

Парные корреляции нуклонов:

что мы можем узнать из масс атомных ядер?

Т.Ю. Третьякова НИИЯФ МГУ

18 мая 2023

Коллектив авторов:

проф. Б.С. Ишханов доц. М.Е. Степанов Т.Ю. Третьякова

Л. Имашева

Е. Владимирова

С. Сидоров

М. Симонов

Д. Жуляева

И. Мостаков

И. Дашков

К.А. Стопани

В. Негребецкий

А. Ивлева

Д. Байрамов

• Парные корреляции нуклонов и массовые соотношения

- Четно-нечетный эффект и спаривание тождественных нуклонов
- Нейтрон-протонные корреляции
- Аппроксимации
- Предсказания масс неизвестных ядер
 - Метод локальных массовых соотношений
 - Предсказания в области сверхтяжелых ядер
- Спектры низколежащих состояний
 - Мультиплет основного состояния
 - Спектры для ј = 9/2

1935 г Формула Бете-Вайцзеккера

$$B(A,Z) = \alpha A - \beta A^{2/3} - \gamma \frac{Z(Z-1)}{A^{1/3}} - \delta \frac{(A-2Z)^2}{A} + \zeta A^{-3/4}$$

Четно-нечетный эффект и спаривание тождественных нуклонов

By definition:

$$\Delta_{nn} (N, Z) = S_{nn} (N, Z) - 2S_n (N - 1, Z) =$$

= B (N,Z) - 2B (N - 1,Z) + B (N - 2,Z) =
= S_n (N,Z) - S_n (N - 1,Z) = 2\Delta_n^{(3)}(N - 1, Z)
Bohr Mottelson 1969

ttelson 19

$$\Delta_n^{(3)}(N, Z) = \frac{1}{2} [S_n(N+1, Z) - S_n(N, Z)]$$

$$\Delta_n^{(4)}(N, Z) = \frac{1}{4} [2S_n(N, Z) - S_n(N-1, Z) - S_n(N+1, Z)]$$

Madland, Nix 1988; Moller, Nix 1992

$$\Delta_n^{(5)}(N, Z) = \frac{1}{8} \left[S_n(N+2) - 3S_n(N+1) + 3S_n(N) - S_n(N-1) \right]$$

N, Z \neq 8, 20, 28, 50, 82...

N≠Z

Satula, Dobaczewski, Nazarewicz 1998

FIG. 3. Experimental values of $\Delta_{\nu}(N) = \Delta_{\nu}^{(3)}(N)$ for *N*-odd (filled circles), $\Delta_{\nu}^{(3)}$ for *N*-even (open circles), and $\Delta_{\nu}^{(4)}$ for *N*-odd (open triangles). The thick gray line indicates the average trend, $\tilde{\Delta}=12/\sqrt{A}$. Each point represents the arithmetic mean over several even-*Z* isotones.

$$\Delta^{(3)}(N) \equiv \frac{\pi_N}{2} [B(N-1) + B(N+1) - 2B(N)]$$

$$\begin{split} & \Delta_n^{(3)} (N_{\text{odd}}, Z) < \Delta_n^{(4)} (N_{\text{odd}}, Z) \\ & \Delta_n^{(3)} (N_{\text{odd}}, Z) < \Delta_n^{(3)} (N_{\text{even}}, Z) \end{split}$$

Values of $\Delta_n^{(3)}$ (*N*) at odd values of N can be associated with the pairing effect

Seniority model

Short-range attraction of two particles in j^2 -configuration which acts only in J = 0

$$H = -G\sum_{m,m'>0} a_m^+ a_{\overline{m}}^+ a_{\overline{m}'} a_{m'}; (a_m^+ \equiv a_{jm}^+) \qquad a_{\overline{m}} = (-1)^{j+m} a_{-m'}$$

For two particles:

$$E_0 = -G\Omega$$
 $\Omega = \frac{2j+1}{2}$ - number of pair states

For *N* particles:

$$E_{v}(N) = -\frac{G}{4}(N-v)(2\Omega - N - v + 2) \qquad v = \begin{cases} 0, & N = 2n \\ 1, & N = 2n + 1 \end{cases}$$
 - seniority

Четно-нечетный эффект и спаривание тождественных нуклонов

Seniority model

By definition:

$$\Delta_{nn}$$
 (N, Z) = S_n (N, Z) - S_n (N - 1, Z):

$$\Delta_{nn}(N) = \begin{cases} G\Omega, & N = 2n \\ G\Omega + G, & N = 2n+1 \end{cases}$$

Bohr, Mottelson 1969 $2\Delta_n^{(3)}(N, Z) = S_n(N, Z) - S_n(N+1, Z)$:

$$2\Delta_n^{(3)}(N) = \begin{cases} G\Omega + G, & N = 2n \\ G\Omega, & N = 2n+1 \end{cases}$$

$$2\Delta_n^{(4)}(N) = 2\Delta_n^{(5)}(N) = G\Omega + \frac{G}{2}$$

$$G = 2\Delta_n^{(3)}(N) - \Delta_{nn}(N)$$

Ishkhanov et al. Chinese Physics C 2017

Оценка эффекта спаривания: Δ_{nn} , $\Delta_{nn}^{(3)}$, $\Delta_{nn}^{(4)}$

Четно-нечетный эффект и спаривание тождественных нуклонов

Shell model (Zeldes, Nucl. Phys. 1958)

$$\begin{split} B(N_0+n,Z_0+p) &= B(N_0,Z_0) + n\varepsilon_n + p\varepsilon_p + \\ &+ W(j_1^n) + W(j_2^p) + I(j_1^n,j_2^p), \\ W(j^n) &= \frac{1}{2} \left(n - \frac{1 - (-1)^n}{2} \right) \pi + \frac{n(n-1)}{2} d, \\ I(j_1^n,j_2^p) &= npI^0 + \frac{(1 - (-1)^n)(1 - (-1)^p)}{4} I', \end{split}$$

$$B(N_0 + n, Z_0 + p) =$$

=B(N_0, Z_0) + n\varepsilon_n + p\varepsilon_p + \frac{n}{2}\pi_n + \frac{p}{2}\pi_p +
+ $\frac{n(n-1)}{2}d_n + \frac{p(p-1)}{2}d_p + npI^0 - \delta,$

where the parity term δ is given by

$$\delta = \begin{cases} 0, & ee, \\ \frac{1}{2}\pi_p, & eo, \\ \frac{1}{2}\pi_n, & oe, \\ \frac{1}{2}\pi_n + \frac{1}{2}\pi_p - I', & oo. \end{cases}$$

$$\begin{aligned} \Delta_{nn} &= \pi_n + d_n, \\ \Delta_{nn}^{(3)} &= \pi_n - d_n, \\ \Delta_{nn}^{(5)} &= 2\Delta_n^{(5)} = \pi_n. \end{aligned}$$

Ishkhanov et al. Chinese Phys C 2019

Энергия Вигнера

$$E_{W} = W\left(\frac{|N-Z|}{A} + d\right), \qquad W = 30 \text{ M} \Rightarrow B$$
$$d = \begin{cases} \frac{1}{A}, & N = Z, oo\\ 0 & otherwise \end{cases}$$

Аппроксимации массовых соотношений

Ishkhanov et al. Chinese Phys C 2017

*S. Hilaire 2002,

**Moller P., Nix J.R. 1992

** Bohr A., Mottelson B.R. Nuclear Structure, 1969.

Аппроксимации массовых соотношений

Аппроксимация <i>С</i> · <i>А</i> ^{-b}			Аппроксимации $C \cdot A^{-n/3}$			
	С	b		нейтроны	протоны	
π_n	8,7(5)	-0,30(1)	$\pi(A) = C/A^{1/3}$	10,21(6)	11,52(6)	
π_p	11,6(5)	-0,34(1)	d(A) = C/A	-30,3(6)	-67,6(8)	
d_n	44(5)	-1,09(3)		Ι'	I ⁰	
d_p	18(1)	-0,70(2)	C/A	29.6(4)	39,9(3)	
Ι'	8,0(8)	-0,70(2)	$C/A^{2/3}$	6.72(8)	8,87(7)	
I^0	20(1)	-0,84(1)	$C/A^{1/3}$	1.38(2)	1,79(2)	

Изотопы Z = 20 (Ca - Calcium)

- Парные корреляции нуклонов и массовые соотношения
 - Четно-нечетный эффект и спаривание тождественных нуклонов
 - Нейтрон-протонные корреляции
 - Аппроксимации
- Предсказания масс неизвестных ядер
 - Метод локальных массовых соотношений
 - Предсказания в области сверхтяжелых ядер
- Спектры низколежащих состояний
 - Мультиплет основного состояния
 - Спектры для ј = 9/2

Соотношения Гарви-Келсона (1966)

 $\mathbf{GK}_T: -B(N+2, Z-2) + B(N, Z) - B(N, Z-1) + B(N+1, Z-2) - B(N+1, Z) + B(N+2, Z-1) = 0$

 $GK_{L}: -B(N+2,Z) + B(N,Z-2) - B(N+1,Z-2) + B(N+2,Z-1) - B(N,Z-1) + B(N+1,Z) = 0$

Соотношения Гарви-Келсона (1966)

 $GK_T: -B(N+2,Z-2)+B(N,Z)-B(N,Z-1)+B(N+1,Z-2)-B(N+1,Z)+B(N+2,Z-1) = 0$

 $GK_{I}: -B(N+2,Z)+B(N,Z-2)-B(N+1,Z-2)+B(N+2,Z-1)-B(N,Z-1)+B(N+1,Z) =$ A

E.V. Vladimirova, et al Int. Jour. of Modern Phys. E, 2021

Массовое соотношение, описывающее пр-корреляции:

 $\Delta_{np}(Z,N) = [S_p(Z,N) - S_p(Z,N-1)] =$ = [B(Z,N) - B(Z,N-1)] - [B(Z-1,N) - B(Z-1,N-1)] [Kravtsov V.A. Sov. Phys. JETP. 1959]

Предсказываемая энергия связи (1 из 4 возможных формул):

$$\begin{split} B_{pred}(Z,N-1) &= \\ &= B(Z,N) - B(Z-1,N) + B(Z-1,N-1) - \Delta_{np}^{cal}(Z,N) \end{split}$$

[J. Janecke, H. Behrens // Phys. Rev. C 1974]

Итерационные вычисления: Эксперимент 1 шаг 2 шаг 3 шаг 3 шаг

Предсказания в области сверхтяжелых ядер

E.V. Vladimirova, et al Int. Jour. of Modern Phys. E, 2021

Предсказания границ существования ядер

Vladimirova, Simonov, Tretyakova <u>AIP Conference Proceedings</u> 2021

- Парные корреляции нуклонов и массовые соотношения
 - Четно-нечетный эффект и спаривание тождественных нуклонов
 - Нейтрон-протонные корреляции
 - Аппроксимации
- Предсказания масс неизвестных ядер
 - Метод локальных массовых соотношений
 - Предсказания в области сверхтяжелых ядер
- Спектры низколежащих возбужденных состояний
 - Мультиплет основного состояния
 - Спектры для ј = 9/2

Два тождественных нуклона сверх замкнутого остова в состоянии *j*=7/2:

Мультиплет основного состояния

Приближение δ -потенциала $V(\vec{r}_1, \vec{r}_2) = -V_0 \delta(\vec{r}_1 - \vec{r}_2),$ $\frac{\Delta E_J}{\Delta E_0} = \begin{pmatrix} j & j & J \\ \frac{1}{2} & -\frac{1}{2} & 0 \end{pmatrix}^2 (2j+1) \begin{cases} \left(1 + \frac{(2j+1)^2}{J(J+1)}\right), npu & T = 0, S = 1, odd J, \\ 1, & npu & T = 1, S = 0, even J. \end{cases}$

T.Tretyakova SINP MSU, May 2023

Мультиплет основного состояния

2014 Ишханов Б.С., Степанов М.Е., Третьякова Т.Ю. Вестник Московского университета

	J>	>0	J=max	
Pairing	А	σ	А	σ
$_{ m nn}, \Delta_{ m pp}$	0.991	0.621	1.163	0.560
$2\Delta_{n}^{(3)}, 2\Delta_{p}^{(3)}$	0.751	0.902	0.849	0.608
$2\Delta_{n}^{(4)}, 2\Delta_{p}^{(4)}$	0.863	0.647	0.991	0.278
$2\Delta_{n}^{(5)}, 2\Delta_{p}^{(5)}$	0.871	0.634	1.004	0.246

Для сеньорити s > 2 расчет мультиплетов производится с использованием генеалогических коэффициентов (coefficients of fractional parentage, CFP) $\langle j^{N-1}s_1J_1; j| j^N s J \rangle$

$$\Delta E_{J} = \sum_{J_{1}} \left\langle j^{N-1} s_{1} J_{1}; j \right\rangle j^{N} s J \right\rangle^{2} \Delta E_{J_{1}}, \qquad \text{Bayman, Lande. NP 77 (1966) 1}$$

Sidorov S., Zhulyaeva D., Tretyakova T., Chinese Physics C 46 (**2022**) 074102

Сеньорити 2

Sidorov S., Zhulyaeva D., Tretyakova T., Chinese Physics C 46 (**2022**) 074102

Sidorov et al Chinese Physics C 2022

Escuderos, Zamick 2006 Степанов и др. 2018

Sidorov et al Chinese Physics C 2022

Sidorov et al Chinese Physics C 2022

Результаты

- 1. Проведен анализ существующих в литературе и <u>предложены новые массовые соотношения</u> для описания парных корреляций нуклонов.
- 2. На основе современных экспериментальных данных <u>получены новые аппроксимации</u> оценок парной энергии тождественных нуклонов и нейтрон-протонных корреляций. Полученные аппроксимации позволяют эффективно описывать отдельные вклады в энергию спаривания.
- 3. С использованием массовых соотношений для пр-корреляций <u>получены новые предсказания</u> энергий связи неизвестных ядер в области нейтронизбыточных и сверхтяжелых элементов
- 4. <u>Впервые показано</u>, <u>что расщепление мультиплета основного состояния с сеньорити 2</u> <u>определяется величиной энергии спаривания нуклонов</u>и может быть получено с использованием масс близлежащих ядер.
- 5. В приближении δ-сил проведен расчет спектров низколежащих состояний для нейтронизбыточных изотопов никеля и изотонов N = 50, в том числе для сеньорити 3. Показана зависимость нарушения порядка уровней в мультиплете с высокими значениями сеньорити от вклада дальнодействующих корреляций.

По результатам опубликовано 30 работ в рецензируемых журналах, из них в WoS и Scopus:

- 1. 2022 Sidorov S., Zhulyaeva D., Tretyakova T., <u>Chinese Physics C</u>, 46, 074102
- 2. 2022 Владимирова Е.В., Симонов М.В., Негребецкий В.В., Стопани К.А., Третьякова Т.Ю. <u>Известия РАН</u>. Серия физическая, том 86, № 4, с. 571
- 3. 2022 Сидоров С.В., Жуляева Д.С., Третьякова Т.Ю. Известия РАН. Серия физическая, том 86, № 8, с. 1104
- 4. 2021 E.V. Vladimirova, B.S. Ishkhanov, M.V. Simonov, S.V. Sidorov, T.Yu. Tretyakova International Journal of Modern Physics E, 30, 2150025
- 5. 2021 М.В. Симонов, Владимирова Е.В., Ишханов Б.С., Т.Т., <u>Известия РАН</u>. Сер. физическая, том 85, № 5, с. 676
- 6. 2021 E.V. Vladimirova, M.V. Simonov, T.Yu. Tretyakova AIP Conference Proceedings, 2377, 070003
- 7. 2019 Ishkhanov B.S., Sidorov S.V., Tretyakova T.Yu, Vladimirova E.V. Chinese Physics C, 43, 014104 Q1
- 8. 2019 Белышев С.С., Ишханов Б.С., Ланской Д.Е., Т.Т. <u>Вестник Московского университета</u>. № 2, с. 11-23
- 9. 2019 Сидоров С.В., Владимирова Е.В., Ишханов Б.С., Т.Т.. <u>Известия РАН</u>. Серия физическая, т. 83, № 4, с. 559
- **10. 2018** Владимирова Е.В., Дашков И.Д., Ишханов Б.С., Т.Т., <u>Известия РАН</u>. Серия физическая, т. 82, № 6, с. 761
- **11. 2018** Степанов М.Е., Имашева Л.Т., Ишханов Б.С., Т.Т. <u>Известия РАН</u>. Серия физическая, том 82, № 6, с. 774
- 12. 2018 Stepanov M.E., Imasheva L.T., Ishkhanov B.S., T.Yu. Tretyakova EPJ Web of Conference, 177, 03004
- 13. 2018 Сидоров С.В., Ишханов Б.С., Третьякова Т.Ю. <u>Известия РАН</u>. Серия физическая, том 82, № 6, с. 680
- 14. 2017 Ishkhanov B.S., Sidorov S.V., Tretyakova T.Yu, Vladimirova E.V. Chinese Physics C, 41, 094101 Q1
- **15. 2017** Имашева Л.Т., Ишханов Б.С., Сидоров С.В., Степанов М.Е., Третьякова Т.Ю. <u>Физика частиц и атомного ядра (ЭЧАЯ)</u>, 48, с. 828
- 16. 2016 Imasheva L.T., Ishkhanov B.S., Stepanov M.E., T.Yu. Tretyakova EPJ Web of Conference, 107, 03015
- 17. 2016 Имашева Л.Т., Ишханов Б.С., Сидоров С.В., Степанов М.Е., Т.Т. Известия РАН. Сер. Физ., т. 80, с. 347
- 18. 2015 Имашева Л.Т., Ишханов Б.С., Степанов М.Е., Т.Т. <u>Известия РАН</u>. Сер. Физ., т. 79, с. 564
- 19. 2015 Imasheva L.T., Ishkhanov B.S., Stepanov M.E., T.Yu. Tretyakova Physics of Atomic Nuclei, v. 78, p. 1463
- 20. 2014 Ишханов Б.С., Степанов М.Е., Третьякова Т.Ю. Известия РАН. Сер. Физ., т. 78, с. 591
- 21. 2014 Ишханов Б.С., Степанов М.Е., Третьякова Т.Ю. Вестник Московского университета, т. № 1, с. 3-19
- 22. 2014 Ишханов Б.С., Степанов М.Е., Третьякова Т.Ю. Вестник Московского университета, т. № 6, с. 3-22

СПАСИБО ЗА ВНИМАНИЕ