	$\alpha A_0(0) A_S(0) \left[\frac{1}{2} (\mathrm{e}^{-\Gamma_{\mathrm{H}}^{(s)}t} - \mathrm{e}^{-\Gamma_{\mathrm{L}}^{(s)}t}) \sin \delta_S \sin \phi_s \pm \mathrm{e}^{-\Gamma_s t} (\cos \delta_S \cos(\Delta m_s t) + \sin \delta_S \cos \phi_s \sin(\Delta m_s t)) \right]$	$\frac{4}{3}\sqrt{3}\cos\psi_T\left(1-\sin^2\theta_T\cos^2\phi_T\right)$

Расчет вклада фоновых процессов для В_д

• Для расчета вклада от $B_d \rightarrow J/\psi K^* и$ $B_d \rightarrow J/\psi K \pi$:

 $FrBd J/\psi K^{*} = \frac{f_{d}}{f_{s}} \frac{Br(Bd \rightarrow J/\psi K^{*}) * Br(K^{*} \rightarrow K^{+}\pi^{-})}{Br(Bs \rightarrow J/\psi \phi) * Br(\phi \rightarrow K^{+}K^{-})} \frac{eff_{BdJpsiKstar}}{eff_{BsJpsiPhi}}$ $FrBdK \pi = \frac{f_{d}}{f_{s}} \frac{Br(Bd \rightarrow J/\psi K^{+}\pi^{-})S - wave}{Br(Bs \rightarrow J/\psi \phi) * Br(\phi \rightarrow K^{+}K^{-})} \frac{eff_{BdJpsiKpi}}{eff_{BsJpsiPhi}}$

- Если использовать переменные из таблицы, то получаются:
- FrK*=(3.68±0.42)%
- FrKπ=(0.63±0.08)%
- $FrB_d = 4.31 \pm 0.43\%$

Переменная	Значение
f _s /f _d	0.259±0.015 PDG 2018
$Br(Bs \rightarrow J/\psi \phi)$	(1.08±0.08)*10 ⁻³ PDG 2018
$\text{Br(Bd} \rightarrow J/\psi K^{+}\pi^{-})_{tot}$	(1.079±0.0011)*10 ⁻³ PDG 2018
Р-волна	0.735±0.007 PDG 2018
$Br(\phi \rightarrow K^+K^-)$	0.492±0.005 PDG 2018
S-волна	0.157±0.008 PDG 2018
eff _{BdJ/ψKstar}	0.000577±0.000035 MC 2017
$\text{eff}_{\text{BdJ/}\psi\text{Kpi}}$	0.000460 ±0.000036 MC 2017
$eff_{BsJ/\psi\phi}$	0.090300±0.000704 MC 2017

Расчет вклада фоновых процессов для Л_ь

Для расчет вклада от $\Lambda_b \rightarrow J/\psi pK$:

$$Fr \Lambda_{b} J/\psi pK^{-} = \frac{f_{\Lambda_{b}}}{f_{s}} \frac{Br(\Lambda_{b} \rightarrow J/\psi pK^{-})}{Br(Bs \rightarrow J/\psi \phi) * Br(\phi \rightarrow K^{+}K^{-})} \frac{eff_{\Lambda JpsipK}}{eff_{BsJpsiPhi}}$$

 $Fr\Lambda_{b}J/\psi pK^{-} = \frac{N_{\Lambda_{b}LHCB}}{N_{B_{d}LHCB}} \frac{f_{d}}{f_{s}} \frac{Br(Bd \rightarrow J/\psi K^{+}\pi^{-})p - wave}{Br(Bs \rightarrow J/\psi \phi) * Br(\phi \rightarrow K^{+}K^{-})} \frac{eff_{LbJpsipK}}{eff_{BsJpsiPhi}}$

Если брать значения из таблицы, то получается:

Fr/_=(2.13 +/- 0.36)%

Variable	Value
f _s /f _d	0.259±0.015 PDG 2018
$Br(Bs \rightarrow J/\psi \phi)$	(1.08±0.08)*10 ⁻³ PDG 2018
$\text{Br(Bd} \rightarrow J/\psi K^{+}\pi^{-})_{tot}$	(1.079±0.0011)*10 ⁻³ PDG 2018
N _{Ab LHCB}	15581 LHCb
N _{bd LHCB}	97506 LHCb
S-волна	0.157±0.008 PDG 2018
$Br(\phi \to K^+K^-)$	0.492±0.005 PDG 2018
$eff_{LbJ/\psi pK}$	0.002090 +/- 0.000152 MC 2017
$eff_{BsJ/\psi\phi}$	0.090300±0.000704 MC 2017