

Сергей Петрушанко (CMS Collaboration)

Лаборатория сильных взаимодействий ОЭФВЭ НИИЯФ МГУ

Физика тяжелых ионов на установке Компактный мюонный соленоид (CMS) ускорителя Большой адронный коллайдер (LHC)

Семинар ОЭПВАЯ НИИЯФ МГУ 2 ноября 2023 года

Физика тяжелых ионов на LHC

2

Компактный мюонный соленоид (CMS)

Магнитное поле: 3.8 Тесла

 Кремниевый трекер |η| < 2.4
 Электромагнитный калориметр |η| < 3.0
 Адронный калориметр центр + торец |η| < 3.0 + HF-калориметр |η| < 5.2
 Мюонные камеры |η| < 2.4

+ Детектор CASTOR -5.2 < η < -6.6 + Калориметр Zero-Degree + TOTEM

CMS как эксперимент по тяжелым ионам:

герметичность, разрешение, гибкий триггер и DAQ

- <u>Калориметры</u>: высокое разрешение и сегментация
- герметичность до $|\eta| < 5.2$
- –5.2 < η < –6.6 CASTOR
- Zero-Degree калориметр
- <u>Мюоны</u>: μ от Z⁰, J/ψ, Ύ
- широкое покрытие до $|\eta|$ < 2.4
- высокое разрешение масс димюонов

- Кремниевый детектор
- высокая эффектность и чистота для треков с р_т> 1 ГэВ/*с*
- загрузка пикселей: < 2%
- ∆р/р ≈ 1–2% для треков с р_т < 100 ГэВ/*с*
- регистрация треков с низким р_т

<u>Триггер и DAQ</u>

- Широкие возможности: АА и рр
- для тяжелых ионов: реконструкция в

Подготовка программы CMS по изучению физики тяжелых ионов

High Density QCD with Heavy Ions Physics Technical Design Report, Addendum 1

The CMS Collaboration

D. d'Enterria, M. Ballintijn,
M. Bedjidian, D. Hofman,
O. Kodolova, C. Loizides,
I. P. Lokthin, C. Lourenco,
C. Mironov, S. V. Petrushanko,
C. Roland, G. Roland, F. Sikler
and G. Veres (editors)

"CMS Physics Technical Design Report: Addendum on High Density QCD with Heavy Ions"

J. Phys. G 34, 2307-2455 (2007)

Людмила Ивановна САРЫЧЕВА (1926 – 2011)

7 ноября 2010 года 0:27 Контрольная комната CMS

Сергей Петрушанко (CMS Collaboration) Физика тяжелых ионов на CMS

7

CMS – статьи по физике тяжелых ионов

BELLE CONTRACTOR DE LA CONTRACTOR D	Index of TRans Public waters MPC 1000 model, 2C = 150 MV 2000 model waters and a second seco	The second secon	behaviour of trageneous to that if where the PD-Filtmann $\{X_{i}^{n}=1,W\}$ (b.t. $\{X_{i}^{n}=1,W\}$ (b.t. $\{X_{i}^{n}=1,W\}$). The provide that the provide the provide that the	THEP THE ADDRESS OF T	
And the second of the second s	$\frac{1}{2}$. The second	Long coups and their coups dihedron angular constraints is control POPs collisions at $\sqrt{4} \sum_{i=1}^{N} = 3.75~{\rm TeV}$	And the second s	Dependence are gamelicated by and an controlling of the gamelication are detected in RePort collisions at vC== 2.25 New	Massachment of the dispite assumption of charged particles produced to POP collision of cytose = 224 Bit Po De CMI Collectioner

130 published/submitted Heavy-ion Physics CMS papers:

http://cms-results.web.cern.ch/cms-results/public-results/publications/HIN/index.html

<text><text><text><text></text></text></text></text>		<text><text><text><text><text><text></text></text></text></text></text></text>	Suppose the set of the sprengel (A), sprengel (A), and (A) is a Park orbitan or ${}_{a}{}_{a}{}_{a}{}_{a}^{a}=3.0500000000000000000000000000000000000$	Province of the processing of a second secon					
and also > 100 Heavy-ion Physics CMS preliminary results (PAS):									
http://cms-resul	lts.web.cern.ch/c	ms-results/publ	ic-results/prelim	ninary-results/H	IN/index.html				
Particle (Control of Control o	Salasani ni kasani ku kasani ku	The state of the	immer efter i med	 Reading of the part of a stranding strange in a decard strange of the other other of the other other of the other other other of the other oth	. Response is non-section of the same in the section of the same interval is a same interval in the same interval is a same interval inte				

Результаты по физике тяжелых ионов

- Global picture of heavy-ion collisions
 - multiplicity
 - energy
 - flow, "ridge", correlations,? ...
- Hard probes - jets
- Pb+Pb collisions2010-11: 2.76 TeV0.16/nb2015-18: 5.02 TeV1.7/nb2023- ? : 5.36 TeV...
- dimuons (quarkonia)
- charged hadrons R_{AA}, ...
- p+p, p+Pb, Xe+Xe
 - correlations
 - flow
 jets, ...
 p+p 2.76, 5.02, 7, 8, 13 TeV
 p+Pb 5.02, 8.16 TeV
 Xe+Xe 5.44 TeV

Experiment at LHC, CERN scorded: Mon Nov 8 11:30:53 2010 CEST vent: 150431 / 630470

MS Experiment at LHC, CERN ata recorded: Sun Nov 14 19:31:39 2010 CEST un/Event: 151076 / 1328520

Jet 0, pt: 205.1 GeV

10

Подобный эффект наблюдался ранее в столкновениях Au+Au на коллайдере RHIC при энергии $\sqrt{s} = 200$ ГэВ на пару нуклонов в тех же диапазонах поперечного импульса.

"Ридж"-эффект — везде...

The single particle flow coefficient $v_{\gamma}(p_{T})$ is larger for γp -enhanced events than

for minimum-bias collisions. But we don't see "ridge" here! Сергей Петрушанко (CMS Collaboration) Физика тяжелых ионов на CMS

Кварк-глюонная плазма

В релятивистских соударениях тяжелых ионов возможно формирование сверхплотного состояния КХД-материи в квазимакроскопических объемах (по сравнению с характерными адронными масштабами).

Определение центральности – НF-калориметр установки CMS

НГ-калориметр установки CMS: радиационно-стойкий калориметр, основанный на регистрации **черенковского света** в кварцевом волокне, внедренном в стальной поглотитель.

HF 3 < |η| < 5.2

Определение центральности Pb+Pb

JHEP 08 (2011) 141

Азимутальная анизоропия

Non-central Pb+Pb "screen shots" from CMS Event Monitor: Electromagnetic, Hadronic Energy and charged particles tracks

Collective motion is observed in the event azimuthal distributions

Азимутальная анизоропия

Потоки гармоник v₂, v₃ ...

Ненулевые гармоники v₂, v₃ и т.д. несут информацию об условиях пространственно-временной эволюции ядерной материи и флуктуациях ее начального состояния.

n = 2

n = 3

n = 4

n = 5

n = 6

Alessandro B et al., 2006 J. Phys. G: Nucl. Part. Phys. 32 1295

15-30% increase in integral v_2 from top RHIC energy to LHC

• v₃ has weak centrality dependence, finite for central collisions Сергей Петрушанко (CMS Collaboration) Физика тяжелых ионов на CMS

Хе+Хе как "мост" между р+р и Рb+Рb

v, Xe+Xe vs. Pb+Pb

PRC 100 (2019) 044902

54

82 207,20

131,30

The magnitude of the v_2 coefficients for Xe+Xe collisions are larger than those found in Pb+Pb collisions for the most central collisions. This is attributed to a larger fluctuation component in the lighter colliding system. Сергей Петрушанко (CMS Collaboration) Физика тяжелых ионов на CMS 24

Hydrodynamic models that consider the Xe nuclear deformation are able to better describe the v_2 [XeXe]/ v_2 [PbPb] ratio in central collisions than those assuming a spherical Xe shape.

HYDJET и HYDJET++ Монте-Карло генераторы соударений

HYDJET

(HYDrodynamics + JETs)

event generator to simulate heavy ion event as merging of two independent components (**soft** hydro-type part + **hard** multi-partonic state)

http://cern.ch/lokhtin/hydro/hydjet.html

(latest version 1.9) I.Lokhtin, A.Snigirev, Eur. Phys. J. C 46 (2006) 2011

HYDJET++

continuation of HYDJET

(improved **soft** component including full set of thermal resonance production + identical to HYDJET **hard** component)

> http://cern.ch/lokhtin/hydjet++ (latest version 2.4) I.Lokhtin, L.Malinina, S.Petrushanko, A.Snigirev, I.Arsene, K.Tywoniuk, Comp.Phys.Comm. 180 (2009) 779

HYDJET++ на обложке Eur. Phys. J. A

L.V. Bravina, I.P. Lokhtin, L.V. Malinina, S.V. Petrushanko, A.M. Snigirev, E.E. Zabrodin

"Dynamical vs. geometric anisotropy in relativistic heavy-ion collisions: Which one prevails?"

Eur. Phys. J. A 53 (2017) 219.

v₂ Xe+Xe vs. Pb+Pb (HYDJET++ генератор)

Д.Мягков, С.Петрушанко. Учен. зап. физ. фак-та Моск. ун-та. 2023. № 3. 2330205

In hydrodynamic model HYDJET++ http://cern.ch/lokhtin/hydjet++ Xe+Xe v_2 are higher than Pb+Pb v_2 for all centralities.

Сергей Петрушанко (CMS Collaboration) Физика тяжелых ионов на CMS

54

82

207,20

131.30

Множественность заряженных частиц Плотность поперечной энергии

Сергей Петрушанко (CMS Collaboration) Физика тяжелых ионов на CMS

29

Жесткие тесты кварк-глюонной плазмы

Жесткие тесты кварк-глюонной плазмы

Подавление J/ ψ в Pb+Pb

EPJ C 78 (2018) 509

J/ψ mesons are observed to be suppressed (similarly in 2.76 and 5.02 TeV)

Сергей Петрушанко (CMS Collaboration) Физика тяжелых ионов на CMS

32

Подавление J/ψ и ψ(2S) в Pb+Pb

EPJ C 78 (2018) 509

• Increasing suppression for increasing centrality • $\psi(2S)$ is more suppressed than the J/ ψ meson

Подавление Y в Pb+Pb

- Observation of sequential suppression of Y family in Pb+Pb.
 - First observation of Y(3S) in heavy-ion collisions! ($\sigma > 5$)

Подавление Y в Pb+Pb

arXiv:2303.17026

R_{AA} is decreasing with numbers of participants of Pb+Pb collision.
 Slightly increasing with p_T?

Подавление Y в p+Pb

All Y states are found to be suppressed in p+Pb collisions compared to p+p collisions.

Подавление Y в p+Pb и Pb+Pb

arXiv:2303.17026

38

• First measurement of v_3 for prompt and non-prompt J/ ψ separately • no significant non-zero v_3 (J/ ψ)

v, и v, ψ(2S) в Pb+Pb

arXiv:2305.16928

$V_2 Y(1S) B Pb+Pb$

In contrast to the J/ ψ mesons, no azimuthal anisotropy is observed for the Y(1S) in Pb+Pb...

v₂ Y(1S) в p+Pb

... and also no azimuthal anisotropy for the Y(1S) in p+Pb !

43

44

Отбор двухструйных событий Pb+Pb

$$- |\eta_{jet}| < 2$$

- Лидирующая струя Leading jet $p_T > 120 \text{GeV/c}$
 - Вторая струя Subleading jet p_T> 50GeV/c

$$- \Delta \phi_{1,2} > 2\pi/3$$

Коэффициент степени анизотропии рождения струй:

$$A_{J} = \frac{p_{T,1} - p_{T,2}}{p_{T,1} + p_{T,2}}$$

Эффект "гашения" струй

jet ίâ dN^g/dy (quenched) jet

Одно из возможных объяснений эффекта "гашения" струй при энергии LHC – энергетические потери партонов в плотном веществе КГП

Сканирование по ширине струй

JHEP 05 (2021) 284

• Sensitive to balance between increasing radiative sources and recovering re-distributed energy

- Enables simultaneous comparisons of model calculations across jet radii
- First time at CMS: no radius dependence of jet energy loss in central Pb+Pb collisions for 400 GeV/ $c < p_T$ jet. (Also for 400 $< p_T$ jet < 500 GeV/c)

Азимутальная анизотропия двойных струй в Pb+Pb

JHEP 07 (2023) 139

v₂, v₃ and v₄ of the di-jets in Pb+Pb were measured for the first time
Di-jets v₂ is compatible with v₂ of high p_T hadrons
Di-jets v₃ and v₄ are consistent with zero

Первое наблюдение top кварка в Pb+Pb

PRL 125 (2020) 222001

Using either charged leptons only or charged leptons + b jets. The measured cross sections are compatible with expectations from scaled proton-proton data and QCD predictions.

Рождение X(3872) в Pb+Pb

f₀(980) в p+Pb столкновениях

 v_2 of $f_0(980)$ measured in p+Pb

Inner structure unknown:

- K⁻K⁺ molecule
 - Tetraquark
 - Diquark

Use constituent quark scaling to extract number of quarks

$$v_2(E_T)/n_q = v_{2,q}(E_T/n_q)$$

$$n_q = 4$$
 excluded at $\sigma > 3.1$
 $n_q = 2$ favored

Run 3 начался в июле 2022 года

CMS Experiment at the LHC, CERN Data recorded: 2022-Nov-18 15:50:14.858368 GMT Run / Event / LS: 362293 / 24480852 / 27

One of the first Pb-Pb collisions during Run 3 in CMS detector. Lead beams traveled for 3 days (17-19 November 2022) in the LHC ! Сергей Петрушанко (CMS Collaboration) Физика тяжелых ионов на CMS

54

55

- Many interesting heavy-ion physics results with the CMS detector in p+p, p+Pb, Pb+Pb and Xe+Xe...
- Future heavy-ion program at the LHC (Run 3 and 4) with the upgraded CMS detector will provide more exciting opportunities! Stay tuned!

Жизнь – это то, что случается с нами, пока мы строим планы на будущее. (Джон Леннон)

