Взаимодействие фотонов и электронов с атомными ядрами Лекция 6

Распад гигантского дипольного резонанса. Проблема его ширины и структуры.

Проблема структуры и ширины ГДР

Показаны экспериментальные сечения фотопоглощения ядер 1d2s-оболочки (от ¹⁶О до ⁴⁴Са). Видно что ширина ГДР (область разброса по энергии основной доли сечения) меняется от 5 до 20 МэВ и нет никакой определённой тенденции в изменении этой величины с ростом А. Более того, изменение числа нуклонов в ядре на 1-2 может привести к кардинальному (в разы) изменению ширины сечения. Долгое время не удавалось понять, с чем связан такой большой разброс в ширине для ядер, имеющих близкие А и чем в этом плане отличаются легкие средние и тяжёлые ядра. Эта проблема тесно связана и с той структурой, которая наблюдается в фотоядерных сечениях.

Ширина ГДР меняется в широких пределах: 4 – 30 МэВ

Она максимальна в самых легких ядрах (A ≤ 14), достигая в них величины ≈ 30 МэВ.

- С ростом **А** имеет место тенденция сжатия области концентрации основных *Е*1-переходов.
- В ядрах 1*d*2*s*-оболочки (*A* = 16 40) она меняется в интервале 5 20 МэВ.
 - В ядрах с *A* = 50 140 ширина ГДР 4 12 МэВ.
 - В ядрах с *A* ≥ 140 ширина ГДР 4 8 МэВ.

Ширина ГДР минимальна в сферических ядрах с заполненными оболочками. Для них ГДР представим одиночным резонансом с полушириной 4-5 МэВ

Проблема ширины ГДР (области разброса по энергии основных дипольных переходов) тесно связана с проблемой структуры фотоядерных сечений.

Классификация структуры сечений фотопоглощения

тромежуточной структуры ≈10 -- се Тонкой структуры ≈10⁻²⁰ сек

$$E_m = 75 \cdot A^{-1/3} M \Im B = 75 \frac{r_0}{R} M \Im B$$

Фотонейтронные сечения изотопов самария

Стадии фотоядерной реакции

Диаграмма распада гигантского дипольного резонанса

Decay diagram of an individual Giant Dipole Resonance state

Формирование промежуточной и тонкой структуры гигантского резонанса обусловлено двумя различными стадиями его распада:

Полупрямой распад \longrightarrow Промежуточная структура $\tau_{пром} \approx \frac{\hbar}{\Gamma_{пром}} \approx \frac{\hbar}{(0,5-2,0)M_{3}B} \approx 10^{-21} \text{сек}$ Предравновесный распад \longrightarrow Тонкая структура $\tau_{тон\kappa} \approx \frac{\hbar}{\Gamma_{тон\kappa}} \approx \frac{\hbar}{(0,05-0,1)M_{3}B} \approx 10^{-20} \text{сек}$ Формирование ширины отдельного входного состояния ГДР

Плотности 2*p*2*h*-состояний с $J^P = 1^-$ в районе максимума гигантского резонанса. Приводится число состояний в интервале 1 МэВ

Сечение фотопоглощения для ядра ⁶⁰₂₈Ni (эксперимент)

Вероятность полупрямого распада ГДР в зависимости

от массового числа А на основе анализа данных эксперимента

Ядра с минимальной шириной Гигантского Дипольного Резонанса

Ширина ГДР минимальна у ядер с заполненными оболочками (т. е. магических). Для этих ядер нет уширения ГДР за счет конфигурационного расщепления. Эти ядра сферические и для них отсутствует уширение ГДР и за счет эффекта Даноса-Окамото. Для всех таких ядер ширина ГДР (на половине высоты) 4-5 МэВ. Эту ширину мы будем называть «магической» и обозначать Г_{маг}.

> Рассмотрим вопрос о том, как формируется эта величина. Есть три фактора, которые влияют на Г_{маг}. Это:

- Разброс 1*p*1*h*-дипольных переходов из одной (внешней) нуклонной оболочки. Расчётные вероятности этих переходов показаны на следующем слайде столбиками для ¹⁶О и ²⁰⁸Рв.
- 2. Ширина Γ^{\uparrow} распада каждого из этих показанных столбиками входных 1p1h дипольных состояний с вылетом нуклона из ядра.
- Ширина Г[↓] распада входных 1p1h-состояний с образованием в ядре еще одной частично-дырочной пары, т. е. ширина, формируемая процессом 1p1h → 2p2h.

Разброс, упомянутый в первом пункте этого списка, именуют «затуханием Ландау». Он вносит в полную магическую ширину Г_{маг} гигантского резонанса вклад ΔГ и обусловлен тем, что не вся сила дипольного 1p1h-перехода концентрируется в одном состоянии, как это следует из схематической модели Брауна-Болстерли, но может быть существенно фрагментирована. Сравнение экспериментальных сечений фотопоглощения для дважды магических ядер ¹⁶О и ²⁰⁸Pb с данными частично-дырочных расчетов без учета распада дипольных 1*p*1*h*-состояний (столбики). Разброс дипольных состояний формирует ширину ΔГ, обусловленную затуханием Ландау.

её можно записать в виде

 $\Gamma_{\rm Mar} = \Delta \Gamma + \Gamma^{\uparrow} + \Gamma^{\downarrow}.$

В лёгких ядрах «магическая ширина» (4 — 5 МэВ) формируется главным образом и в сравнимых долях за счёт Γ[↑] и разброса ΔГ входных состояний. В тяжёлых ядрах эти факторы не являются основными. В них «магическая ширина» примерно на 4/5 формируется за счёт Г[↓]. Оставшуюся часть создают Г[↑] и разброс входных состояний. Магическую ширину или близкую к ней имеют также немагические сферические ядра с «жесткой» (с трудом поддающейся колебаниям) поверхностью, для которых влиянием конфигурационного и изоспинового расщепления на ширину гигантского резонанса можно пренебречь.

У остальных ядер ширина гигантского резонанса возрастает по сравнению с «магической» за счет трех дополнительных факторов:

- 1. Конфигурационного расщепления (расщепления по энергии 1p1h-дипольных переходов из разных оболочек).
- Эффекта Даноса-Окамото (расщепления по энергии 1p1h-дипольных переходов из-за несферичности ядра).
- Изоспинового расщепления (расщепления по энергии 1p1h-дипольных с различным изоспином).
 Этот эффект рассматривается на следующей (7-й) лекции.

Проблема ширины гигантского дипольного резонанса может быть решена лишь при установлении природы отдельных состояний, его формирующих.

Для расшифровки природы состояний гигантского дипольного резонанса (прежде всего их оболочечной 1p1h-структуры и вероятности их полупрямого распада) необходимы эксперименты по идентификации заселяемых при нуклонном распаде ядра из А нуклонов уровней конечных А-1 ядер. Высокая информативность фотоядерных экспериментов, в которых фиксируются отдельные состояния конечных ядер, обусловлена тем, что эти состояния по энергии расположены значительно ниже формирующих гигантский резонанс состояний ядра-мишени и они хорошо изучены. Знание природы низколежащих заселяемых состояний конечного ядра позволяет получить новые сведения о высокорасположенных состояниях гигантского резонанса.

Такие эксперименты были выполнены в НИИЯФ МГУ.

Диаграмма распада гигантского дипольного резонанса

устанавливается из реакций однонуклонной передачи (d, p), $(^{3}\text{He}, d)$, (d, n), (d, 3He)

Изучение дырочных (1*h*) и частичных (1*p*) уровней ядра *A* с помощью прямых реакций однонуклонной передачи

Знание дырочной природы заселяемых при распаде гигантского резонанса уровней позволяет однозначно определить подоболочку, с которой нуклон совершил дипольный переход и вероятность данного конкретного полупрямого перехода. Таким образом, устанавливается оболочечная структура возбуждаемых уровней гигантского резонанса и механизм его распада.

Сравнение сечений заселения уровней конечных ядер с различной энергией в фотопротонной реакции (сплошные кривые) с данными реакций протонного подхвата (их спектроскопическими факторами C^2S_p) – столбики. Цвета столбиков показывают подоболочку, где возникла «протонная дырка».

Сравнение для ядер ²⁷Al и ²⁴Mg данных реакции (γ, p) – (сплошные кривые) с данными реакции ($\gamma, p\gamma'$) - (синие столбики). Красные столбики данные реакции протонного подхвата. Величины этих столбиков равны спектроскопическим факторам C^2S_p .

Явление конфигурационного расщепления гигантского дипольного резонанса

Схема формирования конфигурационного расщепления ГДР в ядрах с незаполненной 1d2s-оболочкой (между 16 O и 40 Ca)

НИИЯФ МГУ

Точки и полупрямая компонента — эксперимент (И.М. Капитонов, докторская диссертация)

Точки – эксперимент: J. Ahrens et al. Nucl. Phys., v. A251, p. 479 (1975). Столбики и линия – расчёт: Б.С. Ишханов, В.Г. Канзюба, В.Н. Орлин. Ядерная физика, т. 40<u>,</u> с. 9 (1984).

НИИЯФ МГУ Декомпозиция экспериментальных сечений фотопоглощения на компоненты А $(1d2s \rightarrow 1f2p)$ – сплошные линии и Б $(1p \rightarrow 1d2s)$ – пунктир. Стрелки указывают центры тяжести компонент.

Спектр фотопротонов из ядра ²⁸Si, измеренный и рассчитанный для тормозных фотонов с верхней границей 28 МэВ

Рассчитанный спектр фотонейтронов из ядра ²⁸Si для тормозных фотонов с верхней границей 28 МэВ

Видно, что большинство нейтронов испускается до достижения ядром равновесия (в основном на полупрямой стадии)

В составном ядре энергия возбуждения распределяется среди всех нуклонов и устанавливается равновесие. Испускание нуклонов из ядра на стадии равновесия напоминает испарение молекул из капли жидкости. Этот процесс можно описать с помощью методов статистической физики и термодинамики (зеленая кривая), вводя понятие ядерной температуры θ . Вероятность $w(E_n)$ испускания нейтронов разных энергий описывается распределением Максвелла:

$$w(E_n) = const \frac{E_n}{\theta^2} e^{-\frac{E_n}{\theta}},$$
где $\theta = \sqrt{\frac{E_\gamma - B_n}{a}}$ и $a = \frac{A}{15}$ МэВ⁻¹ и A – массовое число.

Факторы, формирующие ширину Г_∆ полосы *Е*1-поглощения, т.е. интервал группировки основных *Е*1-переходов:

- 1. Расщепление E1-переходов из одной оболочки (ΔE_1), т.е. затухание Ландау.
- Расщепление *E*1-переходов из разных (как правило двух) оболочек конфигурационное расщепление (∆*E*₂).
- 3. *Е*1-расщепление, связанное с деформацией (несферичностью) ядра в основном состоянии, т.е. с эффектом Даноса-Окамото (∆*E*₃).
- *E*1-расщепление, связанное со спецификой квантового числа изоспина (изоспиновое расщепление) △*E*₄.

