ЛЕПТОНЫ

Фундаментальные частицы Стандартной Модели

Лептоны – класс фундаментальных частиц Стандартной Модели, не участвующих в сильных взаимодействиях. Заряженные лептоны участвуют в электромагнитных и слабых взаимодействия. Нейтрино — только в слабых. Все лептоны обладают полуцелым спином J = 1/2 и в соответствии с этим являются фермионами.

1897 г. Дж. Томсон. Открытие электрона

Характеристика	Численное значение	
Спин Ј	1/2	
Масса <i>m_ec</i> ², МэВ	0.51099892±0.0000004	
Электрический заряд, Кулон	-(1.60217653±0.00000014)·10 ⁻¹⁹	
Магнитный момент, <i>eħ/2m_ec</i>	1.001159652187±0.00000000004	
Время жизни $ au$, лет	> 4.6 •10 ²⁶	
Лептонное число L _e	+1	
Лептонные числа L_{μ} , $L_{ au}$	0	

1932 г. Открытие позитрона

К. Андерсон (1905 – 1991)

Позитрон, зарегистрированный в камере Вильсона, помещенной в магнитное поле.

Нобелевская премия по физике 1936 г. – К. Андерсон. За открытие позитрона

Нейтрино ν

1931 г. В. Паули выдвинул гипотезу о существовании нейтрино для объяснения спектра электронов β-распада

1956 г. Ф. Райнес, К. Коэн зарегистрировали антинейтрино.

Электронное антинейтрино

1953–1956. Ф. Райнес, К. Коэн

 $n \rightarrow p + e^- + \tilde{v}_e$ $\tilde{v} + p \rightarrow e^+ + n$

Первое свидетельство существования нейтрино

 $p + e^- \rightarrow n + v$ ⁷Be + $e^- \rightarrow {}^7$ Li + v_e

Источник антинейтрино – ядерный реактор

$$e^{+} + e^{-} \rightarrow 2\gamma$$
 ~10 микросекунд
 $n + Cd(A) \rightarrow Cd(A+1)^{*} \rightarrow Cd(A+1) + (3-5)\gamma$
 $\sigma(\tilde{\nu}p) = 10^{-43} \text{ см}^{2}$ $t = 200 \text{ часов. } N = 567. \text{ Фон} = 209$

Нобелевская премия по физике 1995 г. – Ф. Райнес. За детектирование нейтрино

Определить длину *L* и время *t* свободного пробега реакторного нейтрино в воде, $\sigma \approx 10^{-43}$ см².

Число нейтрино прошедших через слой вещества толщиной x,

 $N(x) = N(0) \exp(-n\sigma x),$

п — количество ядер вещества в единице объема.

L — длина, на которой поток антинейтрино уменьшается в е раз, то есть $L = 1/n\sigma$. $n = \rho N_A / A$, N_A — число Авогадро, ρ — плотность вещества, A — молярная масса. Для воды $\rho = 1$ г/см³, $A(H_2 0) = 18$.

$$L = \frac{1}{n\sigma} = \frac{A}{\rho N_A \sigma} = \frac{18}{1 \, \Gamma/\text{cm}^3 \times 6 \cdot 10^{23} \times 10^{-43} \, \text{cm}^2} = 3 \cdot 10^{20} \, \text{cm} = 3 \cdot 10^{15} \, \text{km}$$

$$t = \frac{L}{c} = \frac{3 \cdot 10^{15} \text{ км}}{3 \cdot 10^{5} \text{ км/c}} = 10^{10} \text{ с} \approx 320 \text{ лет,}$$

(1 год ≈ 3,156 · 10⁷ с).

Тождественны ли v_e и \tilde{v}_e ?

Если v_e и \overline{v}_e являются тождественными частицами, то должна наблюдаться реакция

$$\tilde{\nu}_e + n \to p + e^- \tag{*}$$

Это следует из того, что наблюдается реакция

$$\tilde{\nu}_e + p \rightarrow n + e^+ \qquad \nu_e + n \rightarrow p + e^- \qquad (**)$$

Обе реакции ((*) и (**)) при тождественности v_e и \overline{v}_e должны иметь одинаковые, характерные для нейтрино (антинейтрино) сечения $\approx 10^{-43}$ см².

$$\overline{V}_e + {}^{37}_{17}\text{Cl} \rightarrow {}^{37}_{18}\text{Ar} + e^-.$$
 (***)

Если процесс (*) возможен, то под действием потока антинейтрино от реактора один из нейтронов, входящих в состав ядра ³⁷*Cl*, должен превращаться в протон, что приводит к образованию радиоактивного изотопа ³⁷*Ar* с периодом полураспада 35.04 суток. Регистрируя радиоактивность изотопа ³⁷*Ar*, можно судить о возможности протекания реакции (*).

Образование изотопа ³⁷ *Аг* не было обнаружено.

 $\sigma < 2 \cdot 10^{-45}$ см². M (детектор) = 4000 литров

Спиральность. Киральность

Правополяризованная частица имеет положительную спиральность (h = +1), левополяризованная — отрицательную (h = -1).

Экспериментально показано, что спиральность нейтрино всегда отрицательна $(h_{\nu} = -1)$, а спиральность антинейтрино всегда положительна $(h_{\overline{\nu}} = +1)$. Нейтрино рождаются только в процессах слабого взаимодействия. Во всех наблюдаемых в природе слабых процессах с участием нейтрино участвуют только лево-поляризованные нейтрино. Правополяризованные нейтрино в наблюдаемых процессах не проявляются. Появление частиц с определенным значением поляризации обусловлено природой слабого взаимодействия.

Пример

Возможен ли распад $\pi^0 ightarrow v_e + \overline{v_e}$ для нейтрино с нулевой массой?

Нейтрино всегда имеет отрицательную спиральность, а антинейтрино всегда имеет положительную спиральность.

Спин нейтрино *s_v* равен 1/2, и направление его вектора противоположно направлению движения частицы. Спин антинейтрино *s_v* также равен 1/2, направление его вектора совпадает с направлением движения частицы.

При распаде, исходя из закона сохранения импульса, нейтрино должны разлетаться строго в противоположные стороны. Момент количества движения v_e и \overline{v}_e $\overline{J} = \overline{s}_v + \overline{s}_{\overline{v}} = \overline{1}$. Однако, спин π^0 -мезона равен 0, то есть данный распад невозможен из-за нарушения закона сохранения момента количества движения

1937 г. Открытие мюона

Характеристика	Численное значение	
Спин Ј	1/2	
Масса $m_{\mu}c^2$, МэВ	105.6583692±0.0000094	
Электрический заряд	Равен заряду электрона	
Магнитный момент, ећ/2 <i>m</i> µс	1.0011659203±0.0000000007	
Время жизни, сек	(2.19703±0.00004)·10 ⁻⁶	
Лептонное число L _µ	+1	
Лептонные числа L_e, L_τ	0	

$$\mu^- \rightarrow e^- + \overline{\nu}_e + \nu_\mu, \quad \mu^+ \rightarrow e^+ + \nu_e + \overline{\nu}_\mu$$

 μ^- и μ^+ соответственно частица и античастица

Мюон

Мюон имеет полное сходство с электроном, за исключением его массы. Мюон имеет массу в 200 раз больше массы электрона.
Отрицательно заряженный мюон может образовывать связанные состояния с протоном. При этом образуется связанная система подобная атому водорода - мезоатом.
Энергия связи в мезоатоме оказывается в 200 раз больше, а радиус основного состояния такого атома в 200 раз меньше.
В тяжёлых ядрах радиус мезоатома сравним с радиусом ядра.

Измерения спектров мезоатомов позволяют получить информацию о форме атомного ядра.

Мезоводород может присоединить ещё один протон и образовать мюонный положительный ион молекулы водорода. В этой молекуле ядра водорода находятся столь близко друг к другу, что может произойти реакция синтеза (мюонный катализ). Однако практическая реализация этой возможности сильно ограничена малым временем жизни мюона (≈10⁻⁶ c)

1962 г. Открытие мюонного нейтрино

Мюонное нейтрино отличается от электронного нейтрино.

$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu}$$

$$\pi^{-} \rightarrow \mu^{-} + \tilde{\nu}$$

$$V_{\mu} \neq V_{e} \qquad \tilde{V}_{\mu} \neq \tilde{V}_{e}$$

Нобелевская премия по физике

1988 г. – Л. Ледерман, М. Шварц, Дж. Стейнбергер.

За метод нейтринного пучка и демонстрацию дублетной структуры лептонов через открытие мюонного нейтрино

Мюонные нейтрино образовывались в результате распада π+, π- - мезонов.

$$\pi^+
ightarrow \mu^+ +
u_{\mu} \qquad \pi^-
ightarrow \mu^- +
u_{\mu}$$

Мюонные нейтрино детектировались в искровых камерах по результатам их взаимодействия с протонами и нейтронами вещества искровых камер.

$$\tilde{v}_{\mu} + p \rightarrow \mu^{+} + n \qquad \tilde{v}_{\mu} + p \not\rightarrow e^{+} + n v_{\mu} + n \rightarrow \mu^{-} + p \qquad v_{\mu} + n \not\rightarrow e^{-} + p$$

В искровых камерах наблюдались только положительно и отрицательно заряженные мюоны. Не было зарегестрировано ни одного случая образования электронов или позитронов.

1975 г. Открытие τ-лептона

τ-лептон и τ-нейтрино образуют третье поколение лептонов

М. Перл (1927–2014)

Наблюдались события образования µ,е-пары с противоположными знаками заряженных частиц

Нобелевская премия по физике 1995 г. – М. Перл. За открытие тау-лептона

Наблюдение τ-лептона

 au^- -лептон имеет время жизни $au \approx 2.9 \cdot 10^{-13}$ с и поэтому, как правило, регистрируется по каналам его распада. au^- -лептоны наблюдались в реакции $e^+ + e^- \rightarrow au^+ + au^-$.

$$e^{+} + e^{-} \rightarrow \begin{cases} \tau^{-} \to e^{-} \overline{v}_{e} v_{\tau} & \text{или } \mu^{-} \overline{v}_{\mu} v_{\tau} \\ \tau^{+} \to e^{+} v_{e} \overline{v}_{\tau} & \text{или } \mu^{+} v_{\mu} \overline{v}_{\tau} \end{cases}$$
(*)

е μ -пары, имеющие противоположные электрические заряды, являются наиболее подходящими для наблюдения τ -лептонов, так как в этом случае не образуются адроны, которые трудно регистрировать и интерпретировать. Нейтрино и антинейтрино, образующиеся в реакции (*), непосредственно не регистрируются.

Распад τ-лептона

 τ^- -лептон в результате слабого взаимодействия, которое происходит под действием W^- -бозона, превращается в τ -нейтрино v_{τ} . W^- -бозон затем распадается, превращаясь в одну из следующих пар частиц:

- электрон e^- , электронное антинейтрино \overline{v}_e ,
- отрицательно заряженный мюон μ^- , мюонное антинейтрино \overline{v}_μ ,
- кварк d, антикварк \overline{u} .

τ-лептон

Характеристика	Численное значение	
Спин Ј	1/2	
Масса $m_{ au}c^2$, МэВ	1776.99±0.28	
Электрический заряд	Равен заряду электрона	
Магнитный момент, <i>ећ/2m_гс</i>	1±0.06	
Время жизни, сек	(2.906±0.011)·10 ⁻¹³	
Лептонное число $L_{ au}$	+1	
Лептонные числа L_e , L_μ	0	

$$\tau^{-} \rightarrow e^{-} + \overline{v}_{e} + v_{\tau}$$
 17.84%
 $\tau^{-} \rightarrow \mu^{-} + \overline{v}_{\mu} + v_{\tau}$ 17.36%
 $\tau^{-} \rightarrow a \partial p o h b i + v_{\tau}$ 63%

Тау-нейтрино и тау-антинейтрино были впервые зарегистрированы в 2000 г. на нейтринном детекторе DONUT (Direct Observation of the NU Tau) в реакциях:

$$\nu_{\tau} + n \rightarrow \tau^{-} + p \quad (*)$$

$$\overline{\nu_{\tau}} + p \rightarrow \tau^{+} + n$$

Нейтринный детектор DONUT состоял из железных пластин, между которыми располагались слои фотоэмульсии.

т-нейтрино

DONUT (Direct Observation of the NU Tau)

Detecting a Tau Neutrino

пучок τ- нейтрино

след т-лептона в эмульсии

В результате взаимодействия v_{τ} с железом образовывались τ -лептоны, которые оставляли следы в фотоэмульсии

$$\begin{array}{ccc}
\nu_{\tau} + n \to \tau + p \\
\widetilde{\nu}_{\tau} + p \to \tau^{+} + n
\end{array}$$
(*

В результате анализа 10⁷ событий было надёжно зарегистрировано 4 события (*).

Основные характеристики тау-нейтрино

характеристика	Численное	
	значение	
Спин <i>J</i> , <i>ћ</i>	1/2	
M_{2} m_{a}^{2} M_{2}	< 18.2	
Macca $m_{V_T}c$, MBD		
Электрический заряд	0	
Магнитный момент.	< 3.9.10 ⁻⁷	
е ћ/ 2 <i>m</i> _e <i>c</i>		
Время жизни	не измерено	
Ποπτομμος υμοπο Ι	. 1	
$\mathcal{L}_{\mathcal{T}}$	┬ ┃	
Лептонные числа L_e , L_μ	0	

Лептонные числа

Почему е⁻ и е⁺ являются стабильными частицами? Это следует из закона сохранения электрического заряда.

Лептонные числа

Каждому поколению лептонов следует приписать свой лептонный заряд, соответственно L_e , L_{μ} , L_{τ} . Этот заряд, как и обычный электрический заряд, является сохраняющимся и аддитивным, т. е. заряд системы лептонов равняется сумме лептонных зарядов отдельных лептонов и должен быть одинаковым до и после завершения любого процесса.

Закон сохранения L_e , L_μ , L_τ

В процессах, происходящих в замкнутой системе в результате сильных, слабых и электромагнитных взаимодействий, каждое лептонное число L_e , L_μ , L_τ сохраняется порознь.

Лептонные числа L_e , L_μ , L_τ

Во всех процессах происходящих в замкнутой системе в результате сильных, слабых и электромагнитных взаимодействий лептонные числа L_e, L_µ, L_т сохраняются порознь. Поэтому

наблюдаются процессы

не наблюдаются процессы

$$\begin{split} \tilde{v}_{\mu} + p \rightarrow \mu^{+} + n & \mu^{-} \rightarrow e^{-} + \gamma \\ v_{\mu} + n \rightarrow \mu^{-} + p & v_{\mu} + p \rightarrow \mu^{+} + n \\ \pi^{-} \rightarrow \mu^{-} + \tilde{v}_{\mu} & v_{\mu} + p \rightarrow \mu^{+} + n \\ \mu^{-} \rightarrow e^{-} + \tilde{v}_{e} + v_{\mu} & v_{\mu} + n \rightarrow e^{-} + p \\ \tau^{-} \rightarrow e^{-} + \tilde{v}_{e} + v_{\tau} & w(\mu^{-} \rightarrow e^{-} + \gamma)/w(\mu^{-} \rightarrow e^{-} + \bar{v}_{e} + v_{\mu}) < 10^{-11}, \\ \pi^{-} \rightarrow \mu^{-} + \tilde{v}_{\mu} + v_{\tau} & w(\mu^{-} \rightarrow e^{-} + e^{+} + e^{+} \gamma)/w(\mu^{-} \rightarrow e^{-} + \bar{v}_{e} + v_{\mu}) < 10^{-12}, \\ w(\tau^{-} \rightarrow e^{-} + \gamma)/w(\tau^{-} \rightarrow \text{ Bce моды распада}) < 3 \cdot 10^{-6}, \\ w(\tau^{-} \rightarrow \mu^{-} + \gamma)/w(\tau^{-} \rightarrow \text{ Bce моды распада}) < 10^{-6}. \end{split}$$

Фундаментальные взаимодействия. Калибровочные бозоны

			Сильное
Взаимодействие	На какие частицы действует	Калибровочные бозоны	
Сильное	Все цветные частицы	8 безмассовых глюонов, спин J = 1	$d_{c} d_{k}$
Электромагнитное	Все электрически заряженные частицы	Безмассовый фотон, спин J = 1	Электромагнитное <u>е</u> е
Слабое	Кварки, лептоны, калибровочные бозоны W^\pm , Z	Массивные бозоны $W^+, W^-, Z,$ спин J = 1, $m_W c^2 \approx 80$ ГэВ, $m_Z c^2 \approx 91$ ГэВ	e^{-} e^{-} e^{-} e^{-} e^{-} n
Гравитационное	Все частицы	Безмассовый гравитон, спин J = 2	$ \begin{array}{c c} & W \\ \hline W \\ \hline V \\ V \\ e^+ \end{array} $

Источником калибровочных бозонов являются заряды со фундаментальных взаимодействий.

соответствующих

Механизм взаимодействия частиц

Из соотношений неопределенности

$\Delta x \cdot \Delta p \ge \hbar, \quad \Delta t \cdot \Delta E \ge \hbar$

следует, что если частица существует в течение короткого промежутка времени Δt , то ее энергия может флюктуировать на величину $\hbar/\Delta t$, а если она находится в области размером Δx , то ее импульс флюктуирует на величину $\hbar/\Delta x$. В течение малых промежутков времени Δt и на малых расстояниях Δx может нарушаться соотношение между импульсом и энергией частицы.

$E \neq (p^2 c^2 + m^2 c^4)^{1/2}$

Такие частицы называются виртуальными. Говорят, что они находятся вне массовой поверхности. В виртуальных процессах действуют законы сохранения зарядов — электрического, барионного, лептонных.

В квантовой теории взаимодействия происходят в результате обмена виртуальными частицами — переносчиками этих взаимодействий. Масса виртуальной частицы *m* и расстояние *R*, на которое она переносит взаимодействие связаны соотношением

$R = \hbar / mc$.

Чем больше масса виртуальной частицы, тем меньше радиус действия сил, обусловленных обменом этой частицей. Электромагнитное взаимодействие происходит с помощью обмена фотонами. Радиус электромагнитнитного взаимодействия бесконечен.

Фундаментальная вершина описывающая локальное взаимодействие в квантовой теории.

Фундаментальный фермион (кварк, лептон) испускает или поглощает виртуальный бозон – переносчик взаимодействия (фотон, глюон, промежуточный бозон).

Постоянная тонкой структуры

$$\alpha_e = \frac{e^2}{\hbar c} = \frac{1}{137}$$

Амплитуда вероятности испускания или поглощения частицы, которое происходит в результате электромагнитного взаимодействия, пропорциональна константе связи $g_{_{\mathfrak{I}\!\mathcal{I}}}$.

$$\boldsymbol{g}_{_{\mathcal{I}\mathcal{I}}} = (e^2 / \hbar c)^{1/2} = (1/137)^{1/2}$$

Вершины электромагнитного взаимодействия

Все вершины диаграмм, получающиеся одна из другой изменением ориентаций образующих вершину линий частиц, характеризуются одной и той же константой связи g_{эл}. Этой же константой описываются процессы рождения или поглощения трёх частиц в вакууме.

Пример. Фотоэффект

Поглощение у-кванта атомом с вылетом одного из атомных электронов е.

Двух- и трёх- фотонная е⁺е⁻ аннигиляция

Амплитуда процесса А пропорциональна произведению констант связи, описывающих каждый узел. Поэтому амплитуда электромагнитных процессов, описываемых с помощью n узлов, будет пропорциональна $g_{3\pi}^{n}$

Сравнивая количество узлов диаграмм Фейнмана для двух- и трехфотонной аннигиляции легко получить, что сечение двухфотонной е⁺е⁻ аннигиляции приблизительно в 100 раз больше сечения трехфотонной аннигиляции.

