СЛАБЫЕ ВЗАИМОДЕЙСТВИЯ ЧАСТИЦ

Как устроен Мир ФЕРМИОНЫ

$\bigcup_{i \in I} I I I I I I I I I $							
Лептоны (спин = 1/2)				Кварки (спин = 1/2)			MH = 1/2)
Аромат $Macca, \\ \Gamma \ni B/c^2$			Аромат		Macca, ГэB/c ²	Электрический заряд	
V_{e}	электронное нейтрино	$< 1 \cdot 10^{-8}$	1 поколение	и	up	0,003	2/3
е	электрон	0,0005111		d	down	0,006	-1/3
${\cal V}_{\mu}$	мюонное нейтрино	< 0,0002	2 поколение	С	charm	1,3	2/3
μ	МЮОН	0,106		S	strange	0,1	-1/3
$V_{ au}$	тау-нейтрино	< 0,02	3 поколение	t	top	175	2/3
τ	тау	1,7771		b	bottom	4,3	-1/3

Спин J = 1/2

Стабильные частицы

$$e^{-}$$
 — электрон, e^{+} — позитрон
 p — протон, \overline{p} — антипротон
? $V_e, V_{\mu}, V_{\tau}, \tilde{V}_e, \tilde{V}_{\mu}, \tilde{V}_{\tau}$

Взаимодействия

Спин Ј=1

	Вэримолействие	На какие	Калибровочные	Радиус	Константа
	Бзанімоденствие	частицы действует	бозоны	действия	взаимодействия
	Сильное	Все цветные частицы	8 глюонов, безмассовые.	1 Фм	1
	Электромагнитное	Все электрически заряженные частицы	Фотон, безмассовый.	∞	1/137
	Слабое	Кварки, лептоны, электрослабые калибровочные бозоны	$W^+, W^-, Z,$ $m(W^\pm) = 80$ ГэВ, m(Z) = 91ГэВ.	10 ^{–2} Фм	~1/30
	Гравитационное	Все массивные частицы	Гравитон, спин <i>J</i> = 2, безмассовый	∞	10 ⁻³⁸
e	2 +	ξγ	$e^+ q$ ——	IIII	q g
e	2	<u></u>	$e^{-} q$ — —	L.	q
e	2	1	V e ⁻		e
	1/	W^{\pm}	2 1/	Z	1/
	V	· — — – t			V

Сильные распады адронов

Все адроны за исключением протона являются *нестабильными частицами* и характеризуются способом распада и средним временем жизни *т*. Определяющим для скорости распада является фундаментальное взаимодействие, ответственное за распад адрона. Быстрее всех – за характерное время ≈ 10⁻²³ с – происходят распады за счёт сильного взаимодействия.

 $M(\Delta) = 1232 \text{ МэВ}$

**** +

Электромагнитные и слабые распады адронов

Следующими по скорости являются распады за счёт электромагнитного взаимодействия. Обычно это время больше 10⁻¹⁹ с.

 $\Sigma^+ \rightarrow p + \pi^{\vee}$

слабый распад $au = 0, 8 \cdot 10^{-10} ext{ c}$

W⁺, W⁻, Z - бозоны

Переносчиками слабого взаимодействия являются W⁺, W⁻, Z бозоны которые называют промежуточными бозонами. Бозоны W и Z были предсказаны теоретически задолго до их экспериментального обнаружения как «промежуточные» частицы, переносящие слабое взаимодействие. Слабое взаимодействие, также как и электромагнитное, передается частицами со спином J = 1. Однако, в отличие от переносчика электромагнитного взаимодействия — фотона, W⁺, W⁻ бозоны являются заряженными частицами.

Z-бозон, также как и фотон, не имеет электрического заряда.

W⁺, W⁻, Z - бозоны

Диаграмма 1 описывает слабые взаимодействия фермионов (они обозначены f_{1,2,3,4}) посредством обмена заряженным промежуточным бозоном W.

Диаграмма 2 описывает рассеяние электронного антинейтрино на электроне.

Возможны слабые процессы, в которых происходит обмен нейтральным Z-бозоном. В этом случае электрические заряды взаимодействующих лептонов не изменяются (диаграмма 3).

Распад нейтрона

Образование W и Z бозонов

W- и *Z*-бозоны рождались в $p\overline{p}$ -столкновениях:

$$p + \overline{p} \to W^{\pm} + X \text{ {\tiny μ}} \quad p + \overline{p} \to Z + X$$

Х – совокупность других частиц, рождающихся при $p\overline{p}$ -взаимодействии.

Протон и антипротон состоят соответственно из трёх кварков (*p=uud*) и трёх антикварков ($\overline{p} = \overline{u}\overline{u}d$). Промежуточные бозоны рождаются в кварк-антикварковом взаимодействии

$u + \overline{d} \to W^+; \ \overline{u} + d \to W^-; \ u + \overline{u} \to Z; \ d + \overline{d} \to Z$

Оставшиеся два кварка протона и два антикварка антипротона при каждом $p\overline{p}$ -столкновении с рождением промежуточного бозона и продолжают своё движение в направлении движения первичных $p\overline{p}$ -пучков, формируя струи адронов и антиадронов.

Регистрация Z и W[±] бозонов $\overline{P}(\overline{uud})$ P(uud) \overline{d} \overline{u} \overline{u} d U U U U U \overline{d} U \overline{u} \overline{u}

Нобелевская премия по физике

1984 г. – К. Руббиа, С. Ван дер Меер.

За решающий вклад в большой проект, который привел к открытию полевых частиц W и Z, переносчиков слабого взаимодействия

Регистрация W[±] и Z бозонов

Имеющие почти одинаковые массы и скорости \overline{u} и *d*-кварки испытывают лобовое столкновение. W^- -бозон рождается в состоянии покоя с $m_W c^2 \approx 80$ ГэВ.

W[−]-бозон распадается на электрон и электронное антинейтрино. Они летят в поперечном направлениии с одинаковыми импульсами и практически одинаковыми энергиями *E*(*e*) ≈

Е(*v̄_e*) ≈ $\frac{m_W c^2}{2}$ ≈ 40 ГэВ. Никаких других частиц, летящих в поперечном направлении, при

таком распаде W^- -бозона не должно быть. Детектирующая установка должна зарегистрировать электрон с энергией 40 ГэВ, летящий в поперечном направлении. Антинейтрино не регистрируется детектором.

Доказательством распада *W* -бозона является событие с одним электроном, летящим с энергией 40 ГэВ в поперечном направлении и с недостающим поперечным импульсом $p_{\perp} = \frac{E(\overline{v_e})}{c} \approx$ 40 ГэВ/с в противоположном относительно электрона направлении. Никакой

другой процесс, кроме распада W^- -бозона, не может оставить такой след в экспериментальной установке.

Для идентификации Z-бозона установка должна зарегистрировать электрон и позитрон, летящие в противоположные стороны в поперечном направлении с одинаковыми

энергиями $E(e^+) \approx E(e^-) \approx \frac{m_z c^2}{2} \approx 45$ ГэВ. Никаких других частиц не должно быть.

1982 г.

Установка UA1

Пучки протонов и антипротонов влетают в детектор с диаметрально противоположных сторон (справа и слева) и, двигаясь навстречу вдоль оси ваккумной трубы, сталкиваются в середине центрального детектора

$$E_p = E_{\overline{p}} = 270 \ \Gamma$$
эВ

$$\sigma(W^{\pm}) = 10^{-33} \text{ см}^2 \quad 10^9 \ p\overline{p}$$
 столкновений $\rightarrow 6W^{\pm}$

W бозон

Заряд Спин Масса

Полная ширина

Среднее число заряженных частиц

 $Q = \pm 1e$ J = 1 $m = 80.419 \pm 0.056 \,\Gamma \ni B$ $m_{W^+} - m_{W^-} = 0.2 \pm 0.6 \,\Gamma \ni B$ $m_Z - m_W = 10.76 \pm 0.05 \,\Gamma \ni B$ $\Gamma = 2.4952 \pm 0.0023 \,\Gamma \ni B$ $\langle N \rangle = 19.3 \pm 0.4$

Каналы распада

 $W^+ \rightarrow e^+ v_e$ $(10.66 \pm 0.20)\%$ $W^+ \rightarrow \mu^+ v_{\mu}$ $(10.49 \pm 0.29)\%$ $W^+ \rightarrow \tau^+ v_{\tau}$ $(10.4 \pm 0.4)\%$ $W^+ \rightarrow a \partial p o h b i$ $(68.5 \pm 0.6)\%$

Z бозон

Заряд		Q = 0
Спин		J = 1
Масса		$m = 91.1876 \pm 0.0021 \Gamma i B$
Полная ширина		$\Gamma = 2.4952 \pm 0.0023$ ГэВ
•		$\Gamma(adpohu) = 1.7444 \pm 0.002 \ \Gamma ightarrow B$
		$\Gamma(e^+e^-) = 84.00057 \ M \ni B$
		$\frac{\Gamma(\mu^+\mu^-)}{\Gamma(e^+e^-)} = 0.9999 \pm 0.0032$
		$\frac{\Gamma(\tau^{+}\tau^{-})}{\Gamma(e^{+}e^{-})} = 1.0012 \pm 0.0036$
		$\Gamma(inv) = 499.0 \pm 1.5 M \Im B$
Среднее число заряжен	ных	$\langle N \rangle = 21.07 \pm 0.11$
частиц	Каналы распада	
	$Z \rightarrow e^+ e^-$	$(3.367 \pm 0.005)\%$
	$Z ightarrow \mu^+ \mu^-$	$(3.367 \pm 0.008)\%$
	$Z ightarrow au^+ au^-$	$(3.371 \pm 0.009)\%$
	$Z \rightarrow inv$	$(20.02 \pm 0.006)\%$
	Z → адроны	$(69.84 \pm 0.07)\%$

Z - бозон

Резонансная кривая распада Z-бозона с образованием адронов показывает что число поколений кварков и лептонов N = 3.

Характеристика	Эксперимент		Стандартная Модель
$m_Z^{}c^2$, ГэВ	91.1876±0.0021		91.1874±0.0021
Г _Z , ГэВ	2.4952±0.0023		2.4972±0.0012
Г _{hadron} , ГэВ	1.7444±0.0020		1.7435±0.0011
F	e^+e^-	83.91±0.12	04.004.0005
Γ_ℓ , МэВ	$\mu^+\mu^-$	83.99±0.18	84.024±0.025
	$\tau^+ au^-$	84.08±0.22	
$\Gamma_{e\mu au}$, МэВ	251.95±0.26		252.072±0.075
Γ_{inv} , МэВ	499.0±1.5		501.81±0.13
$\frac{\Gamma_{\nu}}{\Gamma_{\nu}}$	_		1.991±0.001

Нейтральные слабые токи

Элементарные узлы связи нейтрального бозона с каждым лептоном и каждым кварком

$l Z l \qquad q Z q$

При взаимодействии высокоэнергетичных нейтрино, рождающихся на ускорителях, наряду в процессами, в которых нейтрино превращается в заряженный лептон, должны наблюдаться события другого типа — процессы упругого и неупругого рассеяния нейтрино без его превращения в заряженные лептоны. Такие процессы, происходящие при участии Z-бозона, называют нейтральными слабыми токами.

Исходя из характеристик переносчиков слабого взаимодействия W^{\pm} - и Z- бозонов, определить радиус слабых сил.

Массы *W*- и *Z*-бозонов: $m_W \approx 80$ ГэВ/с², $m_Z \approx 90$ ГэВ/с². Радиус действия слабых сил a_W связан с массой переносчиков взаимодействия *W*- и *Z*-бозонов соотношением

$$R_{W} \approx \frac{\hbar c}{m_{W}c^{2}} \approx \frac{\hbar c}{m_{Z}c^{2}},$$

следующим из соотношения неопределенности $\Delta E \Delta t \approx \hbar$. Действительно, нарушение закона сохранения энергии на величину $\Delta E = m_W c^2 \approx m_Z c^2$ ненаблюдаемы в течение временных интервалов

$$\Delta t \leq \frac{\hbar}{\Delta E} \approx \frac{\hbar}{m_W c^2} \approx \frac{\hbar}{m_Z c^2}.$$

Так как $m_{\!_W} \approx m_{\!_Z} \approx 100$ ГэВ/с², имеем

$$R_W \approx \frac{0,2 \Gamma \Im B \cdot \Phi M}{100 \Gamma \Im B} = 2 \cdot 10^{-3} \Phi M.$$

 $M(K^+) = 494 \text{ M}3B$ $M(\mu^+) = 105, 6 \text{ M}3B$ $M(\pi^+) = 139, 6 \text{ M}3B$ $M(\pi^0) = 135 \text{ M}3B$

 $K^+ \rightarrow \pi^+ \pi^0$ (20%)

Одна из следующих двух диаграмм, описывающих распад $\Lambda \to n + \pi^0$, неправильная. Какая?

Правая диаграмма неправильная. *Z*-бозон фигурирует в нейтральных слабых токах, не изменяющих ароматы кварков, т.е. никаких связанных с кварками квантовых чисел. На правой диаграмме испускание *Z*-бозона сопровождается переходом *s*-кварка в *d*, при котором изменяется странность и изоспин.

Проверка гипотезы цветных кварков

Эксперимент: $B(\tau^- \to \mu^- + \tilde{\nu}_\mu + \nu_\tau) = (17, 36 \pm 0, 05)\%$ $B(\tau^- \to e^- + \tilde{\nu}_e + \nu_\tau) = (17, 85 \pm 0, 05)\%$

В отсутствие цвета

B(h) = 40%

Эксперимент: B(h) = 67%

Цветные кварки B(h) = 66%

Константа слабого взаимодействия

В первоначальной теории слабое взаимодействие описывалось в виде четырехфермионного точечного превращения частиц (слева). Современное представление слабого взаимодействия связано с переносчиками взаимодействия W и Z бозонами (справа).

Слабое взаимодействие на начальном этапе развития теории характеризовалось константой G_F, которая носит название *фемиевской константы связи* и является эффективной константой четырехфермионного взаимодействия. По экспериментальным данным она имеет величину:

$$G_F = 1.4 \cdot 10^{-49} \operatorname{spr} \cdot c M^3$$

Фермиевская константа G_F связана с константой α_w соотношением:

$$G_F = \frac{\pi}{\sqrt{2}} \alpha_w \hbar c \left(\frac{\hbar c}{M_w c^2}\right)^2,$$

 M_W – масса *W*-бозона.

Константа сильного взаимодействия?

Значения констант зависят от масштаба относительных расстояний, на которых происходят взаимодействия. Константы α_e и α_w в широкой области энергий имеют значения:

$$\alpha_e = \frac{1}{137} = 0.0073$$

 $\alpha_w = 0.032$

Константа сильного взаимодействия *α*_s в области расстояний (≈ 1 Фм) имеет порядок единицы. Эта особенность сильного взаимодействия получила специальное название непертурбативного режима сильного взаимодействия. С уменьшением относительных расстояний константа сильного взаимодействия заметно уменьшается.

$$\alpha_s (1\Phi M) \approx 1 - 2$$

$$\alpha_s (0.1\Phi M) \approx 0.31$$

$$\alpha_s (0.001\Phi M) \approx 0.105$$

Взаимодействие

Вероятность процесса зависит от

- 1. константы взаимодействия,
- 2. степени нарушения соотношения $E^2 = c^2 p^2 + m^2 c^4$,
- 3. полной энергии взаимодействия

Слабые распады адронов

Распад с-кварка C U $K^+(u\overline{s}) \rightarrow \pi^0(u\overline{u}) + e^+ + v_{\rho}$ s b $W^{+'}$ $M(K^+) = 4,94 \text{ M} \Rightarrow B$ V_{ρ} $M(\pi^0) = 135 \text{ M}_{2}B$ $\tau(K^+) = 1.2 \cdot 10^{-8} \text{ c}$ $K^+ \left\{ \begin{array}{c} u \\ - \end{array} \right\} W^+$ K^+ ${\cal V}_{\mu}$

 $\tau(D^0) = 4.1 \cdot 10^{-13} \ ce\kappa$

 $M(D^0) = 1864.5M \ni B$

 $D^0 \to K^- + e^+ + v_e$ (3.63±0.18)%

u c t d s b

Распад с-кварка

Распад b-кварка

Распады b-с происходят гораздо чаще чем распады b-и

Образование D^{*+} резонанса в реакции v_{μ} +р

Каналы распада	Относительные вероятности
$\mu^+ { m v}_{\mu}$	63.4%
$\pi^+ \pi^0$	21.1%
$\pi^+ \pi^+ \pi^-$	5.6%
$\pi^0 \ e^+ v_e$	4.9%
$\pi^0 \ \mu^+ {\scriptscriptstyle V}_\mu$	3.3%
$\pi^+ \pi^0 \pi^0$	1.7%
$\mu^+ {v}_\mu {oldsymbol \gamma}$	5.5·10 ⁻³
$\pi^0 \pi^0 \gamma$	2.8 •10 ⁻⁴
$\pi^0 e^+ v_e oldsymbol{\gamma}$	2.7.10 ⁻⁴
$\pi^+ \pi^+ \pi^- oldsymbol{\gamma}$	1.0.10 ⁻⁴
$\pi^+ \pi^- e^+ v_e$	4.1 .10 ^{−5}
$\pi^0 \ \pi^0 \ e^+ v_e$	2.1 .10 ^{−5}
$e^+ v_e$	1.6·10 ⁻⁵
$\pi^+\pi^-\mu^+ {v}_\mu$	1.4·10 ⁻⁵

Распады К+ - мезона

 $M(K^+) = 494 \text{ M} \Rightarrow B$ $\tau = 1.2 \times 10^{-8} \text{ c}$ $J^p(I) = 0^-(1/2)$

Распады К+ - мезона

 $M(K^+) = 494 M \ni B$ $\tau = 1.2 \times 10^{-8} c$ $J^p = 0^-$

 $\mu^+(e^{-})$

 $V_{\mu}(V_e)$

Распады т – мезонов

Каналы распада π^+ -мезона ($\tau = 2.6 \cdot 10^{-8}$ с)

Каналы распада	Относительная вероятность
$\mu^+ {v}_{\mu}$	99.988%
$\mu^+ u_\mu \gamma$	$2.0 \cdot 10^{-4}$
$e^+ v_e$	$1.2 \cdot 10^{-4}$
$e^+ v_e \gamma$	1.6.10-7
$e^+ u_e \ \pi^0$	$1.0 \cdot 10^{-8}$
$e^+v_e e^+e^-$	3.2.10-9
$e^+ v_e v \overline{v}$	< 5.10 ⁻⁶

Каналы распада π^0 -мезона ($\tau = 0.84 \cdot 10^{-16}$ с)

Каналы распада	Относительная вероятность		
2γ	98.80%		
$e^+e^-\gamma$	1.2%		
$e^+e^+e^-e^-$	3.1.10-5		
e^+e^-	6.2.10-8		
4γ	$< 2 \cdot 10^{-8}$		

Распады т – мезонов

Так как π^{\pm} -мезон является самым легким положительно заряженным адроном, он должен распадаться на легкие заряженные лептоны e^{\pm} или μ^{\pm} и соответствующие нейтрино $v_e(v_{\mu})$ или антинейтрино $\overline{v}_e(\overline{v}_{\mu})$. Распад происходит в результате слабого взаимодействия, поэтому π^{\pm} -мезон имеет характерное для слабого взаимодействия время жизни $\tau(\pi^{\pm}) = 2.6 \cdot 10^{-8}$ с.

Распад π^0 -мезона происходит в результате электромагнитного взаимодействия. Поэтому время жизни π^0 -мезона ($\tau(\pi^0) = 0.84 \cdot 10^{-16}$ с) много меньше времени жизни заряженных пионов.

Распады π+ мезона

 $M(\pi^+) = 139,57 \text{ M} \Rightarrow B$ $M(\mu^+) = 105,7 \text{ M} \Rightarrow B$ $M(e^+) = 0,511 \text{ M}3B$

 $\pi^+ \to \mu^+ + \nu_{\mu} (99,99\%)$

При распаде π^+ -мезона доминирует канал распада π^+ -мезона на мюон и мюонное нейтрино

$$\pi^+ \rightarrow \mu^+ + \nu_{\mu}.$$

Этот факт на первый взгляд является удивительным, поскольку существует не запрещенный законами сохранения распад:

 $\pi^* \rightarrow e^+ + \nu_e$ который идет со значительно большим энерговыделением (масса е[±] меньше массы μ^{\pm} в 207 раз). Однако по какой-то причине происходит он в 10⁴ раз реже.

Спиральность. Киральность

Поляризация частицы — это состояние частицы с преимущественной ориентацией ее спина вдоль выбранного направления. При поперечной поляризации спин частицы перпендикулярен ее импульсу. При продольной (круговой) поляризации спин направлен вдоль импульса частицы.

 $h = \frac{s p}{|\vec{s}||\vec{p}|},$

Спиральность частицы *h* определяется соотношением

Состояние, при котором направления спина и импульса совпадают, соответствует спиральности h = +1 (правая поляризация, правая спиральность). Состояние с противоположно направленными спином и импульсом (левая поляризация, левая спиральность) соответствует спиральности h = -1. Лептоны и кварки, участвующие в слабых взаимодействиях, имеют отрицательную спиральность или левополяризованы. Антилептоны и антикварки, участвующие в слабых взаимодействиях, имеют отрицательную спиральность имеют положительную спиральность или правую поляризацию.

$$h(e^{-}, v_{e}, \mu^{-}, v_{\mu}\tau^{-}, v_{\tau}, u, d, s, c, b, t) = -1,$$

 $h(e^+, \overline{\nu}_e, \mu^+, \overline{\nu}_u \tau^+, \overline{\nu}_\tau, \overline{u}, \overline{d}, \overline{s}, \overline{c}, \overline{b}, \overline{t}) = +1.$

Это эмпирический результат, следующий из анализа всей совокупности экспериментальных данных. В природе не наблюдаются правопляризованные нейтрино и левополяризованные антинейтрино. Нейтрино всегда имеет левую поляризацию (*h* = -1), а антинейтрино — правую (*h* = +1).

Распады

 $\pi^+ \rightarrow e^+ + V_e$

Для качественного объяснения подавления распада $\pi^+ \to e^+ v_e$ по сравнению с распадом $\pi^+ \rightarrow \mu^+ \nu_\mu$ следует учесть, что e^+ и μ^+ рождаются в слабых процессах со спиральностью h = v/c т.е. v/c всех рождающихся e^+ и μ^+ должны быть правополяризованными. Эту поляризацию мы назовём «правильной». Соответственно 1-v/с положительно заряженных лептонов будут левополяризованными, т.е. поляризованными «неправильно». Распад с «правильно» поляризованными e^+ и μ^+ запрещен законом сохранения углового момента. Поэтому распад *π*⁺ идёт с «неправильно» поляризованными e^+ и μ^+ , а доля таких распадов равна 1 - v/c. Так как в распаде $\pi \rightarrow ev$ электроны (позитроны) ультрарелятивистские, то $v_e/c \approx 1$ и $1 - v_e/c \approx 0$. В распаде $\pi \rightarrow \mu v$ мюоны нерелятивистские, v_{μ}/c относительно мало и 1-v_µ/c велико. Т.е. вероятность рождения «неправильно» поляризованных мюонов значительна. Поэтому вероятность распада $\pi \rightarrow \mu v$ во

много раз превосходит вероятность распада $\pi \rightarrow ev$.

Возможен ли распад $\pi^0 \to v_e + \overline{v_e}$ для нейтрино с нулевой массой?

Нейтрино всегда имеет отрицательную спиральность, а антинейтрино всегда имеет положительную спиральность.

Спин нейтрино *s_v* равен 1/2, и направление его вектора противоположно направлению движения частицы. Спин антинейтрино *s_v* также равен 1/2, но направление его вектора совпадает с направлением движения частицы.

При распаде, исходя из закона сохранения импульса, нейтрино должны разлетаться строго в противоположные стороны. Момент количества движения v_e и \overline{v}_e $\overline{J} = \overline{s}_v + \overline{s}_{\overline{v}} = \overline{1}$. Однако, спин π^0 -мезона равен 0, то есть данный распад невозможен из-за нарушения закона сохранения момента количества движения

Законы сохранения

Характеристика	Взаимодействие				
	сильное	электромагнитное	слабое		
Аддитивные закон	ы сохранен	ИЯ			
Электрический заряд Q	+	+	+		
Энергия Е	+	+	+		
Импульс	+	+	+		
Момент количества движения	+	+	+		
Барионный заряд В	+	+	+		
Лептонные заряды L _e ,L _u ,L _т	+	+	+		
Странность s	+	+	-		
Очарование (charm) c	+	+	-		
Bottom b	+	+	-		
Top t	+	+	-		
Изоспин І	+	-	-		
Проекция изоспина Із	+	+	-		
Мультипликативные зак	оны сохран	ения			
Пространственная чётность Р	+	+	-		
Зарядовая чётность С	+	+	_		
Комбинированная чётность СР	+	+	-		
Обращение времени Т	+	+	-		
СРТ-инвариантность	+	+	+		