abst@physics.msu.ru

Ядерная фотоника

А.Б.Савельев

МГУ им.М.В.Ломоносова, физический факультет

Ядерная фотоника

Ядерная фотоника – уникальные перспективы и новые методы для ядерной физики и физики частиц с использованием экстремальных световых полей

В.Недорезов, С.Рыкованов, А.Савельев УФН 191(12) 1281–1306 (2021)

Что нового могут дать сверхмощные лазеры?

В рамках традиционных подходов:

- □ Лазерное ускорение электронов, позитронов, протонов и адронов
- Генерация тормозного гамма излучения в мишени конверторе
- Комптоновское рассеяние лазерного излучения на пучке электронов из линейного или лазерного ускорителя
- Формирование нейтронных импульсов

Новые подходы и методы:

- Формирование сверхинтенсивных потоков гамма-излучения при «пробое вакуума»
- Встречное ускорение пучков адронов
- Прямое воздействие лазерного излучения на ядро (возбуждение ядер, ускорение распада?)
 ????

План доклада

- ✓ Экстремальные электромагнитные поля
- ✓ Лазерно-плазменные ускорители заряженных частиц
- Источники рентгеновского и гамма излучений с использованием лазеров
- Особенности и преимущества лазерных ускорителей и источников для ядерно-физического эксперимента
- ✓ Новые задачи на стыке лазерной физики, физики ядра и физики частиц
- ✓ Лазерно-плазменный ускоритель электронов МГУ

Экстремальные электромагнитные поля

Экстремальные электромагнитные поля

Лазерно-плазменные ускорители электронов

 $E_0 = (en_0/\epsilon_0 k_p) = mc\omega_p/e \approx 0.96\sqrt{n_e \,[{\rm cm}^{-3}]} \,{\rm Vcm}^{-1}$

- 0.02

 $E_{\rm max}/E_0 \sim a_0^2/\left(1+a_0^2\right)^{1/2}$

$$E_{\rm wb} = \sqrt{2(\gamma_{\rm p} - 1)}E_{\rm p}$$

rlp.ilc.edu.ru

z/µm

Режим плазменного пузыря

Электрон-позитронный коллайдер

Лазерно-плазменное ускорение ионов и вторичные пучки

✓ Позитроны
 ✓ Нейтроны (γ,n), d(d,n), p(Z,n)
 ✓ ...

- 🛛 Ядерная астрофизика
 - 🗸 Литиевая проблема
 - ✓ s и r-процессы (потоки нейтронов 10²²-10²⁴ n с⁻¹сm⁻²)
- 🛛 Ядерная медицина
 - ✓ Наработка изотопов для SPECT, PET
 - ✓ FLASH технологии
 - ✓ IBT
- 🖵 Трансмутация тяжелых изотопов
- Радиационная стойкость материалов и микросхем

Релятивистские ионные пучки

Источники гамма излученния

тормозное излучение

- + большой заряд пучка электронов
- широкий спектр вплоть до десятков МэВ
- 🕇 простота реализации
- + мишень рядом с гамма-источником
- сложно выделить узкую полосу
- большая расходимость
- существенный радиационный фон

Повышение интенсивности и (или) энергии лазерного импульса — увеличение потока гамма-квантов и их энергии

- комптоновское рассеяние
- С использованием лазерного ускорения электронов DLA, LWFA, новые схемы

• С использованием линейного ускорителя

✓ Томсоновский генератор на линейном ускорителе 50 МэВ (НЦФМ)
 до 50 кэВ, отработка методик по фотокатоду и точке
 взаимодействия (НИИЯФ, физфак, ВНИИЭФ, ИЯИ) + 20 ТВт или 400
 Дж (нс)

- ✓ В сочетании с ускорителем с-тау фабрики (НЦФМ)
 до 100 МэВ
- + узкий спектр
- + перестройка по энергии квантов (Θ-λ)
- + малая расходимость
- + угловой момент фотонов
- малый заряд

- для перехода в область 10 МэВ и выше нужны электроны с энергией 0.5 ГэВ и более
- мишень вдали от источника

<u>Повышение интенсивности и (или) энергии лазерного импульса –</u> <u>нелинейное рассеяние или увеличение сечения пучка – ухудшение</u> <u>монохроматичности и другие проблемы</u>

Исследование сечений фотопоглощения

$E_{\gamma},$ МэВ	Направление исследований
До 5	Астрофизика
5-10	Коллективные возбуждения ядер Гигантские резонансы. Пигми-резонансы
30-150	Кластерные состояния. Квазидейтроны
150-2000	Нуклонные резонансы. Фоторождение мезонов. Статическая, динамическая, спиновая структура нуклонов
До 10 ⁶	Векторная доминантность, адронизация фотонов

Преимущества методов ядерной фотоники

- Мощный короткий импульс возбуждающих частиц (гамма, электроны, протоны,)
- Исследование ПДР под действием разных частиц в едином эксперименте
- 🛛 Использование метода совпадений для быстрых продуктов реакций
- □ Корреляционные измерения задержанного гамма-распада
- Исследование нестабильных изотопов и изомеров наработка лазером
- Исследование переходов с высокой мультипольностью закрученные фотоны

Ядерная резонансная флюоресценция

необходимые энергии гамма-квантов 0-15 МэВ

🖵 позволяет получать точную информацию о возбужденном состоянии

перестраиваемость комптоновского источника позволит сильно увеличить точность измерений

🖵 гамма-кванты поляризованы – правила отбора

Наличие нескольких пучков открывает возможность проведения более сложных экспериментов

Исследования ядерных изомеров

Метастабильные состояния ядра с большим временем жизни (наносекунды и выше) Энергия состояний – от 8 эВ до единиц МэВ

Каналы возбуждения:

- Однофотонное возбуждение (рентген, гамма)
- □ Неупругое рассеяние электронов
- Возбуждение электронами через атомную оболочку (обратная внутренняя электронная конверсия и др.)
- Возбуждение лазерным излучением через атомную оболочку Phys.Rev/ А 99 013422 (2019)
- Прямое (многофотонное??) возбуждение ядра лазерным излучением?

пучок 3...:

наработка

ИЗОТОПОВ

Возбуждение ядерных изомеров при ГВГ

Новые подходы

Формирование сверхинтенсивных потоков гамма-излучения при «пробое вакуума» Встречное ускорение пучков адронов Прямое воздействие лазерного излучения на ядро (возбуждение ядер, ускорение распада?) ????

Генерация позитронов

$$eE_{s}l_{c}=m_{0}c^{2}$$

 $E_{S}=rac{m^{2}c^{3}}{e\hbar}=1.32\cdot10^{16}~\mathrm{B/cm}$
 $I_{S}=(c/4\pi)E_{S}^{2}=4.65\cdot10^{29}~\mathrm{Bt/c}$

Лазерно-плазменный ускоритель МГУ

Формирование коллимированных электронных пучков с большим зарядом в режиме DLA

Схема с инжекцией в плазменный канал за счет распада волн параметрических неустойчивостей в тонком слое более плотной плазмы Tape target E=50 mJ $\tau = 50 \text{ fs}$ λ=800 nm $E= 200 \text{ mJ} \tau = 10 \text{ ns} \lambda = 1064 \text{ nm}$

Plasma Phys. Control. Fusion. 2019. Vol. 61, №
7. P. 075016
Plasma Phys. Control. Fusion. 2021. Vol. 62, №
2. P. 02201
Physical Review E 2020, 102(6), 063206

RLP | Laboratory of Relativistic Laser Plasma

DLA с использованием пленочных мишеней и/или плотных газовых струй

1 ТВт (50 мДж, 50 фс) 100 пКл (E>2МэВ)

- Схема эксперимента с тонкой пленочной мишенью: электроны ускоряются в плазме, созданной отдельным наносекундным импульсом.
- Ожидаемая эффективность 1-2 нКл/Дж, плотность плазмы – 0,01-0,1 критической
- Если добавить встречный лазерный пучок получается схема обратного Комптоновского рассеяния.
- Меняя энергии электронного пучка можно перестраивать энергии пучка гамма квантов, и измерять сечения фотоядерных реакций вблизи порога (1,7-12МэВ).
- Энергии электронов 300-900 МэВ

Фотоядерные реакции

Typical reactions threshold: < 10 MeV

S, mbarn

RLP | Laboratory of Relativistic Laser Plasma

2500

Neutron generation using Be, U and Pb photodisintegration

Laboratory of Relativistic Laser Plasma

Photonuclear reactions for e-beam charge measurement

GEANT4 simulation geometry

D. Gorlova et al 2019 Proc. SPIE 11037, 110370H

X-ray phase contrast imaging using thicket copper target

Peak intensity, x10¹⁸ W/cm²

RLP | Laboratory of Relativistic Laser Plasma

Спасибо за внимание! RLP Laboratory of Labo

