Изоспиновое расщепление Гигантского Дипольного Резонанса (продолжение)

Простая оценка величины ΔE_T изоспинового расщепления ГДР

Слева для ядра с $N \neq Z$ показана величина ΔE_T искомого изоспинового расщепления ГДР, равная $E_> - E_<$. Состояние с $T_> = T_0 + 1$ в ядре (N, Z) имеет изобар-аналог в ядре (N + 1, Z - 1), который в этом ядре является уже $T_<$ -состоянием (средняя часть рисунка), и энергия возбуждения этого изобар-аналога должна быть почти той же, что и энергия $T_<$ -состояния в ядре (N, Z). Если пренебречь кулоновскими силами и разницей в массах протона и нейтрона, то из формулы Вайцзеккера для энергии связи ядра следует, что энергии состояний ядра (*N* + 1, *Z* − 1) будут сдвинуты вверх относительно состояний ядра (*N*, *Z*) за счёт возрастания энергии симметрии $E_{\text{симм}} \approx 24 \frac{(N-Z)^2}{A}$ МэВ. При переходе от ядра (*N*, *Z*) к ядру (*N* + 1, *Z* − 1) это увеличение энергии симметрии составит

$$\Delta E_{\text{симм}} = 24 \cdot 4 \frac{[(N-Z)+1]}{A} \text{M} \Rightarrow \text{B} \approx \frac{100}{A} (2T_0+1) \text{M} \Rightarrow \text{B}.$$

И эта же величина будет давать значение изоспинового расщепления ΔE_T , т.е.

$$\Delta E_T \approx \frac{100}{A} (2T_0 + 1) \text{M} \Im \text{B}.$$

Учет кулоновского взаимодействия и разности масс протона и нейтрона приведет к дополнительному понижению уровней ядра (N + 1, Z - 1)на величину $\Delta E_{
m кул} + (m_n - m_p)c^2$, где $\Delta E_{
m кул}$ – уменьшение кулоновской энергии ядра (N + 1, Z - 1) по сравнению с ядром (N, Z). Это, однако, не скажется на величине ΔE_T (правая часть рисунка).

Величина изоспинового расщепления ГДР. Вывод на основе потенциала Лейна (Lane, 1962)

Для оценки ΔE_T используют обычно другой подход, основанный на непосредственном применении принципа изобарической инвариантности к двум сильно взаимодействующим объектам. Из этой инвариантности следует, что потенциал такого взаимодействия, например, частицы *a* и ядра *A* не должен зависеть от поворотов в изоспиновом пространстве, т. е. должен быть скаляром в этом пространстве (изоскаляром). Обозначим вектор изоспина частицы *a* через \vec{t}_a , а вектор изоспина ядра *A* через \vec{T}_A . Простейшим изоскаляром, сконструированным из этих величин, является их скалярное произведение $(\vec{t}_a \cdot \vec{T}_A)$. Поэтому потенциал сильного взаимодействия частицы *a* и ядра *A* можно представить в виде $V_{aA} = const(\vec{t}_a \cdot \vec{T}_A)$.

Константой в этом выражении, определяющей масштаб взаимодействия, выбирают величину $\approx 100 \text{ M} \Rightarrow B/A$, фигурирующую в ранее полученном соотношении $\Delta E_T \approx \frac{100}{A} (2T_0 + 1) \text{ M} \Rightarrow B$ перед множителем $(2T_0 + 1)$. В итоге получаем так называемый потенциал Лейна 100

$$V_{aA} \approx \frac{100}{A} \left(\vec{t}_a \cdot \vec{T}_A \right)$$
МэВ,

с помощью которого можно найти величину ΔE_T изоспинового расщепления ГДР.

Действительно, при поглощении ядром *E*1-фотона в нём образуются частица и дырка. Поэтому ядро в возбужденном состоянии представляет собой совокупность взаимодействующих частично-дырочной пары (*ph*) и остова:

В качестве частицы *а* в потенциале Лейна V_{aA} используем ph-пару с изоспином t_{ph} , а в качестве ядерного изоспина используем изоспин T_0 ядра в основном состоянии (т. е. изоспин невозмущённого ядерного остова). Изоспин T возбужденного ядра определяется векторным сложением изоспинов остова и частично-дырочной пары: $\vec{T} = \vec{T}_0 + \vec{t}_{ph}$, откуда $(\vec{t}_{ph} \cdot \vec{T}_0) = \frac{1}{2} [\vec{T}^2 - \vec{T}_0^2 - \vec{t}_{ph}^2] = \frac{1}{2} [T(T+1) - T_0(T_0+1) - t_{ph}(t_{ph}+1)].$ В зависимости от того, чему оказывается равным изоспин T возбужденного ядра: $T_{<} = T_0$ или $T_{>} = T_0 + 1$, для $(\vec{t}_{ph} \cdot \vec{T}_0)$ получаем два возможных значения:

$$\left(\vec{t}_{ph}\cdot\vec{T}_{0}\right) = \begin{cases} -\frac{t_{ph}(t_{ph}+1)}{2}, & \text{если } T = T_{<} = T_{0}, \\ (T_{0}+1) - \frac{t_{ph}(t_{ph}+1)}{2}, & \text{если } T = T_{>} = T_{0}+1. \end{cases}$$

Разность энергий $E_> - E_<$ состояний с $T_>$ и $T_<$, т. е. величина ΔE_T изоспинового расщепления ГДР, определяется разностью значений $(\vec{t}_{ph} \cdot \vec{T}_0)$ для $T_>$ и $T_<$ с учетом масштабного множителя $\frac{100}{A}$ МэВ: $\Delta E_T = E_> - E_< = \frac{100}{A} (T_0 + 1)$ МэВ.

Это выражение, как и ранее полученное с множителем $(2T_0 + 1)$, имеет сходную с ним структуру, но предсказывает меньшую величину ΔE_T . Оба упомянутых выражения не учитывают эффект коллективизации отдельных 1*p*1*h*-возбуждений, предсказываемый схематической моделью Брауна-Болстерли, т. е. соответствуют одночастичной картине фоторасщепления. Коллективизация, как известно, приводит к сдвигу вверх по энергии дипольных состояний. Так как число E1-переходов $T_0 \to T_0$ в средних и тяжёлых ядрах из-за большей плотности конечных уровней выше, чем число *E*1-переходов $T_0 \to T_0 + 1$, то эффект сдвига вверх по энергии сильнее для уровней с $T_{<}$, что приводит к сближению ветвей с различным изоспином и к эффективному уменьшению масштабного множителя примерно в 1,5 раза. Поэтому более реалистичное выражение, которым обычно и пользуются, имеет вид

$$\Delta E_T = E_{>} - E_{<} = \frac{60}{A} (T_0 + 1) \text{M} \Rightarrow \text{B}.$$

Предсказание концепции изоспинового расщепления гигантского дипольного резонанса

Схема возбуждения и нуклонного распада ветвей ГДР с изоспинами $T_{<}$ и $T_{>}$

Указаны вероятности возбуждения и распада ГДР с вылетом протона и нейтрона, определяемые квадратами изоспиновых коэффициентов Клебша-Гордана. Цветными стрелками отмечены наиболее вероятные

пути фотонуклонных реакций

Приведенные на предыдущих двух слайдах формулы и схемы нуклонных ветвей распада ГДР позволяют предсказать особенности поведения фотопротонных (γ , p) и фотонейтронных (γ , n) сечений в ядрах с различным числом нуклонов. Эти особенности следующие:

- В легких ядрах, где N ≈ Z и изоспин основного состояния T₀ обычно незначителен (мало отличается от 1), обе изоспиновые ветви ГДР сравнимы по величине и практически не расщеплены по энергии.
- 2. В средних и тяжелых ядрах, где число нейтронов существенно превышает число протонов и изоспин основного состояния T₀ велик, ветвь ГДР с T_> должна быть сильно сдвинута вверх по энергии по сравнению с ветвью T_< и изоспиновое расщепление должно отчётливо наблюдаться. В то же время ветвь T_> в таких ядрах оказывается подавленной по сравнению с ветвью T_<.
- 3. Возможность увидеть ветвь $T_>$ даёт фотопротонная (γ , p) реакция так как испускаемые этой ветвью протоны имеют большую энергию и легко преодолевают кулоновский барьер. В то же время распад $T_>$ -ветви по нейтронному каналу на низколежащие уровни конечного ядра (N - 1, Z) с изоспином $T_0 - 1/2$ запрещен правилами отбора по изоспину. Что касается $T_<$ -ветви, то она проявляется главным образом в фотонейтронном канале, так как распад этой ветви с вылетом протонов из-за их сравнительно низкой энергии подавлен кулоновским барьером.

Проявление изоспинового расщепления ГДР в лёгких и тяжёлых ядрах

Сравнение предсказаний

концепции изоспинового расщепления ГДР

с экспериментом

Сравниваются отношения $S_{>} = \int \frac{\sigma_{>}}{E} dE$ и $S_{<} = \int \frac{\sigma_{<}}{E} dE$ и величины изоспинового расщепления ΔE_{T} .

Ядро	T ₀	$S_>/S_<$		ΔE_T , МэВ		
		теория	эксперимент	теория	эксперимент	
⁹⁰ 40Zr	5	0,12	0,11	4 7,3	21,5 - 16,7 = 4,8	
¹³⁹ La	12,5	0,024	0,01	5,8 11,2	21,0 - 15,2 = 5,8	
²⁰⁸ 82Pb	22	2,6·10 ⁻³	5·10 ⁻³	6,6 13,0	25,0 - 13,5 = 11,5	
		∆ <i>Е_Т</i> (Лей	$H) = \frac{60}{A}(T_0 + 1)I$	МэВ ΔE_T	$r = \frac{60}{A}(2T_0 + 1)$ MэB	

Проявление изоспинового расщепления гигантского дипольного резонанса можно увидеть, исследуя эффективные сечения фотопоглощения ядер-изотопов, т. е. в изотопических семействах

Число протонов	Число нейтронов							
Z	Z	Z+1	Z+2	<i>Z</i> +4	Z+5	<i>Z</i> +7	<i>Z</i> +8	
6	¹² C	^{13}C	^{14}C					
7	^{14}N	^{15}N						
8	¹⁵ O	¹⁶ O	¹⁶ O					
12	²⁴ Mg	^{25}Mg	²⁶ Mg					
14	²⁸ Si	²⁹ Si	³⁰ Si					
16	^{32}S		³⁴ S					
20	⁴⁰ Ca		⁴² Ca	⁴⁴ Ca			⁴⁸ Ca	
22			⁴⁶ Ti	⁴⁸ Ti				
28			⁵⁸ Ni	⁶⁰ Ni				
29					⁶³ Cu	⁶⁵ Cu		

Изотопические семейства

Ярким проявлением изоспинового расщепления ГДР являются сечения фотопоглощения в триадах изотопов углерода (¹²C, ¹³C, ¹⁴C) и кислорода (¹⁶0, ¹⁷0, ¹⁸0). В сечениях этих изотопов по мере увеличения числа нейтронов возникает растущий низкоэнергичный участок и сечение, эволюционируя от одиночного узкого (полушириной около 5 МэВ) резонанса в самосопряженном (*N* = *Z*) изотопе, приобретает форму очень широкой (≈ 10 МэВ) практически двугорбой кривой в изотопе с наибольшим числом нейтронов.

Низкоэнергичный участок сечений изотопов с *N* > *Z* формируется Е1-переходами нейтронов из подоболочек с нейтронным избытком $(1p_{1/2}$ в ядрах углерода и $1d_{5/2}$ в ядрах кислорода). А эти переходы, как будет показано ниже, имеют изоспин $T_{<}$. Переходы с этим изоспином отсутствуют в самосопряженных (N = Z) ядрах, в которых *E*1-переходы имеют единственный изоспин $T_{>} = T_0 + 1 = 1$. По мере роста нейтронного избытка доля E1-переходов с изоспином $T_{<}$ растет, так как растет число нейтронов в этом избытке, и растет величина изоспинового расщепления ГДР, так как растет изоспин основного состояния изотопа. Всё это находит полное подтверждение в форме ГДР обсуждаемых триад изотопов углерода и кислорода.

Отметим также, что *E*1-переходы из области нейтронного избытка это переходы из незаполненной оболочки, т. е. переходы ветви А в терминологии концепции конфигурационного расщепления ГДР. Поэтому, располагаясь в низкоэнергичной части сечения фотопоглощения, они собственно и создают это расщепление. Таким образом, изоспиновое расщепление ГДР дополняется и усиливается конфигурационным. Покажем, что *E*1-переходы нейтронов из подоболочек с нейтронным избытком имеют изоспин *T*_<. Обратимся к рисунку, на котором затемнёнными столбиками разной высоты показаны системы заполненных протонами и нейтронами оболочек и подоболочек ядер с *N* > *Z* в основном состоянии.

Конфигурации *a* и *b* могут давать вклад как в $T_{<}$, так и в $T_{>}$ состояния. Конфигурации *c* и *d* дают вклад только в $T_{<}$ состояния. Действительно, $T_{>}$ состояния в ядре A(N,Z) являются аналогами состояний в ядре A(N+1,Z-1). Значит любое состояние в ядре A(N+1,Z-1) может быть получено поворотом соответствующего $T_{>}$ состояния ядра A(N,Z) в изоспиновом пространстве, преобразующим протон в нейтрон или нейтронную дырку в протонную дырку. Для конфигураций *c* и *d* такие преобразования запрещены принципом Паули, следовательно, они не могут давать вклад в $T_{>}$ состояния.

Возникновение изотопического эффекта в триадах изотопов углерода и кислорода

Изоспиновое расщепление ГДР изотопов кальция

Изотопический эффект в ширине гигантского дипольного резонанса (установлен в НИИЯФ МГУ в 2004 г.)

Экспериментальные и модельные (основанные на концепции изоспинового расщепления гигантского резонанса) ширины Г (в МэВ) сечений фотопоглощения изотопов углерода и кальция

	Изотопы						
	¹² C	^{13}C	¹⁴ C	⁴⁰ Ca	⁴² Ca	⁴⁴ Ca	⁴⁸ Ca
Эксперимент	≈ 5	9,7	12,0	≈ 5	6,9	7,8	6,8
Модель	6	9,0	12,1	6	6,8	7,4	6,5

Ширины Γ гигантского резонанса ядер 1d2s-оболочки и величины ΔE_T его изоспинового расщепления

Удобным объектом для проверки справедливости концепции изоспинового расщепления ГДР является пара ядер-изобар ${}^{14}_{6}$ С и ${}^{14}_{7}$ N. Сечения фотопоглощения этих ядер хорошо известны вплоть до 40 МэВ. В одном из них (${}^{14}_{7}$ N) изоспиновое расщепление отсутствует, а в другом (${}^{14}_{6}$ C) оно должно достигать 10 МэВ, что в совокупности с ожидаемым приблизительным равенством $\sigma_{>}$ и $\sigma_{<}$ должно радикальным и предсказуемым образом сказаться на форме сечения фотопоглощения этого изотопа углерода. Используемый ниже метод проверки справедливости концепции изоспинового расщепления ГДР основан на довольно очевидной и справедливой в случае изоспиновой симметрии процедуре пересчета сечения фотопоглощения одного из ядер-изобар (в данном случае ${}^{14}_{6}$ C) в сечение фотопоглощения другого (${}^{14}_{7}$ N) и сравнении полученного сечения с экспериментально наблюдаемым для этого последнего ядра.

компонент в ядре ${}^{14}_6$ С. При этом центры тяжести этих компонент совпадут и, суммируя их, получаем предсказание на форму сечения фотопоглощения ядра ${}^{14}_7$ N,

в котором изоспинового расщепления нет.

Изоспиновая инвариантность ядерных сил предполагает одинаковое внутреннее строение ядер ${}^{14}_6$ С и ${}^{14}_7$ N с точностью до поправок, вызванных электромагнитным взаимодействием. Таким образом, если выключение изоспинового расщепления ГДР в ядре ${}^{14}_6$ C приведет к формированию сечения фотопоглощения, которое в исследованном энергетическом диапазоне (10–40 МэВ) совпадет с сечением фотопоглощения ядра ${}^{14}_7$ N, где изоспиновое расщепление отсутствует, то это будет убедительным доказательством сохранения изоспиновой симметрии в процессе возбуждения гигантского резонанса сравниваемых ядер-изобар.

Экспериментальные данные, использованные в процедуре «выключения» изоспинового расщепления ГДР

Экспериментальное сечение фотопоглощения для ${}^{14}_{6}C$ было разделено на основе анализа известных реакций (γ , p), (γ , n), (γ , n_0), (γ , 2n) на изоспиновые компоненты в работе K.G. McNeil, M.N. Thompson, A.D. Bates, J.W. Jury, B.L. Berman. Phys. Rev., <u>C47</u>, 1108 (1993).

Экспериментальное сечение фотопоглощения для ¹⁴/₇N получено в работах N. Bezic N., D. Brajnik, D. Jamnik, G. Kernel. Nucl. Phys. A, v. 128, p. 426 (1969) и E.G. Fuller. Physics Reports. v. 127, №3, p. 185 (1985).

Пересчет ${}^{14}_{6}C \rightarrow {}^{14}_{7}N$

K.G. McNeil,
M.N. Thompson, A.D. Bates,
J.W. Jury, B.L. Berman.
Phys. Rev., <u>C47</u>, 1108 (1993).
(γ, p), (γ, n), (γ, n₀), (γ, 2n)

Учтено изменение масштаба изоспиновых компонент сечений, вызванное сдвигом энергий

$$\sigma(E_{\gamma}) = \frac{4\pi^2}{\hbar c} \frac{\Psi}{E_{\gamma}} |\langle f | \mathcal{D} | i \rangle|^2 \rho(E_f)$$

 D – электрический дипольный момент ядра,

 $ho(E_f)$ — плотность конечных состояний

Сравнение экспериментального сечения фотопоглощения ядра $^{14}_{7}$ N с пересчитанным с помощью процедуры $^{14}_{6}$ C \rightarrow $^{14}_{7}$ N

Основные этапы исследования гигантского дипольного резонанса атомных ядер

1945 Предсказание ГДР Мигдал (СССР) 1947 Открытие ГДР (США) 1948-58 Коллективные модели ГДР 1956 Одночастичная модель оболочек (Wilkinson) 1957-60 Многочастичная модель оболочек (Elliot, Flowers, G. Brown, теоретики НИИЯФ МГУ) 1960 Эффект Даноса-Окамото 1964 Изоспиновое

> 1970 Мультипольные ГР (*M*1, *E*2, *E*3, *E*4, ...)

расщепление ГДР

1983 Конфигурационное расщепление ГДР (НИИЯФ МГУ)

2004 Изотопический эффект в ширине ГДР (НИИЯФ МГУ)