Калориметры

Калориметр
Рис.1. Один из видов калориметра – устройства, позволяющего регистрировать космические лучи высокой энергии. Прибор состоит из углеродной мишени, в которой происходит генерация вторичных частиц – нейтральных пионов, которые, распадаясь, формируют поток фотонов. Они регистрируются слоями детекторов, расположенных между поглотителями и свинца под мишенью. Измеряя количество вторичных частиц, можно определить энергию первичной. Чем больше слоёв детекторов, тем точнее измеряемая энергия.

    Калориметры предназначены главным образом для измерения полной энергии высокоэнергичных (в том числе и нейтральных) частиц. Детекторы с газовой и жидкой рабочей средой не удобны для этой цели, так как имеют низкую плотность, компенсация которой требует слишком больших объёмов. Однородные твёрдотельные детекторы (сцинтилляторы, полупроводники и др.) также невозможно изготовить таких размеров, чтобы обеспечить полное поглощение энергии релятивистских и слабоионизующих частиц. Проблема решается использованием “сэндвичей”, состоящих из чередующихся слоёв поглощающих и детектирующих сред. В качестве поглотителей могут быть взяты такие плотные и сильно поглощающие материалы как железо и свинец. В качестве детекторов – твёрдые сцинтилляторы или свинцовые стёкла, эффективно генерирующие черенковское излучение. Частица, попадая в такой твёрдотельный сэндвич, создаёт быстро размножающийся по мере продвижения вглубь каскад (ливень) вторичных частиц. Энергия первичной частицы трансформируется в энергии частиц каскада, а также в возбуждение и ионизацию среды. Если обеспечить размеры калориметра достаточные для остановки и поглощения всех вторичных частиц, то задача будет решена сбором и суммированием всех сигналов с детектирующих слоёв. Калориметры делятся на два класса – электромагнитные и адронные.
   Электромагнитные калориметры служат для измерения энергии электронов, позитронов и фотонов с энергией больше 100 МэВ (они пригодны и для регистрации мюонов). Каскад вторичных частиц развивается за счёт генерации тормозного излучения и рождения электрон-позитронных пар. Толщина электромагнитного калориметра – десятки сантиметров.
    В адронных калориметрах первичный адрон производит главным образом вторичные адроны в реакциях неупругого взаимодействия. Адронные ливни имеют бóльшие размеры, чем электромагнитные (соответственно толщина адронного калориметра может достигать нескольких метров), и подвержены значительно бóльшим флуктуациям в числе и типе вторичных частиц. Кроме того, лишь небольшая доля энергии первичного адрона остаётся в детектирующем материале калориметра. В этой связи энергетическое разрешение адронных калориметров в десятки раз хуже электромагнитных. Энергетическое разрешение калориметров дельтаЕ/Е пропорционально E-1/2, т. е. улучшается с ростом энергии. При энергии частицы 100 ГэВ оно составляет доли процента для электромагнитного калориметра и проценты для адронного. Временнoе разрешение калориметра определяется “быстродействием” его детектирующей среды.


На головную страницу

Рейтинг@Mail.ru