Лекция 2 Сильные взаимодействия адронов* и кварков

(*Адроны- сильно взаимодействующие частицы)

Кварковая структура адронов. Барионы. Мезоны

- Адроны состоят из кварков.
- Они участвуют во всех видах взаимодействий.
- Адроны подразделяются на барионы, имеющие барионный заряд В = 1, и мезоны, для которых В = 0.
- Барионы состоят из трех кварков.
- Мезоны из кварка и антикварка.

- Барионы являются фермионами (имеют полуцелый спин).
- Мезоны являются бозонами (имеют нулевой или целочисленный спин).
- Адроны также характеризуются квантовыми числами s (странность), с (очарование), b (красота), t (истина), изоспином I и его третьей проекцией I3.

Мезоны и барионы можно образовать из кварков различных типов, составляя их различные комбинации. Например

 $\pi^+(u\tilde{a}), \pi^-(\tilde{u}d), K^-(\tilde{u}s), p(uud), \Delta^{++}(uuu), \tilde{n}(\tilde{u}\tilde{a}\tilde{a}) и т.д.$

При этом одному и тому же кварковому составу могут соответствовать различные состояния, отличающиеся ориентациями спинов и изоспинов кварков. Например

uudp $J^P(I) = 1/2^+(1/2)$ uud Δ^+ $J^P(I) = 3/2^+(3/2)$ uudN^+(1520) $J^P(I) = 3/2^-(1/2)$

Некоторые мезоны (B=0, L=0)

Частица	Кварковая структура	Масса МэВ	Время жизни сек.	оемя Спин,четность зни сек. изоспин	
π+, π-	uã, ũd	139.57	2.6·10 ⁻⁸	0-(1)	vµ ^{+,} vµ -
π ⁰	uũ - dấ	134.98	8.4·10 ⁻¹⁷	0-(1)	2γ
K⁺,K⁻	uŝ , sũ	494	1.2·10-8	0-(1/2)	vμ, 2π
K⁰, Ř́ ⁰	dĩ , sấ	498	8.9·10 ⁻¹¹ K° _s 5.2·10 ⁻⁸ K ⁰ L	0-(1/2)	2π, 3π, πΙν
ρ⁺, ρ⁻	uã, dũ	776	Г = 150 МэВ	1-(1)	2π
ρ ⁰	uũ - d ũ	776	Г = 150 МэВ	1-(1)	2π

Барионы с J^P =1/2⁺

барион	Кварковый состав	Масса, МэВ	S(Y), Странность (Y=B+s)	I₃- проекция изоспина	- изоспин
р	uud	938	0(+1)	+1/2	1/2
n	udd	940	0(+1)	-1/2	1/2
Σ+	uus	1189	-1(0)	+1	1
Σ-	dds	1193	-1(0)	-1	1
Σ0	uds	1197	-1(0)	0	1
٨	uds	1116	-1(0)	0	0
Ξ0	uss	1315	-2(-1)	+1/2	1/2
Ξ	dss	1321	-2(-1)	-1/2	1/2

Систематика адронов

Приведенной восьмерке барионов сопоставляется группа симметрии SU(3) с размерностью 8, или матрица 3х3 с элементами T_i^k и нулевой суммой диагональных элементов.

Каждому элементу матрицы соответствует частица октета. В октет имеется: синглет (Λ), два дублета (p,n; Ξ^0 , Ξ^-) и триплет (Σ^+ , Σ^- , Σ^0) по изоспину.

Элементы с индексами 1,2 составляют при этом группу SU(2), индекс 3 не преобразуется.

Общий вид матрицы октета барионов:

$$\begin{array}{cccc} & & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} & \begin{array}{c} & & & \\ & & & \\ & & \\ & & \\ \end{array} & \begin{array}{c} & & & \\ & & \\ & & \\ & & \\ \end{array} & \begin{array}{c} & & & \\ & & \\ & & \\ & & \\ \end{array} & \begin{array}{c} & & & \\ & & \\ & & \\ & & \\ \end{array} & \begin{array}{c} & & & \\ & & \\ & & \\ & & \\ \end{array} & \begin{array}{c} & & & \\ & & \\ & & \\ & & \\ \end{array} & \begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{array} & \begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{array} & \begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{array} & \begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{array} & \begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{array} & \begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{array} & \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} & \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} & \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} & \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} & \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} & \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} & \begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{array} & \begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{array} & \begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{array} & \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} & \begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{array} & \begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{array} & \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} & \begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{array} & \begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{array} & \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} & \begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{array} & \begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{array} & \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} & \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} & \begin{array}{c} & & \\ & \\ & & \\$$

Основные элементарные частицы						
	Обозначение		Macca, MəB	Кварковая структура		Breve
Название	части- ца части:- ца			частица	анти- частица	жизни, с
Фотон	н ү		0			∞
		Лen	тоны			
Электрон	e-	e^+	0,511	[Н	ет	∞
Нейтрино электронное	ve	ve			•	00
Мюсн	μ-	μ+	106	,	•	2,2.10-6
Нәйтрино мюонное	ν _μ	vμ				∞
т-Лептон	τ-	τ+	1807		•	
τ-Нейтрино	ν _τ	vτ				8
		Mea	зоны			
Пион заряженный	π ⁺	π-	140	ud	du	$2.6 \cdot 10^{-8}$
Пион нейтральный	π	0	135	$1/\sqrt{2}(u)$	$\tilde{u} - d\tilde{d}$	0,76.10-16
Каон заряженный	K+	К-	494	us	sū	1,2.10-8
Каон нейтральный	K^0	Ñ٥	498	$d\tilde{s}$	sð	0,86.10-10
						5,4.10-8
η-Мезон	1	1	549	1/V 6(uu-	-dd-2ss)	2,4.10-19
<i>D</i> +-Мезон	. D+	D-	1868	cd	dc	
<i>D</i> ⁰ -Мезон	D^0	$D^{\mathfrak{o}}$	1863	cũ	uc	
<i>F-</i> Мезон	F^+	F^-	2030	cŝ	sc	
Барионы						
Протон	$p \mid$	ñ	938.3	uud	ũũd	>1030 лет
Нейтрон	n_0	n ₀	939.6	udd	ũđđ	
Лямбда-гиперон	A ⁰	Ã⁰	1116	uds	ũds	2,5.10-10
Сигма-плюс-гиперон	Σ^+	$\tilde{\Sigma}^+$	1189	uus	ũũs	0.8.10-10
Сигма-нуль-гиперон	Σ^0	Σ°	1192	uds	ũds	1.10-14
Сигма-минус-гиперон	Σ-	Σ-	1197	dds	dds	1.5.10-10

Барионы, продолжение

p, N^+ = uud; n, N^0 = udd S=0, I=1/2 S=0, I=3/2 Δ^{++} = uuu; Δ^{+} = uud, Δ^{0} = udd; ∆-=ddd S=-1, I=0 $\Lambda^0 = uds$ S=-1, I=1 Σ^+ = uus; $\Sigma_{C^{++}}^0$ = uds; Σ^- = dds S=-2, I=1/2 Ξ^0 = uss; Ξ^- = dss S=-3, I=0 $\Omega^- = sss$ C=+1 Λ_c^+ = udc, , Σ_c^{++} = uuc, Σ_c^+ = udc, Σ_c^0 = ddc, Ξ^+_{c} = usc, Ξ^0_{c} = dsc, Ω^0_{c} = ssc B = -1 Λ_{b}^{0} = udb, Ξ_{b}^{0} = usb; Ξ_{b}^{-} = dsb

Мезоны, продолжение

В мезоне из двух спинов кварков можно образовать бесцветные состояния с S=0 - **скалярные мезоны (**π⁺, π⁻, π⁰), и с тем же кварковым составом с S=1 **векторные** мезоны (ρ⁺, ρ⁻, ρ⁰).

Орбитальный момент кварков в этих состояниях L = 0. Существуют радиально возбужденные состояния с L = 1 (p*), например.

Скалярные странные мезоны К+, К-, К0, К0

Векторные странные мезоны - К*,...

Мезоны с C= ± 1 : D ⁺ = cã, D ⁰ = cũ, D ⁰ = ču, D ⁻ = čd, аналогично D^{*}

Странные мезоны с C= ± 1 : D $_{s}^{+}$ = cs, D $_{s}^{-}$ = cs, аналогично D $_{s}^{*}$

Мезоны с B= ± 1 : B⁺ = uõ, B⁰ = dõ, \mathbf{B}^0 = ãb, B⁻ = ũb, аналогично B^{*}

Странные мезоны с B= ± 1 : B⁰_s = sõ, \mathbf{B}^0_s = šb, аналогично B^{*}_s

Мезоны с $B=\pm 1$, $C=\pm 1$: $B_{c}^{+}=c\tilde{D}$, $B_{c}^{-}=\tilde{C}b$

SU(4) систематика мезонных состояний

На рисунке показан 16-плет псевдоскалярных (а) и векторных (б) мезонов в SU(4) с включением u,d,s,c кварков в осях І – изоспин, С –чарм и гиперзаряд Y = S + B - C/3.Нонет легких мезонов занимает центральную плоскость, к которой также присутствуют сё - состояния

Figure 14.1. SU(4) - eight diagram showing the fit plant for the gravitation (a) and variation showing the fit liple of the variation of most fit include of the variation of most of the most of the gravitation $Y = S - B - \frac{1}{22}$. The non-statility is not to set up the control plants in which the effective half both of definition.

SU(4) систематика барионных состояний

На рисунках показаны 20плеты (а) с SU(3) октетом и с SU(3) декуплетом (б) SU(4) с включением u,d,s,c кварков

Figure 14.4: SU(4) multiplete ellipsity and made all a, d, s and

Квантовая хромодинамика (КХД)– калибровочная теория сильных взаимодействий

КХД – неабелева калибровочная теория, обладающая свойством асимптотической свободы. Асимптотическая свобода предполагает уменьшение константы связи на малых расстояниях. Это происходит вследствие «антиэкранирования» пробного цветового заряда. Он мал на малых расстояниях. Соответственно, заряд велик на больших – явление конфаймента. Конфаймент – кварки и глюоны в обычных условиях заперты в адронах на расстояниях менее 1 фм.

Требование асимптотической свободы проистекает из т.н. партонной модели, установившей, что кварки в жестких соударениях ведут себя как свободные частицы.

Основа партонной модели – опыты по изучению структуры нуклонов на ускорителе электронов SLAC при энергии 20 ГэВ. Было установлено, что на большие углы рассеивается больше частиц, чем ожидается в случае протяженной мишени.

Р.Фейнман предложил рассматривать нуклон в жестких соударениях как газ невзаимодействующих точечноподобных частиц – партонов, т.к. сечение рассеяния на партоне не содержит форм-фактора подавления.

В системе покоя налетающего электрона нуклон релятивистский (γ>>1) и представляет собой «пучок» коллинеарных партонов, несущих долю импульса нуклона x_q, при условии Σ x_q=1. Плотность партонов в адроне q(x) есть

dn(x, x+dx) = q(x) dx.

Наблюдаемое адронное сечение есть произведение партонной плотности и точечного партонного сечения $\sigma_{adp} = q \sigma_{napt}$.

Партоны были идентифицированы с кварками. Условия сохранения импульса потребовали введения понятия «морских» кварков и глюонов. Глюоны несут ~50% импульса нуклона.

Цвет. Конфаймент.

КХД основана на локальных преобразованиях цветовых степеней свободы, оставляющих лагранжиан КХД инвариантным.

- Калибровочная группа симметрии КХД неабелева группа SU(3)_с, где с-цветовые степени свободы, 3 три возможных состояния кварка по цвету.
- Глюоны калибровочные бозоны, их 8 в соответствии с числом генераторов группы SU(3), служат переносчиками сильных взаимодействий между кварками. Глюоны, в отличие от нейтрального фотона, цветные и испытывают самодействие, возможны взаимодействия трех и четырех глюонов.
- Все физические состояния с конечной энергией есть синглетные по цвету комбинации кварков и глюонов.

|Мезон > =
$$(1/\sqrt{3}) \sum_{\alpha=1}^{3} (q_i^{\alpha} \tilde{q}_k^{\tilde{\alpha}})$$

|Барион > = (1/ $\sqrt{6}$) $\Sigma_{\alpha,\beta,\gamma=1}^{3}$ ($\epsilon_{\alpha\beta\gamma} q_i^{\alpha} q_k^{\beta} q_l^{\gamma}$), каждый из α,β,γ

принимает значения 1,2,3; ε_{α,β,γ} - полностью антисимметричный тензор,

$$\varepsilon_{123} = \varepsilon_{231} = \varepsilon_{312} = 1$$
 и $\varepsilon_{213} = \varepsilon_{132} = \varepsilon_{321} = -1$.

Ожидается, что в соударениях тяжелых ионов могут возникнуть условия исчезновения конфаймента, кварки и глюоны смогут распространяться на расстояния более 1 фм.

Кварки и глюоны в жестких процессах образуют струи, наблюдаемые в эксперименте.

Цвет. Экспериментальные свидетельства.

Теоретический аргумент в пользу N_c=3 состоит в сокращении аномалий в Стандартной модели, несовместимых с калибровочной инвариантностью, в случае, если суммарный электрический заряд в каждом поколении равен 0:

 $e_u + e_d = 1/3$ $e_v + e_l = -1$, т.е.количество кварковых состояний нужно утроить.

Из опыта имеем:

- 1) Волновые функции Δ^{++} , Δ^{-} и Ω^{-} барионов
- Вероятность рождения адронов в е⁺е⁻ аннигиляции выше порога bБ- рождения и ниже массы Z-бозона R ≅ N_c · 11/9
- B (W-> e⁻ṽ) = 1/ (3+2N_c) : Для N_c=3 имеем B=20%, на опыте 18%
- 4) Ширина распада $\pi^0 \rightarrow 2\gamma$: $\Gamma = 7,6 \zeta^2 \Rightarrow B, \zeta = N_c (e_u^2 + e_d^2) = 1$ при $N_c=3, \Gamma_{\Rightarrow \kappa c n} = (7,7 \pm 0,6) \Rightarrow B$

Взаимодействия адронов

КХД непосредственно применяется к расчетам жестких процессов. В условиях больших значений кинематических переменных в них выполняются асимптотические результаты безмассовой КХД.

Жесткие процессы –

- инклюзивное рождение адронов в е⁺е⁻ аннигиляции
- глубоконеупругое рассеяние лептона на нуклоне (DIS)
- соударения адронов высокой энергии с большой передачей импульса.

Основные процессы при соударениях адронов высокой энергии – «мягкие», т.е. происходят при небольших передачах импульса. Полное сечение взаимодействия адронов включает упругое и неупругое рассеяния. Частью неупругого взаимодействия является неупругое дифракционное взаимодействие. Неупругий характер взаимодействия заключается в множественном

рождении новых частиц, преимущественно адронов.

Методы измерения сечений адронов

1. Метод выбывания из пучка.

2. Путем измерения оптической точки в упругом рассеянии. Для описания полных сечений вводятся формфакторы адронов, получаемые из эксперимента. Формфактор задется в виде функции профиля Г(b), где b – параметр удара. Функция профиля характеризует поглощающую способность адрона при разных параметрах удара. Функцию профиля можно связать с амплитудой рассеяния при разных переданных импульсах q в плоскости, перпендикулярной оси столкновения:

 $f(\mathbf{q}) = (\mathbf{i}\mathbf{k} / 2 \pi) \int_0^\infty d^2 \mathbf{b} \Gamma(\mathbf{b}) \exp(\mathbf{i}\mathbf{q}\mathbf{b}),$

 Γ (**b**) = (1/2 π ik) $\int_{0}^{\infty} dq f(q) \exp(iqb)$.

Амплитуда $f(\mathbf{q})$ определяет сечение упругого рассеяния d $\sigma/d \Omega = (d\sigma/dq^2) (dq^2 / d \Omega) = (p^2 / \pi) (d\sigma/dq^2) = (hk/\pi)^2 (d\sigma/dt) = |f(q^2)|^2$

Величина отношения ρ = Re *f* /Im *f* измеряется, Im *f* (0)=(k/4 π) $\sigma_{\text{полн}}$ – ОПТИЧЕСКАЯ ТЕОРЕМА, часто используемая для определения полных сечений $\sigma_{\text{полн}}^2 = (16\pi/\hbar^2)(d\sigma/dt)_{t=0}$; или $\sigma_{\text{полн}}^2 = (16\pi/\hbar^2(1+\rho^2))(d\sigma/dt)_{t=0}$.

Итак, интегрируя do/d|t|, находим σ_{ynp} ; (do/dt) _{t=0} дает $\sigma_{noлh}$: и $\sigma_{heynp} = \sigma_{noлh} - \sigma_{ynp}$

Figure 40.10: Summary of hadronic, γp , and $\gamma \gamma$ total cross sections, and ratio of the real to imaginary parts of the forward hadronic amplitudes. Corresponding computer-readable data files may be found at pdg.lbl.gov/xsect/contents.html. (Courtesy of the COMPAS group, IHEP, Protvino, August 2005.)

Энергетическая зависимость сечений Разность сечений взаимодействия частиц и античастиц с протонами

298

W. Kittel/Bubble chambers in high energy hadron collisions (and vice versa)

Table 1. High energy bubble chamber experiments on hadronic collisions on protons with beam momentum $p_{LAB} > 30$ GeV/c.

experiments	beam	PLAB (GeV/c)
Mirabelle		
	K^+	32
	K-	32
	\bar{p}	32
	π ⁽⁺⁾	32.50
	p	32.69
BEBC	,	50,07
WA26	K-	70
WA27	K^+	70
WA28	K-	110
FNAL 15'		0.0.5
E341	p	400
E343	p	300
FNAL 30" (hybrid)		0.0.0
E2B	p	200,300
	π^{-}	100,200
	π^+	100
E37A	P	300
E121A	P	100,200,300,400
E125	π ⁻	100
E137	π-	200
E138	P	400
E141A	P	200
E143A	π-	300
E154	π-	150
E217	π^+	100,200
E228	π^+/p	60
E252	p	100
E281	π^{-}	360
E299	$K^{+}/\pi^{+}/p$	150
E311	p	100
E344	p	50
E570	$K^+/\pi^{\pm}/p$	200
E597	$\pi^{-}/(\bar{p})$	100,360
	$K^{+}/\pi^{+}/p$	100
EHS (hybrid)		
NA16	π^{-}/p	360
NA22	$\pi^{+}/K^{+}/p$	250
NA23	р	360
NA27	π^{-}	360
	р	400

Figure 1. Cross section for elastic $\pi^+ p$ and $K^+ p$ scattering as a function of the squared cms energy s [2].

2.2. (Meson) diffraction

Hadronic excitation of the quark-diquark system has been studied in proton dissociation at the ISR [4] and the Collider [5], but also in the EHS experiment NA23 [6]. Elongation of the diffractively produced system has been observed along the pomeron-proton direction and similarities are reported to deep inelastic lepton-proton scattering.

Hadronic excitation of the simpler $q\bar{q}$ system needs to be studied in meson-proton collisions and can be compared to $q\bar{q}$ excitation in e^+e^- annihilation. The disadvantage of the relatively low excitation energy available in meson diffraction is partially compensated by an increased rapidity range for pions and by the existence of very differential data from bubble chambers.

Diffraction dissociation has been extensively studied in exclusive four- and six-particle final states, dom-

- Уменьшение сечений с ростом энергий в области малых энергий взаимодействий
- Увеличение сечений при энергиях выше √s = 10-15 ГэВ (Серпуховской эффект)
- Асимптотический рост сечений в широком интервале энергий
- Асимптотическое равенство сечений взаимодействий частиц и античастиц с протонами
- Рост сечений обусловлен в основном ростом неупругого сечения
- Сечение pp взаимодействий при энергиях Серпуховского ускорителя составляет около 40 мб, при энергиях LHC около 80 мб.

Множественность вторичных частиц в неупругих взаимодействиях

Энергия взаимодействия, доступная для образования новых частиц,

или свободная энергия взаимодействия, $E_{cbob} = \sqrt{S - m_B} - m_A$.

- $< n_{\pm} > = 0,70 + 1,21 \ln(E_{cBOO}^{2})$ При $E_{cBOO}^{2} = 5$ $< n_{\pm} > = 2,8$ 10 3,5
 - 100 5,9

n _{втор} [≅] 3/2 <n_±> , около 80% вторичных частиц - пионы.

Факторы, ограничивающие множественность :

- эффект лидирования;
- ограниченность поперечных импульсов;
- рождение резонансов, кластеров.

Множественность вторичных частиц в жестких процессах определяется функциями фрагментации кварков.

1. Какие из следующих реакций возможны:

