

Ядерная фотоника

А. Б. Савельев

Ядерная фотоника

Ядерная фотоника – уникальные перспективы и новые методы для ядерной физики и физики частиц с использованием экстремальных световых полей

В.Недорезов, С.Рыкованов, А.Савельев УФН 191(12) 1281–1306 (2021)

Что нового могут дать сверхмощные лазеры?

В рамках традиционных подходов:
🗖 Лазерное ускорение электронов, позитронов, протонов и адронов
Генерация тормозного гамма излучения в мишени конверторе
□ Комптоновское рассеяние лазерного излучения на пучке электронов из линейного или лазерного ускорителя
Формирование нейтронных импульсов
Новые подходы и методы:
Формирование сверхинтенсивных потоков гамма-излучения при «пробое вакуума»
Встречное ускорение пучков адронов
□ Прямое воздействие лазерного излучения на ядро (возбуждение ядер, ускорение распада?)
□ ????

План доклада

- ✓ Экстремальные электромагнитные поля
- ✓ Лазерно-плазменные ускорители заряженных частиц
- ✓ Источники рентгеновского и гамма излучений с использованием лазеров
- ✓ Особенности и преимущества лазерных ускорителей и источников для ядерно-физического эксперимента
- ✓ Новые задачи на стыке лазерной физики, физики ядра и физики частиц
- ✓ Лазерно-плазменный ускоритель электронов МГУ

Экстремальные электромагнитные поля

Plasma electron nonlinear relativistic motion

Laser wakefield

Vacuum nonlinearity

Schwinger field for vacuum breakdown

Nonlinear QED fields General relativistic effects Vacuum probe (s.a. Dark energy)

 $e|E|\Lambda_{\rho} \approx 2mc^2$

Critical power for self-focusing in matter /plasma / vacuum: χ₃ nonlinearity

$$P_{cr} = \lambda^2 / (2\pi n_0 n_2) \sim \text{GW}$$

relativistic plasma nonlinearity

$$P_{cr} = mc^{5}/e^{2}(\omega/\omega_{p})^{2} \sim 17 (\omega/\omega_{p})^{2} \text{ GW}$$

vacuum nonlinearity

$$P_{cr} = (90/28) c E_S^2 \lambda^2 / \alpha \sim 10^{15} (\lambda / \lambda_{1u})^2 \text{ GW}$$

e.g. X-ray of 10keV,
$$P_{cr} \sim 10$$
PW

 $m\dot{v} = eE \rightarrow |\dot{v}| = \frac{e|E|}{} \approx c$

 $a = 0.85 \cdot 10^{-9} I \left[\frac{W}{cm^2} \right] \lambda [\mu m] \approx 1$

Compact high energy colliders

Compact accelerator applications

PeV acceleration for quantum gravity →

Экстремальные электромагнитные поля

Лазерно-плазменные ускорители электронов

$$E_0 = (en_0/\epsilon_0 k_p) = mc\omega_p/e \approx 0.96\sqrt{n_e \,[\text{cm}^{-3}]} \,\text{Vcm}^{-1}$$

$$E_{\text{max}}/E_0 \sim a_0^2/\left(1+a_0^2\right)^{1/2}$$

$$E_{\rm wb} = \sqrt{2(\gamma_{\rm p} - 1)}E_{\rm p}$$

Режим плазменного пузыря

$$k_p R \simeq k_p w_0 = 2\sqrt{a_0}.$$

$$c\tau_{\text{FWHM}} > 2R/3$$
.

$$L_d \simeq \frac{c}{c - v_{\phi}} R \simeq \frac{2}{3} \frac{\omega_0^2}{\omega_p^2} R.$$

$$\Delta E \simeq \frac{2}{3} mc^2 \left(\frac{\omega_0}{\omega_p}\right)^2 a_0 \simeq mc^2 \left(\frac{P}{m^2 c^5 / e^2}\right)^{1/3} \left(\frac{n_c}{n_p}\right)^{2/3}$$

$$\Delta E [\text{GeV}] \simeq 1.7 \left(\frac{P[\text{TW}]}{100}\right)^{1/3} \left(\frac{10^{18}}{n_p [\text{cm}^{-3}]}\right)^{2/3} \left(\frac{0.8}{\lambda_0 [\mu\text{m}]}\right)^{4/3}.$$

$$\Delta E[\text{GeV}] \simeq 3.8 \left(\frac{P}{P_c}\right)^{-2/3} \frac{P[\text{TW}]}{100}.$$

35 fs, 31 J, 850 TW, a_0 =2.2 20 cm acceleration length in capillary

Электрон-позитронный коллайдер

Лазерно-плазменное ускорение ионов и вторичные пучки

- ✓ Позитроны
- ✓ Нейтроны (γ,n) , d(d,n), p(Z,n)
- **√** ..

- □ Ядерная астрофизика
 - ✓ Литиевая проблема
 - ✓ s и r-процессы (потоки нейтронов 10²²-10²⁴ n c⁻¹cm⁻²)
- □ Ядерная медицина
 - ✓ Наработка изотопов для SPECT, PET
 - ✓ FLASH технологии
 - ✓ IBT
- Трансмутация тяжелых изотопов
- □ Радиационная стойкость материалов и микросхем

Релятивистские ионные пучки

Источники гамма излученния

- тормозное излучение

- + большой заряд пучка электронов
- + широкий спектр вплоть до десятков МэВ
- 🕇 простота реализации
- **+** мишень рядом с гамма-источником
- сложно выделить узкую полосу
- большая расходимость
- существенный радиационный фон

Повышение интенсивности и (или) энергии лазерного импульса — увеличение потока гамма-квантов и их энергии

- комптоновское рассеяние
- С использованием лазерного ускорения электронов
 DLA, LWFA, новые схемы

- С использованием линейного ускорителя
 - ✓ Томсоновский генератор на линейном ускорителе 50 МэВ **(НЦФМ)** до 50 кэВ, отработка методик по фотокатоду и точке взаимодействия (НИИЯФ, физфак, ВНИИЭФ, ИЯИ) + 20 ТВт или 400 Дж (нс)
 - ✓ В сочетании с ускорителем с-тау фабрики (НЦФМ)
 до 100 МэВ
 - 🕂 узкий спектр
 - + перестройка по энергии квантов (Θ - λ)
 - 🕇 малая расходимость
 - + угловой момент фотонов
 - малый заряд
 - для перехода в область 10 МэВ и выше нужны электроны с энергией 0.5 ГэВ и более
 - мишень вдали от источника

Повышение интенсивности и (или) энергии лазерного импульса — нелинейное рассеяние или увеличение сечения пучка — ухудшение монохроматичности и другие проблемы

Исследование сечений фотопоглощения

E_{γ} , МэВ	Направление исследований
До 5	Астрофизика
5-10	Коллективные возбуждения ядер Гигантские резонансы. Пигми-резонансы
30-150	Кластерные состояния. Квазидейтроны
150-2000	Нуклонные резонансы. Фоторождение мезонов. Статическая, динамическая, спиновая структура нуклонов
До 10 ⁶	Векторная доминантность, адронизация фотонов

Преимущества методов ядерной фотоники

- Мощный короткий импульс возбуждающих частиц (гамма, электроны, протоны,)
- □ Исследование ПДР под действием разных частиц в едином эксперименте
- □ Использование метода совпадений для быстрых продуктов реакций
- □ Корреляционные измерения задержанного гамма-распада
- □ Исследование нестабильных изотопов и изомеров наработка лазером
- □ Исследование переходов с высокой мультипольностью закрученные фотоны

Ядерная резонансная флюоресценция

необходимые энергии гамма-квантов 0-15 МэВ □ позволяет получать точную информацию о возбужденном состоянии □ перестраиваемость комптоновского источника позволит сильно увеличить точность измерений гамма-кванты поляризованы – правила отбора

Наличие нескольких пучков открывает возможность проведения более сложных экспериментов

пучок 1,...: проведение ЯРФ

Исследования ядерных изомеров

Метастабильные состояния ядра с большим временем жизни (наносекунды и выше) Энергия состояний – от 8 эВ до единиц МэВ

Каналы возбуждения:

- Однофотонное возбуждение (рентген, гамма)
- □ Неупругое рассеяние электронов
- Возбуждение электронами через атомную оболочку (обратная внутренняя электронная конверсия и др.)
- Возбуждение лазерным излучением через атомную оболочку Phys.Rev/ A 99 013422 (2019)
- □ Прямое (многофотонное??) возбуждение ядра лазерным излучением?

Возбуждение ядерных изомеров при ГВГ

пучок 2...: разрядка изомеров

пучок 3...: наработка изотопов

пучок 1...: возбуждение изомеров

Новые подходы

□Формирование сверхинтенсивных потоков гамма-излучения при «пробое вакуума» □Встречное ускорение пучков адронов □Прямое воздействие лазерного излучения на ядро (возбуждение ядер, ускорение распада?) □????

Генерация позитронов

$$eE_sl_c = m_0c^2$$

$$eE_{S}l_{c}=m_{0}c^{2}$$

$$E_{S}=rac{m^{2}c^{3}}{e\hbar}=1.32\cdot10^{16}~{
m B/cm}$$

$$I_S = (c/4\pi)E_S^2 = 4.65 \cdot 10^{29} \text{ Bt/cm}^2$$

Лазерно-плазменный ускоритель МГУ

- ✓ Controlled energy deposition plasma plume velocity control
- ✓ Controlled timing plasma plume extent control
- ✓ Different wavelengths feasibility of optical diagnostics

Laser pulse parameters (Ti:Sapphire):

$$au_p = 45 \pm 5 \, fs; \ \lambda = 800 \, nm;$$
 $10 \, Hz; \ up \ to \ 50 \, mJ; \ M^2 = 1.4$
 $I_{max} > 5*10^{18} \, W/cm^2; \ contrast \ 10^8.$

Laser pulse parameters (Nd:YAG):

 $au_p = 6 \text{ ns}; \ \lambda = 532 \ (1064) \text{ nm};$ (locked with Ti:Sa, accuracy ~ 1ns); $E_p = 70 \ (230) \text{ mJ}; \ I \sim 10^{12} \text{ W/cm}^2.$

Формирование коллимированных электронных пучков с большим зарядом в режиме DLA

Схема с инжекцией в плазменный канал за счет распада волн параметрических неустойчивостей в тонком слое более

Plasma Phys. Control. Fusion. 2019. Vol. 61, № 7. P. 075016

Plasma Phys. Control. Fusion. 2021. Vol. 62, № 2. P. 02201

Physical Review E 2020, 102(6), 063206

DLA с использованием пленочных мишеней и/или плотных газовых струй

1 ТВт (50 мДж, 50 фc) 100 пКл (E>2MэB)

- Схема эксперимента с тонкой пленочной мишенью: электроны ускоряются в плазме, созданной отдельным наносекундным импульсом.
- Ожидаемая эффективность **1-2 нКл/Дж**, плотность плазмы 0,01-0,1 критической
- Если добавить встречный лазерный пучок получается схема обратного Комптоновского рассеяния.
- Меняя энергии электронного пучка можно перестраивать энергии пучка гамма квантов, и измерять сечения фотоядерных реакций вблизи порога (1,7-12МэВ).
- Энергии электронов 300-900 МэВ

Фотоядерные реакции

Typical reactions threshold: < 10 MeV

Neutron generation using Be, U and Pb photodisintegration

 9 Be+ $\gamma \rightarrow n$ + 8 Be

Up to 15 registered neutrons per pulse

Neutron flux ~10⁵-10⁶ s⁻¹J⁻¹

Be(γ,n) cross section**

 $^{238}U+ \gamma \rightarrow n+ ^{237}U$

Up to 4 registered neutrons per pulse

Neutron flux ~10⁵ s⁻¹J⁻¹

200 200 200 200 200 200 E, MeV

²⁰⁸Pb+ $\gamma \rightarrow n$ + ²⁰⁷Pb

Up to 12 detected neutrons per pulse

Neutron flux ~ 10⁵-10⁶ s⁻¹J⁻¹

 $<\sigma_{vn}> =2.5 \pm 0.5$ mbarn

σ, mb

*Ishkhanov, B. S., et al. "Photonuclear reactions and astrophysics." The Universe Evolution: Astrophysical and Nuclear Aspects" (Nova Science Publishers, New York, 2013)

**Arnold C. W. et al. Cross-section measurement of 9 Be (γ, n) 8 Be and implications for α+ α+ n→ 9 Be in
the r process //Physical Review C. – 2012. – T. 85. – № 4. – C. 044605.

Physics of Atomic Nuclei, 2017 80 397

E, MeV

Photonuclear reactions for e-beam charge measurement

I. Tsymbalov, D. Gorlova et. al., Plasma Phys. Control. Fusion 61 075016 (2019)
D. Gorlova et al 2019 Proc. SPIE 11037, 110370H

X-ray phase contrast imaging using thicket copper target

Спасибо за внимание! RLP

