АДРОНЫ

ВЗАИМОДЕЙСТВИЕ ЧАСТИЦ

Взаимодействие фотонов

Лептоны и кварки связаны в обычной материи. Атом

Адроны – системы связанных кварков

Кварки объединяются в частицы, называемые адронами.

Модель кварков

- Квантовые числа кварков, образующих адрон, определяют квантовые числа адронов. Адроны имеют определенные значения электрического заряда *Q*, спина *J*, чётности *P*, изоспина *I*. Квантовые числа *s* (странность), *c* (очарование или шарм), *b* (*bottom*) и *t* (*top*) разделяют адроны на обычные нестранные частицы (*p*, *n*, *π*, ...), странные частицы (*K*, Λ, Σ, ...), очарованные (*D*, Λ_c, Σ_c, ...) и боттом-частицы (*B*, Λ_B, Ξ_B).
- *t*-кварк имеет время жизни ≈ 10⁻²⁵ с, поэтому он не успевает образовать адрон.
- Всё многообразие адронов возникает в результате различных сочетаний *u*-, *d*-, *s*-, *c*-, *b*-кварков, образующих связанные состояния.
- барионы (фермионы с барионным числом В = 1) строятся из трех кварков;
- мезоны (бозоны с барионным числом В = 0) строятся из кварка и антикварка;
- квантовое число цвет кварка имеет три значения: красный, зеленый, синий;
- все известные адроны бесцветны.

Нобелевская премия по физике 1959 г. – Э. Сегре, О. Чемберлен. За открытие антипротона

Антинейтрон 1956

Схема эксперимента по регистрации антинейтронов

 $\overline{p} + p \to n + \overline{n}$

$$\overline{p} + n \rightarrow n + \overline{n} + \pi^{-}$$

В результате *n* – *n* -аннигиляции образуются сильновзаимодействующие частицы — *π*-, К-мезоны.

 $n + \overline{n} \rightarrow nuoны, кaoны$

Связь характеристик частиц и античастиц

Характеристика		Частица	Античастица		
Масса		M			
Сп	ин	J			
Чётность фермион		+(–)1 +(–)1	-(+)1 +(-)1		
Электриче	ский заряд	+(-)Q	-(+)Q		
Магнитный момент		+ (–) µ	- (+) μ		
Барионное число		+B	-В		
Лептонное число		$+L_e,+L_\mu,+L_\tau$	$-L_e, -L_\mu, -L_\tau$		
Изоспин		I			
Проекция	изоспина	+ (-) I ₃	- (+) I ₃		
Стран	ность	-(+)s	+(–)s		
Очаровані	ve (Charm)	+(–) <i>c</i>	-(+)c		
Bottom		–(+) <i>b</i>	+(–) <i>b</i>		
Тор		+(-) <i>t</i>	-(+) <i>t</i>		
Время жизни		τ			
Схема распада (пример)		$d \rightarrow u + e^- + \overline{v}_e$	$\overline{d} \rightarrow \overline{u} + e^+ + v_e$		

Четность $\widehat{\mathbf{P}}$

Инвариантность гамильтониана системы \widehat{H} относительно пространственного отражения – инверсии (замены) $\vec{r} \rightarrow -\vec{r}$ приводит к закону сохранения чётности и квантовому числу – *чётность*.

Свойства системы частиц определяются видом гамильтониана \widehat{H} и волновой функции $\Psi(\vec{r})$, являющейся решением соответствующего уравнения Шредингера.

$$\hat{P}\psi(\vec{r}) = \psi(-\vec{r}) = \begin{cases} \psi(\vec{r}), & p = +1, \\ -\psi(\vec{r}), & p = -1 \end{cases}$$

 $\psi(-\vec{r}) = \psi(\vec{r})$ - чётные функции (состояния), $\psi(-\vec{r}) = -\psi(\vec{r})$ - нечётные функции (состояния).

Инверсия $\vec{r} \rightarrow -\vec{r}$ соответствует в сферических координатах преобразованию

$$\begin{aligned} r \to r, \ \theta \to \pi - \theta, \ \varphi \to \pi + \varphi \qquad \psi(r, \theta, \varphi) = R_{nl}(r) Y_{lm}(\theta, \varphi) \\ Y_{lm}(\pi - \theta, \varphi + \pi) = (-1)^l Y_{lm}(\theta, \varphi) \end{aligned}$$

 $\hat{P}\psi = \pi (-1)^{l}\psi \qquad \begin{array}{l} (-1)^{l} \cdot \text{орбитальная четность частицы} \\ \pi \quad \cdot \text{внутренняя четность частицы} \\ \text{Четность системы А частиц} \\ P = \pi_{1} \ \pi_{2} \ \dots \ \pi_{A} \ \ (-1)^{l_{1}} (-1)^{l_{2}} \ \dots (-1)^{l_{3}} \end{array}$

Внутренняя четность адронов

Внутренняя четность адрона определяется следующими правилами:

• Четность Р кварка равна +1 и не зависит от типа кварка.

$$P(q) = +1$$

• Четность Р антикварка равна -1 и не зависит от типа кварка.

$$P(\overline{q}) = -1$$

 Внутренняя четность Р адрона равна произведению четностей входящих в его состав кварков, умноженному на (-1)^L,

L — орбитальный момент кварков в составе адрона.

$$P(\textit{барион}) = P(q_1) \cdot P(q_2) \cdot P(q_3)(-1)^{\vec{l}_{q_1} + \vec{l}_{q_2} + \vec{l}_{q_3}} = (-1)^L$$

 $P(Me30H) = P(q_1) \cdot P(\overline{q}_2)(-1)^{\vec{l}_{q_1} + \vec{l}_{q_2}} = (-1)^{L+1}$

Мезоны $(q\overline{q})$

- Мезоны связанные состояния кварка и антикварка. Мезоны имеют барионное число B = 0. Массы и квантовые числа мезонов определяются типами кварка и антикварка, входящих в состав мезона, взаимной ориентацией их спинов и орбитальных моментов.
- Кварковая модель позволяет качественно описать структуру мезонов, получить их квантовые числа.

 π^+ (ud)

	u	d	π+
Q	+2/3	+1/3	+1
В	+1/3	-1/3	0
J	1/2	1/2	0
I	1/2	1/2	1
3	+1/2	+1/2	+1
Ρ	+1	-1	-1

 $M(\pi^+) = 139.57 M Э B$ $\tau(\pi^+) = 2.6 \cdot 10^{-8} c$ $J^P(I) = 0^-(1)$

	ū	d	π
Q	-2/3	-1/3	-1
В	-1/3	+1/3	0
J	1/2	1/2	0
I	1/2	1/2	1
I 3	-1/2	-1/2	-1
Ρ	-1	1	-1

 $M(\pi^{-}) = 139.57 MэB$ $\tau(\pi^{-}) = 2.6 \cdot 10^{-8} c$

 $J^{P}(I) = 0^{-}(1)$

Мезоны

Частица	Кварковая	Macca	Время	Спин-	Основные
	структура	mc^2 ,	жизни	четность,	моды распада
		МэВ	τ[с] или	изоспин	
			ширина Г	$JP(\mathbf{I})$	
π^+	$u\overline{d}$	139,57	2,6.10-8	0-(1)	$\mu^+ u$
π^-	$d\overline{u}$	139,57	2,6.10-8	0-(1)	$\mu^- \tilde{v}$
π^{0}	$u\overline{u} - d\overline{d}$	134,98	8,4 ·10 ⁻¹⁷	0-(1)	2γ
	_	494	1,2.10-8	0-(1/2)	$\mu^+\nu$
K +	US		,		
					$\pi^{_{0}}\pi^{_{+}}$
TZ	_	494	1,2.10-8	0-(1/2)	$\mu^{-}\tilde{\nu},$
K –	SU				$\pi 0 \pi -$
		7(0			Λ° Λ
$ ho^+ ho^-$	ud du	/69	150 МэВ	1-(1)	ππ
ρ^{0}					
P	uu - dd				
ω	$u\overline{u} + d\overline{d}$	783	8,4 МэВ	1-(0)	3π
D +	\overline{d}	1869	1,1.10-12	0-(1/2)	К + другие,
-	Са		,		$e + \partial p v r u e$.
	,—				$\mu + \partial n v 2 \mu e$
D -	d C				, opjene
TITI	—	3097	87 кэВ	1-(0)	адроны,
JY	CC				лептоны
		9460	53 кэВ	1-(0)	адроны.
Υ	$b\overline{b}$			- (0)	пептоны
_	00				

Барионы (*qqq*) Протон (uud) Нейтрон (udd)

 $M(P) = 938.272 M \Im B$

 $\tau(P) = cma \delta u льны \ddot{u}$

$$J^P(I) = \frac{1}{2}^+ \left(\frac{1}{2}\right)$$

 $M(n) = 939.565 M \ni B$ $\tau(n) = 885.7 \pm 0.8 c$

$$J^{P}(I) = \frac{1}{2}^{+} \left(\frac{1}{2}\right)$$
$$n \to p + e^{-} + \overline{v}_{e}$$

	u	u	d	р		u	d	d	n
Q	+2/3	+2/3	-1/3	+1	Q	+2/3	-1/3	-1/3	0
В	+1/3	+1/3	+1/3	+1	В	+1/3	+1/3	+1/3	+1
J	1/2	1/2	1/2	1/2	J	1/2	1/2	1/2	1/2
Ι	1/2	1/2	1/2	1/2	Ι	1/2	1/2	1/2	1/2
ا _ع	+1/2	+1/2	-1/2	+1/2	I ₃	+1/2	-1/2	-1/2	-1/2
Р	+1	+1	+1	+1	Р	+1	+1	+1	+1
s, c, b, t	0	0	0	0	s, c, b, t	0	0	0	0

Кварковая структура барионов

Барионы — связанные состояния трёх кварков

Частица	Кварковый СОСТАВ	Macca, mc² (МэВ)	Время жизни (с) или ширина (МэВ)	Спин, чётность, изоспин Ј ^Р (I)	Основные каналы распада
р	uud	938.272	>10 ³¹ лет	1/2+(1/2)	
n	udd	939.565	885.7±0.8	1/2+(1/2)	pe ⁻ v
Λ	uds	1115.683	2.63·10 ⁻¹⁰	1/2+(0)	$p\pi^-,n\pi^0$
Σ^+	uus	1189.37	0.802·10 ⁻¹⁰	1/2+(1)	$p\pi^0, n\pi^+$
Σ^0	uds	1192.64	7.4 ·10 ⁻²⁰	1/2+(1)	Λγ
Σ^{-}	dds	1197.45	1.48 · 10 ⁻¹⁰	1/2+(1)	$n\pi^{-}$
Ξ0	USS	1314.8	2.9 ·10 ⁻¹⁰	1/2+(1/2)	$\Lambda \pi^0$
Ξ	dss	1321.3	1.64 ·10 ⁻¹⁰	1/2+(1/2)	$\Lambda\pi^0$
Ω-	SSS	1672.4	0.81 ·10 ⁻¹⁰	3/2+(0)	$\Lambda K^{-}, \Xi^{0}\pi^{-}$
Δ^{++}	นนน				
Δ^+	uud	1000 1004	115 105	2/2+(2/2)	() 0 +
Δ^0	udd	1230-1234	110-120	3/2 (3/2)	$(p,n)\pi^{\circ,\perp}$
Δ^{-}	ddd				

Барионы (uud)

Частица	Кварковый СОСТАВ	Macca, mc² (МэВ)	Время жизни (с) или ширина (МэВ)	Спин, чётность, изоспин Ј ^Р (I)	Основные каналы распада
р	uud	938.272	>10 ³¹ лет	1/2+(1/2)	
Δ^+	uud	1230-1234	115-125	3/2+(3/2)	$(p,n)\pi$
N+(1440)	uud	1430-1470	250-450	1/2+(1/2)	$(p,n) + \pi$
N+(1520)	uud	1515-1530	110-135	3/2-(1/2)	$(p,n) + 2\pi$ $\Delta + \pi$

Кварки, образующие адроны, могут находиться в состояниях с различными орбитальными моментами L и в состояниях с различными значениями радиального квантового числа n.

$$\Psi(\mathbf{r},\theta,\varphi) = R_{nl}(r)Y_{lm}(\theta,\varphi)$$

Кварки, образующие р и ∆⁺, находятся в состоянии (n=1, l=0) Кварки, образующие N⁺(1440), находятся в состоянии (n=2, l=0) Кварки, образующие N⁺(1520), находятся в состоянии (n=1, l=1)

Наблюдение резонансов

Способ наблюдения резонансов — метод инвариантных масс.

Две возможности протекания реакции $a + b \rightarrow 1 + 2 + 3$ без образования промежуточного резонанса *R* (слева) и с образованием промежуточного резонанса *R* (справа).

$$m_{23}^2 c^4 = (E_2 + E_3)^2 - c^2 (\vec{p}_2 + \vec{p}_3)^2.$$

Наблюдая отдельные события в трековом детекторе, можно для каждого события получить величину инвариантной массы системы частиц 2 и 3 и затем построить распределение этих масс $N(m_{23}c^2)$. Если реакция идет без образования резонанса (левая часть), то корреляции между парой частиц 2, 3 и частицей 1 нет. Энергия и импульс распределяются между ними случайным образом и получится гладкое распределение без особенностей, заключенное в допустимых кинематических границах. Если реакция идёт с образованием промежуточного резонанса R, тогда из законов сохранения энергии и

импульса следует

$$E_R = E_2 + E_3, \qquad \vec{p}_R = \vec{p}_2 + \vec{p}_3$$

Δ резонанс

Основные каналы распада Δ-резонансов

Δ-резонансы наблюдаются в сечениях реакций $\pi^+ p$ и $\pi^- p$. Самый низкий по энергии это резонанс **Δ**(1232), имеющий спин-чётность $J^P = 3/2^+$ и изоспин I = 3/2. Δ^+ и Δ^0 рассматривают как возбужденные состояния нуклона. По сравнению с нуклонами, у которых J = 1/2 и I = 1/2, эти резонансы имеют J = 3/2, I = 3/2. Низкорасположенные нуклонные резонансы в основном распадаются по каналу (*n* или *p*) + π . Каналы распада Δ -резонанса показаны на рис. Эти каналы составляют > 99% всех возможных распадов.

Поскольку резонансы распадаются за счёт сильного взаимодействия, сохраняющего изоспин и его проекцию, то, пользуясь изоспиновой инвариантностью, можно установить изоспин этих резонансов. Изоспины нуклона и пиона равны соответственно 1/2 и 1. Отсюда следует, что изоспин системы пион-нуклон может равняться либо 1/2, либо 3/2. Система $\pi^- p$ имеет проекцию изоспина $l_3=1/2$. Такую проекцию может иметь как изоспин =3/2, так и =1/2. Поэтому при взаимодействии $\pi^- p$ наблюдаются как состояние =3/2, так и состояние =1/2. Система $\pi^+ p$ имеет изоспиновую проекцию $l_3=3/2$. Поэтому в реакции $\pi^+ p$ наблюдается только состояние с =3/2. Следовательно, все резонансы, которые наблюдаются в сечении $\pi^+ p$, имеют изоспин =3/2, а те резонансы, которые наблюдаются в сечении $\pi^- p$, но в сечении $\pi^+ p$ отсутствуют, имеют изоспин =1/2.

Взаимодействие частиц

Взаимодействие. Классическая физика Дальнодействие

В классической физике, несмотря на разнообразие сил, действующих между телами, взаимодействия между ними описываются двумя фундаментальным взаимодействиями:

•Гравитационным,

•Электромагнитным.

Гравитационное и электромагнитное взаимодействия – дальнодействующие. Поэтому они ответственны за все макроскопические крупно масштабные явления, от окружающей нас повседневной жизни до взаимодействий звезд и галактик.

Одним из проявлений близкодействия в классической физике является соударение бильярдных шаров.

Фундаментальные взаимодействия. Калибровочные бозоны

			Сильное
Взаимодействие	На какие частицы действует	Калибровочные бозоны	
Сильное	Все цветные частицы	8 безмассовых глюонов, спин J = 1	d_c d_k
Электромагнитное	Все электрически заряженные частицы	Безмассовый фотон, спин J = 1	Электромагнитное <u>е</u> е
Слабое	Кварки, лептоны, калибровочные бозоны $W^\pm,$ Z	Массивные бозоны $W^+, W^-, Z,$ спин J = 1, $m_W c^2 \approx 80$ ГэВ, $m_Z c^2 \approx 91$ ГэВ	
Гравитационное	Все частицы	Безмассовый гравитон, спин J = 2	$V \qquad e^+$

Источником калибровочных бозонов являются заряды соответствующих фундаментальных взаимодействий.

Гравитационное и электромагнитное взаимодействия

Гравитационное и электромагнитное взаимодействия имеют бесконечный радиус т.к. их потенциалы взаимодействия спадают по закону 1/r. Сравнение гравитационного и электромагнитного взаимодействий двух протонов показывает, что гравитационное взаимодействие слабее электромагнитного на 36 порядков:

G – гравитационная постоянная Ньютона,

 $G = 6.67 \cdot 10^{-11} \text{ m}^3 \text{ kr}^{-1} \text{ cek}^{-2}.$

Гравитационное взаимодействие также слабее сильного и слабого взаимодействий. Однако в повседневной жизни, мы в основном ощущаем гравитационное взаимодействие.

Происходит это потому, что несмотря на то, что электромагнитное взаимодействие имеют бесконечный радиус действия, оно сконцентрировано на расстояниях $\approx 10^{-8} \div 10^{-10}$ см в атомах и молекулах. На большем расстоянии образуются электрически нейтральные системы.

Взаимодействие частиц

нерелятивистской квантовой теории B взаимодействие одной частицы с потенциальным полем, например, кулоновским, задается энергией *V(r)* взаимодействия этого поля с частицей. Взаимодействие двух частиц описывается потенциальной энергией V(r) взаимодействия, которая зависит от их относительного расстояния. Однако, энергия взаимодействия или потенциал имеет ясный смысл только в том случае, когда в процессе взаимодействия частицы не рождаются и не исчезают. В тех же случаях, когда частицы рождаются и исчезают, использование потенциала взаимодействия неэффективным. Способом описания становится взаимодействия является амплитудный способ, котором задаются не потенциалы, а амплитуды различных преобразований частиц.

Взаимодействие частиц

Взаимодействия в Стандартной Модели описываются с помощью релятивистски инвариантных амплитуд пространственно-точечных превращений частиц. Теории с точечным превращением частиц называют локальными. Один из важнейших параметров элементарных амплитуд – это константа взаимодействия. Константы взаимодействия определяют вероятности протекания фундаментальных процессов.

В Стандартной Модели все фундаментальные фермионы обладают способностью испускать или поглощать в одном акте только один из переносчиков взаимодействия.

При испускании глюонов говорят о сильном взаимодействии, при испускании фотонов об электромагнитном и при испускании калибровочных бозонов — о слабом взаимодействиях.

Чтобы изобразить эти процессы на диаграммах, вводят точечный объект, символизирующий пространственную точку, в которой происходит элементарный акт взаимодействия.

Механизм взаимодействия частиц

Из соотношений неопределенности

 $\Delta x \cdot \Delta p \ge \hbar$, $\Delta t \cdot \Delta E \ge \hbar$

следует, что если частица существует в течение короткого промежутка времени Δt , то ее энергия может флюктуировать на величину $\hbar/\Delta t$, а если она находится в области размером Δx , то ее импульс флюктуирует на величину $\hbar/\Delta x$. В течение малых промежутков времени Δt и на малых расстояниях Δx может нарушаться соотношение между импульсом и энергией частицы.

$$E \neq (p^2 c^2 + m^2 c^4)^{1/2}$$

Такие частицы называются виртуальными. Говорят, что они находятся вне массовой поверхности. В виртуальных процессах действуют законы сохранения зарядов — электрического, барионного, лептонных. В квантовой теории взаимодействия происходят в результате обмена виртуальными частицами — переносчиками этих взаимодействий. Масса виртуальной частицы *m* и расстояние *R*, на которое она переносит взаимодействие связаны соотношением

 $R = \hbar / mc$.

Взаимодействие. Квантовая физика

Локальное взаимодействие в точке Виртуальные частицы

Фундаментальная вершина описывающая локальное взаимодействие в квантовой теории.

Фундаментальный фермион (кварк, лептон) испускает или поглощает виртуальный бозон – переносчик взаимодействия (фотон, глюон, промежуточный бозон).

Константы связи

Константы связи определяют интенсивность тех преобразований, которые вызываются элементарными амплитудами. Эти константы обычно выбираются безразмерными и обозначаются через α_e , α_w , α_s . В элементарные амплитуды непосредственно входят квадратные корни из этих величин:

*g*_{эл} = √α_e − элементарная амплитуда электромагнитного взаимодействия;

g_w = √*α_w* – элементарная амплитуда слабого взаимодействия;
 g_s = √*α_s* – элементарная амплитуду сильного взаимодействия.
 Величина константы электромагнитного взаимодействия определяется квадратом заряда электрона, обезразмеренного с помощью мировой постоянной (*ħc*):

$$f = \frac{e^2}{g_{3\pi(w,s)}} f \qquad \qquad \alpha_e = \frac{e^2}{\hbar c} = \frac{1}{137}$$

Электромагнитное взаимодействие

Постоянная тонкой структуры

Амплитуда вероятности испускания или поглощения частицы, которое происходит в результате электромагнитного взаимодействия, пропорциональна константе связи $g_{\gamma\gamma}$.

$$\boldsymbol{g}_{_{\mathcal{I}\!\mathcal{I}\!\mathcal{I}}} = \left(e^2 \,/\, \hbar c\right)^{1/2} = \left(1\,/\,137\right)^{1/2}$$

Все вершины диаграмм, получающиеся одна из другой изменением ориентаций образующих вершину линий частиц, характеризуются одной и той же константой связи g_{эл}. Этой же константой описываются процессы рождения или поглощения трёх частиц в вакууме.

Пример. Фотоэффект

Поглощение у-кванта атомом с вылетом одного из атомных электронов е.

Двух- и трёх- фотонная е⁺е⁻ аннигиляция

Амплитуда процесса А пропорциональна произведению констант связи, описывающих каждый узел. Поэтому амплитуда электромагнитных процессов, описываемых с помощью n узлов, будет пропорциональна $g_{3л}^{n}$

Сравнивая количество узлов диаграмм Фейнмана для двух- и трехфотонной аннигиляции легко получить, что сечение двухфотонной е⁺е⁻ аннигиляции приблизительно в 100 раз больше сечения трехфотонной аннигиляции.

Упругое рассеяние электрона на протоне

Размеры протона и нейтрона

Распределения электрического заряда и магнитного момента протона

Распределения электрического заряда и магнитного момента нейтрона

- Размер протона ~0.8 Фм. Размер нейтрона приблизительно такой же.
- Протон лишен четкой границы. Плотность заряда в протоне плавно убывает по закону

• Среднеквадратичный радиус протона

$$\langle r^2 \rangle = \frac{\int_0^\infty 4\pi r^2 \rho(r) r^2 dr}{\int_0^\infty 4\pi r^2 \rho(r) dr} = 0,62 \ \Phi M^2.$$

- Отличие величины <r²_E>^{1/2} от нуля означает, что заряд нейтрона только после усреднения по всему объему нейтрона равен нулю.
- В нейтроне центральная часть (r < 0.7 Фм) заряжена положительно, периферийная часть — отрицательно.
- Распределения магнитных моментов протона и нейтрона совпадают.

Данные о структуре нуклона свидетельствуют о том, что нуклон имеет сложную внутреннюю структуру. По современным представлениям он состоит из кварков, взаимодействующих посредством обмена квантами сильного взаимодействия — глюонами.

Размеры протона и нейтрона

Сечение упругого рассеяния электрона на точечном протоне описывается формулой Мотта

$$\frac{d\sigma}{d\Omega}\Big|_{\text{MOTT}} = \left(\frac{e^2}{2\varepsilon}\right)^2 \frac{1}{\sin^4 \frac{\theta}{2}} \cdot \frac{\cos^2 \frac{\theta}{2}}{1 + \frac{2\varepsilon}{mc^2} \sin^2 \frac{\theta}{2}}$$

Пространственное распределение электрического заряда и магнитного момента в протоне описывается с помощью двух формфакторов — электрического (*G_E*) и магнитного (*G_M*).

$$\left(\frac{d\sigma}{d\Omega}\right)_{_{\rm SKC}} = \left[\frac{G_{_E}^{^2}(q^2) + bG_{_M}^{^2}(q^2)}{1+b} + 2bG_{_M}^{^2}tg^2\left(\frac{\theta}{2}\right)\right] \left(\frac{d\sigma}{d\Omega}\right)_{_{\rm MOTT}}, \ b = \frac{-q^2}{4m^2c^2}, \ q \ - \text{ четырехимпульс,}$$

который электрон передает нуклону, *m* — масса нуклона, *θ* — угол рассеяния электрона, *G_E(q*²), *G_M(q*²) — электрический и магнитный формфакторы.

Зависимость электрического и магнитного формфакторов от квадрата переданного импульса гамма-кванта

$$G_E^p(q^2) \approx \frac{G_M^p(q^2)}{2,79} = \frac{G_M^n(q^2)}{1,91} = \frac{1}{(1+q^2/q_0^2)^2}$$

 $q_0^2 = 0,71$ ГэВ²/с².

Для протона и нейтрона *G_E*(0) и *G_M*(0) имеют значения:

$$G_E^p(0) = 1, G_E^n(0) = 0, G_M^p = 2,79, G_M^n = -1,91,$$

G_E(0) = Q/e (Q — электрический заряд нуклона),

 $G_M(0) = \mu/\mu_N (\mu - Marнитный момент нуклона, <math>\mu_N$ - ядерный магнетон).

Структура протона

В экспериментах по глубоко неупругому рассеянию электронов и нейтрино были определены заряды и спины партонов внутри нуклона.

- Внутри нуклона обнаружены точечноподобные объекты – партоны, в которых сосредоточена вся масса нуклона. Размер партонов < 10⁻¹⁷ см.
- 2. Заряженные партоны имеют характеристики кварков – их спин 1/2, а заряды в единицах е либо +2/3, либо –1/3.
- 3. Нейтральные партоны, отождествляемые с глюонами, несут около половины внутренней энергии нуклона.

Результаты этих исследований подтверждают, что нуклон это частица, состоящая из трех валентных кварков, виртуальных морских кварков-антикварков и глюонов.

Фундаментальные взаимодействия. Калибровочные бозоны

			Сипьное
Взаимодействие	На какие частицы действует	Калибровочные бозоны	
Сильное	Все цветные частицы	8 безмассовых глюонов, спин J = 1	d_c d_k
Электромагнитное	Все электрически заряженные частицы	Безмассовый фотон, спин J = 1	Электромагнитное
Слабое	Кварки, лептоны, калибровочные бозоны $W^{\pm},$ Z	Массивные бозоны $W^+, W^-, Z,$ спин J = 1, $m_W c^2 \approx 80$ ГэВ, $m_Z c^2 \approx 91$ ГэВ	$e^ e^-$ Слабое p n
Гравитационное	Все частицы	Безмассовый гравитон, спин J = 2	W V e^+

Источником калибровочных бозонов являются заряды соответствующих фундаментальных взаимодействий.

Взаимодействие кварков

Кварки участвуют в электромагнитных взаимодействиях, излучая или поглощая *γ*-квант, при этом не изменяется ни цвет, ни тип (аромат) кварков:

Вершина электромагнитного взаимодействия кварков

Кварки участвуют в слабых взаимодействиях излучая или поглощая W[±] бозоны, при этом изменяется тип (аромат) кварка, цвет кварка остаётся без изменения

Вершина слабого взаимодействия кварков

Кварки участвуют в сильных взаимодействиях излучая или поглощая глюон, при этом изменяется цвет кварка, но его тип (аромат) остаётся неизменным

 W^{\pm}

q-q потенциал

Радиальная зависимость потенциала сильного взаимодействия (α_s = 0.3 и k = 1 ГэВ/Фм). Вертикальные линии показывают радиусы кваркониев в различных состояниях.

$$V_{q\overline{q}} = -\frac{4}{3}\frac{\alpha_s \hbar c}{r} + kr$$

q-q потенциал

На больших расстояниях глюонное поле стягивается в трубку, что отвечает линейно растущему с расстоянием потенциалу.

Такая картина $q\overline{q}$ -потенциала позволяет объяснить, почему в результате e^+e^- -аннигиляции рождаются бесцветные адроны. Связано это с тем, что по мере разлёта $q\overline{q}$ -кварков их потенциальная энергия растет и в некоторый момент превышает порог рождения новой пары кваркантикварк. При этом трубка разрывается, и на месте разрыва появляются новые пары $q\overline{q}$, которые в свою очередь растягиваются и разрываются, что приводит к рождению новых бесцветных адронов.

Разрывы трубок глюонного поля позволяют наглядно представить, как образуются мезоны в e^+e^- -аннигиляции. Образование барионов происходит аналогично, но при этом необходимо учесть взаимодействие кварков на малых расстояниях, пока разлетающиеся трубки ещё не удалились далеко друг от друга.

Глюоны – безмассовые электрически нейтральные частицы со спином *J* = 1, четностью *P* = –1, переносят сильное, т. е. цветное взаимодействие между кварками.

Они как бы склеивают кварки в адронах (название глюона происходит от англ. *glue* – клей).

При испускании или поглощении глюона кварки изменяют цвет. При этом остальные квантовые числа кварка и его аромат не изменяются.

Глюоны обладают цветом. Цветовая структура глюона отличается от цветовой структуры кварка.

 $J^{P}(g) = 1^{-1}$

Глюоны

Каждый глюон имеет пару цветовых зарядов – цвет и антицвет. Всего из трех цветов (κ , c, 3) и трех антицветов ($\overline{\kappa}$, \overline{c} , $\overline{3}$) для глюонов можно составить девять возможных парных комбинаций цвет-антицвет:

цвет-антицвет

	$\overline{\mathcal{K}}$	3	\overline{c}
К	$\kappa\overline{\kappa}$	ĸ 3	$\mathcal{K}\overline{\mathcal{C}}$
3	$3\overline{K}$	33	$3\overline{C}$
С	$C\overline{K}$	C3	$c\overline{c}$

Из этих трех комбинаций кварков только две последние связаны с цветными превращениями. Полностью симметричная по цвету комбинация соответствует переходу между кварками одного и того же цвета, при котором глюон не различает цвета кварков. Поэтому существует только 8 известных глюонов, переносящих цветные взаимодействия кварков.

Глюоны – переносчики сильного взаимодействия

Глюоны в отличие от фотонов обладают цветом, поэтому для них наряду с одноглюонным обменом

Взаимодействие глюонов ответственно за удержание кварков внутри адрона. В отличие от константы электромагнитного взаимодействия, константа сильного цветного взаимодействия растет с увеличением расстояния между кварками, что приводит к принципиально новому поведению системы кварков и глюонов. При увеличении расстояния между кварками и глюонами их энергия взаимодействия растёт. В результате свободные кварки и глюоны в природе не наблюдаются. Они «заперты» внутри бесцветных адронов. Это явление носит название конфайнмента.

 $q(\kappa) + g(\overline{\kappa}c) \rightarrow q(c)$

