АТОМНЫЕ ЯДРА

Атомное ядро – связанная система протонов и нейтронов

(**A**,**Z**)

Z – заряд ядра – число протонов в ядре.

N – число нейтронов в ядре

А – массовое число – суммарное число протонов и нейтронов в ядре.

$\mathbf{A} = \mathbf{Z} + \mathbf{N}$

⁴⁰Ca

Характеристики протона, нейтрона и электрона

Характеристика	Протон	Нейтрон	Электрон
Macca <i>mc</i> ², МэВ	938.272	939.565	0.511
Электрический заряд (в единицах элементарного заряда)	+1	0	-1
Спин	1/2	1/2	1/2
Изоспин	1/2	1/2	
Проекция изоспина	+1/2	-1/2	
Чётность	+1	+1	
Статистика	Ферми-Дирака		
Магнитный момент (для нуклонов - в ядерных магнетонах, для электрона - в магнетонах Бора)	+2.79	-1.91	+1.001
Время жизни	> 10 ³² лет	885.7±0.8 c	>4.6·10 ²⁶ лет
Тип распада		$n \rightarrow p + e^- + \overline{V}_e$	

Известно ~300 стабильных ядер и ~3500 радиоактивных ядер. Это только часть радиоактивных ядер. Всего их может быть ~7000.

Атомная единица массы. Дефект массы

Атомная единица массы (а.е.м.) равна 1/12 массы атома углерода ¹²С.

l a.e.м. = 1,6582
$$\cdot 10^{-24}$$
 г

ИЛИ

$$E = mc^2 = 931,44$$
 M₃B.

Разность Δ между массой ядра в атомных единицах массы и его массовым числом называется дефектом массы

$$\Delta = \frac{M}{\frac{1}{12}M(^{12}\mathrm{C})} - A$$

Энергия связи ядра W(A,Z)

Энергия связи ядра W(A,Z) – минимальная энергия, которую необходимо затратить для того, чтобы разделить атомное ядро на отдельные составляющие его нейтроны и протоны.

 $M(A,Z)c^{2} + W(A,Z) =$ $= Z \cdot m_{p}c^{2} + (A - Z)m_{n}c^{2}$

Масса атомного ядра

Когда протон и нейтрон соединяются в ядро дейтрон, происходит рождение *у*-кванта с энергией 2,2 МэВ.

 $p + n \rightarrow d + \gamma(2, 2 \text{ M} \Rightarrow B)$

Т.е. энергия дейтрона на 2,2 МэВ меньше суммы энергий покоя протона и нейтрона. Следовательно, масса дейтрона меньше суммы масс протона и нейтрона на 2,2 МэВ/с².

Источником энергии, выделяющейся на Солнце, является образование ядра ⁴Не при слиянии 4 протонов.

 $4p \rightarrow {}^{4}\text{He} + 2e^{+} + 2v_{e}$

Масса ядра ⁴Не на 0,6% меньше суммы масс четырёх протонов и двух позитронов. В результате синтеза ⁴Не выделяется энергия *E* ≈ 25 МэВ.

Энергия связи ядра W(A,Z)

Удельная энергия связи ядра ε(A,Z)

Удельная энергия связи ядра ε (A,Z) – средняя энергия связи, приходящаяся на один нуклон.

Зависимость удельной энергии связи $\varepsilon = W/A$ от массового числа A

Магические числа

∆ – разница между экспериментально измеренной энергией связи ядра и результатами расчета по формуле Бете-Вайцзеккера.

Энергия отделения нуклона, α-частицы

Энергия отделения нейтрона

$$(A, Z) \rightarrow (A-1, Z) + n.$$

Энергия отделения нейтрона определяется разностью масс начального ядра и конечных продуктов (конечного ядра и нейтрона) в энергетических единицах, т. е.

 $B_n = [M(A-1, Z) + m_n - M(A, Z)]c^2 = W(A, Z) - W(A-1, Z).$

Энергия отделения протона

$$(A, Z) \rightarrow (A-1, Z-1) + p$$

 $B_{p} = [M(A-1, Z-1) + m_{p} - M(A, Z)]c^{2} = W(A, Z) - W(A-1, Z-1).$

Ядро перестает быть связанным и, следовательно, существовать, когда энергия отделения нуклона становится меньше нуля:

$$B_n < 0$$
, $B_p < 0$.

 $B_{\alpha} = W(A, Z) - W(A-4, Z-2) - W(4, Z).$

Размер ядра

Радиальное распределение плотности заряда в различных ядрах

 $(r) = \frac{\rho(0)}{\frac{r-R}{1+e^{-a}}}$

 $R = 1.2 \cdot A^{1/3} \Phi_M$ t = 4.4a = 2.5 Φ_M

Прямоугольный потенциал V_{пя}

$$V_{nn}(r) = \begin{cases} -V_0, & r \leq R, \\ 0, & r \geq R. \end{cases}$$

Осцилляторный потенциал V_{осц}

$$V_{ocu}(r) = -V_0 + \frac{1}{2}M\omega^2 r^2,$$

Потенциал Вудса-Саксона V_{вс}

$$V_{BC}(r) = -\frac{V_0}{1+e^{\frac{r-R}{a}}}$$

Ядерный потенциал

Решая уравнение Шредингера для потенциала прямоугольной ямы и потенциала гармонического осциллятора, получают положение одночастичных состояний ядра и волновые функции этих состояний.

$H\Psi = E\Psi$

$\left\{\frac{d^2}{dr^2} - \frac{L(L+1)}{r^2} + \frac{2m}{\hbar^2} \left[E - V(r)\right]\right\} \Psi(r) = 0$

Последовательность одночастичных состояний зависит от потенциала V(r).

Одночастичные состояния ядер

Потенциал нуклон-нуклонного взаимодействия

 $V = V_1(r) + V_2(r)(\vec{s}_1 \vec{s}_2)$

 $+V_3(r)(\vec{s}_1\vec{n})(\vec{s}_2\vec{n})$

 $+V_{4}(r)(\vec{L}\vec{S})$

Нуклон-нуклонное взаимодействие можно описать с помощью потенциала, зависящего от нескольких величин:

- расстояния между нуклонами,
- взаимной ориентации спинов нуклонов,
- нецентрального характера ядерных сил,
- величины спин-орбитального взаимодействия.

Спин-орбитальное взаимодействие

Спин-орбитальные силы играют существенную роль в атомных ядрах. С учётом спинорбитального взаимодействия ядерный потенциал имеет вид

$$V(r) = V_1(r) + V_2(r) \cdot \vec{l} \vec{s}$$

При учете спин – орбитального взаимодействия снимается вырождение по полному моменту *ј* нуклона, который при данном *l* в зависимости от ориентации спина нуклона, принимает два значения:

$$j = l \pm 1/2.$$
 $l = \frac{j}{j} = l - 1/2$
 $j = l \pm 1/2.$

Происходит расщепление состояния данного *l* на два состояния с разной взаимной ориентацией l и \vec{s} . Ниже по энергии опускается уровень с j = l + 1/2, так как в этом случае нуклон сильнее взаимодействует с остальными. Состояние характеризуется полным моментом нуклона *j*. Величину *j* указывают в качестве нижнего индекса при *l*. Так, вместо уровня 1p появляются два уровня $1p_{1/2}$ и $1p_{3/2}$. Величина расщепления, тем больше, чем больше *l*. Начиная с уровня 1*g*, затем 1*h* и т. д., *ls*-расщепление становится сравнимым с расстоянием между соседними осцилляторными оболочками. Расщепление уровней с $l \ge 4$ настолько велико, что нижний уровень оболочки с максимальным *j* и *l* сильно опускается вниз по энергии и оказывается в предыдущей оболочке. Это относится к уровням $1g_{9/2}$, $1h_{11/2}$, $1i_{13/2}$ и $1j_{15/2}$, которые попадают соответственно в 4-ю, 5-ю, 6-ю и 7-ю оболочки. В результате происходит перегруппировка уровней в оболочках.

Модель оболочек

Спин ядра Ј

 $\vec{J} = \vec{s}_1 + \vec{s}_2 + \dots + \vec{s}_A + \vec{l}_1 + \vec{l}_2 + \dots + \vec{l}_A = \vec{j}_1 + \vec{j}_2 + \dots + \vec{j}_A$

Атомное ядро в каждом состоянии характеризуется *полным моментом количества движения J*. Этот момент в системе покоя ядра называется *спином ядра*.

Для спинов атомных ядер выполняются следующие закономерности:

• A – нечётное J = n + 1/2, J полуцелое.

• Чётно-чётные ядра в основном состоянии имеют J = 0. Это указывает на взаимную компенсацию моментов нуклонов в основном состоянии ядра – особое свойство межнуклонного взаимодействия – спаривание тождественных нуклонов.

Четность ядра Р

Четность ядерного состояния *P* указывает на симметрию волновой функции ядерного состояния относительно операции зеркального отражения пространства *P*.

 $\hat{P}\Psi = p\Psi$

Четность ядра *P* как системы нуклонов определяется произведением внутренних четностей π_i и орбитальных моментов l_i отдельных нуклонов

$$P = \pi_i p_i = \pi_i \cdot (-1)^{l_i}$$

1

 π_{i} – внутренняя четность нуклона равна +1.

Четность сферически симметричного ядра определяется произведением орбитальных четностей $(-1)^{l} \alpha$ нуклонов:

$$\mathbf{P} = (-1)^{l_1} (-1)^{l_2} \cdots (-1)^{l_d} A = (-1)^{\alpha} A^{\alpha}$$

Между любой парой нуклонов одного типа на уровне *j* действует дополнительное взаимодействие, не сводящееся к центрально симметричному V(r). Это взаимодействие V_{oct} называется остаточным. Свойства V_{oct} таковы, что паре нуклонов одного сорта на одном уровне выгодно иметь результирующий момент равный нулю. V_{oct} снимает вырождение по *J* этой пары так, что низшим оказывается состояние с J = 0, что является проявлением *сил спаривания*. Дополнительная энергия связи ядра за счёт сил спаривания 1-3 МэВ.

Возникновение сил спаривания в ядрах обусловлено особенностями взаимодействия в системе нуклонов. На характерных ядерных расстояниях нуклоны притягиваются, и нуклонам одного типа энергетически выгодно находиться на одном и том же уровне в состояниях, характеризуемых одними и теми же числами *nlj*. Наиболее устойчивой при этом оказывается пара нуклонов с противоположно направленными моментами, т. е. с $+j_z$ и $-j_z$. Такая пара нуклонов обладает максимально возможным набором совпадающих квантовых чисел, и, соответственно, волновые функции нуклонов этой пары характеризуются наибольшим перекрытием. Результирующий полный момент и чётность состояния спаренных нуклонов

 $J^{P} = 0^{+}.$

Квадрупольный момент ядра

$$Q_0 = \frac{1}{e} \int \rho(r) (3z^2 - r^2) dV$$

 Q_0 — собственный квадрупольный момент, Q — наблюдаемый квадрупольный момент.

$$Q = \frac{J(2J-1)}{(J+1)\cdot(2J+3)}Q_0$$

Квадрупольные моменты ядер

Наблюдаемые квадрупольные моменты ядер Q

J(2J - 1) $(J + 1) \cdot (2J + 3)$

Форма ядра

Форма атомных ядер может изменяться в зависимости от того в каком возбужденном состоянии оно находится. Так, например, ядро ¹⁸⁶*Pb* в основном состоянии (0⁺) сферически симметрично, в первом возбужденном состоянии 0⁺ имеет форму сплюснутого эллипса, а в состояниях 0⁺, 2⁺, 4⁺, 6⁺ форму вытянутого эллипсоида.

Известно, что внутренний электрический квадрупольный момент Q_0 ядра ¹⁷⁵Lu равен +5,9 Фм². Какую форму имеет это ядро? Чему равен параметр деформации этого ядра?

Для равномерно заряженного аксиально симметричного эллипсоида, имеющего заряд $Ze \quad Q_0 = \frac{2}{5}Z(b^2 - a^2)$, где b — полуось эллипсоида, направленная по оси симметрии z, а a — по осям x и y. Параметр деформации ядра $\beta = \frac{1}{2}\frac{b^2 - a^2}{\overline{R}^2}$, где $\overline{R} = \frac{(b+a)}{2}$ — средний радиус ядра. Тогда $\beta = \frac{5}{4}\frac{Q_0}{Z(r_0A^{1/3})^2} = \frac{5 \times 5.9}{4 \times 71 \times (1,2 \times 175^{1/3})^2} = 0,002.$

Здесь учтено, что при малых деформациях $\overline{R} \approx R = r_0 A^{1/3}$. Так как $Q_0 > 0$, то b > a, и ядро представляет из себя эллипсоид вытянутый вдоль оси симметрии z.

Одночастичные состояния в деформированных ядрах

Потенциал Нильсона $V_{Huлbc}(\vec{r}) = \frac{1}{2}M(\omega_{xy}^2(x^2 + y^2) + \omega_z^2 z^2) + C\vec{l}\vec{s} + D\vec{l}^2$

Характеристики дейтрона

Масса (<i>mc</i> ²) Энергия связи <i>W</i> Спин <i>J</i> Чётность <i>P</i> Изоспин <i>I</i>	1875.613 МэВ 2.224 МэВ 1 +1 0	$\vec{s}_{n} \uparrow \qquad f \qquad J=1 \\ \vec{s}_{p} \uparrow \qquad L=0$	$ \begin{array}{c} \overrightarrow{s}_{n} \\ \overrightarrow{s}_{p} \\ \overrightarrow{s}_{p} \\ J=1 \end{array} $ $ \begin{array}{c} L=2 \\ L=2 $
Магнитный момент μ Электрический квадрупольный момент <q></q>	0.857 μ _N +0.282 Φm ²	Возможные ориентации спинов и орбитальны моментов нуклонов в дейтроне	

Спин дейтрона $\vec{J}({}_{1}^{2}H) = \vec{S}_{p} + \vec{S}_{n} + \vec{L}$ $\mu = \mu_{L=0} = \mu_{p} + \mu_{n} = 2.792 \,\mu_{N} - 1.913 \,\mu_{N} = 0.879 \,\mu_{N}$ $\psi({}_{1}^{2}H) = \alpha \,\psi_{s} + \beta \,\psi_{d}, \quad \alpha^{2} + \beta^{2} = 1$

Четность дейтрона $P = \pi_p \cdot \pi_n (-1)^L = +1$

Волновая функция дейтрона

$$\psi(\vec{r}) = R_L(r)Y_{Lm}(\theta, \varphi) = \frac{u_L(r)}{r}Y_{Lm}(\theta, \varphi)$$
$$\frac{d^2u_1}{dr^2} + k^2u_1 = 0, \quad u_1 = A \cdot sinkr; \quad k = \frac{\sqrt{2\mu(V_0 - W)}}{\hbar}$$

$$u_2 = 0;$$
 $u_2 = Ce^{-\gamma r};$ $\gamma = \frac{\sqrt{2\mu W}}{\hbar}$
Радиус дейтрона

 $R_d = 1/\gamma \approx 4.3 \ \Phi \mathrm{M}$

Прямоугольная потенциальная яма для дейтрона и его радиальная волновая функция

Возбужденные состояния атомных ядер

Возбужденные состояния изотопов Са

Одночастичные возбуждения атомных ядер

Одночастичные возбуждённые состояния ядер возникают при переходе одного или нескольких нуклонов на более высокие одночастичные орбиты.

Коллективные колебательные и вращательные возбужденные состояния атомных ядер

Колебательные состояния сферических ядер

Дипольные колебания J=1 не относятся к внутренним возбуждениям ядра. Энергии квадрупольных и октупольных возбуждений в квантовой теории могут принимать дискретные значения

$$\boldsymbol{E}_{\boldsymbol{\kappa}\boldsymbol{\beta}\boldsymbol{\alpha}\boldsymbol{\partial}\boldsymbol{p}} = n_2 \hbar \omega_2, \quad \boldsymbol{E}_{\boldsymbol{\sigma}\boldsymbol{\kappa}\boldsymbol{m}} = n_3 \hbar \omega_3$$

Энергия возбуждения ядра, в котором одновременно происходят различные поверхностные колебания формы, имеет вид

$$\boldsymbol{E} = \sum_{J \ge 2} n_J \hbar \boldsymbol{\omega}_J$$

 n_J – число фононов определенного типа, $\hbar\omega_J$ – энергия фонона.

Колебательные состояния сферических ядер

$$n = 0, E = 0$$
 ______0⁺____

Спектр квадрупольных колебаний четно-четных ядер.

Состояния двух фононов $j = 2^+$ с суммарным спином J = 1,3 запрещены, т.к. волновая функция двух тождественных бозонов должна быть симметричной относительно перестановки частиц.

Колебательные состояния ядра ¹⁰⁶Рd

Вращательные состояния деформированных ядер $E_{\kappa nacc} = \frac{L^2}{2\Im}, \quad E_{epauq} = \frac{\hbar^2}{2\Im}J(J+1)$

L — вращательный момент, \mathfrak{I} — момент инерции ядра.

Волновой функцией вращающегося ядра является собственная функция оператора квадрата полного момента $\hat{J}^{\,2}$, имеющего собственные значения $\hbar^2 J (J+1)$, т.е. сферическая функция $Y_{_{J\!M}}(heta, arphi)$. Волновая функция ядра, имеющего форму аксиальносимметричного эллипсоида, не изменяется при пространственной инверсии, т. е. переходит сама в себя. Поэтому волновая функция ядра, имеющего форму эллипсоида симметрична, что исключает состояния с J = 1, 3, 5, ... Чётность P сферической функции равна $(-1)^{J}$. Поэтому чётность вращательных состояний четночетного ядра всегда положительна.

Вращательные состояния ядра ¹⁸⁰Нf

Нижние вращательные состояния ядра $^{180}_{72}Hf$. Рядом с экспериментальными значениями энергии в скобках приведены энергии, рассчитанные по формуле $E_{вращ} = \hbar^2 J(J+1)/2\Im$ с моментом инерции \Im , оцененным по энергии состояния 2⁺

Вращательные спектры бесспиновых ядер

Возбужденные состояния 2+

1. Квадрупольные колебания сферического ядра

2. Вращение деформированного ядра

Пример. Возбужденные состояния 2+

Колебательные состояния чётночётных сферических атомных ядер Вращательные состояния деформированных чётно-чётных атомных ядер

Возбужденные состояния 2+

Изоспин атомных ядер

Изоспин системы А нуклонов

$$\vec{I} = \sum_{\alpha=1}^{A} \vec{I}_{\alpha}$$

В ядре А нуклонов, каждый из которых имеет изоспин $I = \frac{1}{2}$.

Поэтому возможные значения изоспина

 $\left|\frac{Z-N}{2}\right| \le I \le \frac{A}{2}.$

Все состояния ядра имеют проекцию изоспина $I_3 = \frac{Z - N}{2}$. Изоспин ядра в основном состоянии I_{gs} имеет минимальное возможное значение

$$I_{gs} = |I_3| = \left|\frac{Z-N}{2}\right|.$$

Аналоговые состояния ядер ⁷Li, ⁷Be

Зеркальные ядра

Зеркальные ядра — это ядра, имеющие одинаковое массовое число A и переходящие друг в друга при замене протонов нейтронами и нейтронов протонами. Примерами зеркальных ядер являются ядра ${}^{7}\text{Li}(3p4n) - {}^{7}\text{Be}(4p3n)$, ${}^{13}\text{C}(6p7n) - {}^{13}\text{N}(7p6n)$. Так как сильные взаимодействия обладают свойством изоспиновой инвариантности, свойства зеркальных ядер близки. Так, например, они имеют похожие спектры возбужденных состояний — практически одинаковые энергии возбуждения, одинаковые значения квантовых чисел спина J и четности P. Различие в массах зеркальных ядер обусловлено различием кулоновской энергии и разностью масс нейтронов и протонов.

Пример

Считая, что разность энергий связи зеркальных ядер определяется только различием энергий кулоновского отталкивания в этих ядрах, вычислить радиусы зеркальных ядер ²³Na, ²³Mg. E_{ce} (²³Na) = 186,56 МэВ, E_{ce} (²³Mg) = 181,72 МэВ.

Кулоновская энергия равномерно заряженного шара радиуса R определяется соотношением $E_c = \frac{3}{5} \frac{Z(Z-1)e^2}{R}$. Обозначим заряд ядра ²³Na как Z, а ядра ²³Mg — как Z+1. Тогда разность энергий связи ядер ²³Na и ²³Mg будет

$$\Delta E_{ce} = E_{ce}(A,Z) - E_{ce}(A,Z+1) = -\Delta E_{c} = \frac{3}{5} \frac{2Ze^{2}}{R} = \frac{6}{5} \frac{Ze^{2}}{R}.$$

Для радиуса ядра получаем

$$R = \frac{6}{5} \frac{Ze^2}{\Delta E_{c_6}} = \frac{6 \times 11 \times 1,44 \text{ M} \cdot 3B \cdot \Phi M}{5 \times (186,56 - 181,72) \text{ M} \cdot 3B} \approx 3,9 \text{ } \Phi M.$$

На основе эмпирической зависимости $R = 1, 2A^{1/3}$ Фм получаем

$$R\left({}^{23}_{12}\text{Mg}\right) = R\left({}^{23}_{11}\text{Na}\right) = 1,2 \times 23^{1/3} = 3,4$$
 Фм.

Обобщенная модель ядра

Полный момент количества движения ядра \vec{J} складывается из коллективного вращательного момента ядра \vec{R} и внутреннего момента нуклонов \vec{J}' .

 $\vec{J} = \vec{R} + \vec{I}'$

Моменты \vec{J}' и \vec{R} прецессируют вокруг направления полного момента количества движения \vec{J} . Так как аксиально-симметричное эллипсоидальное ядро может вращаться только вокруг оси перпендикулярной к оси симметрии 3, то из этого вытекает, что вектор \vec{R} перпендикулярен оси 3 и проекции полного и внутреннего угловых моментов на ось симметрии должны быть равны между собой.

$$J_3 = J_3' = \hbar K$$

т-мезоны, кванты ядерного поля $R = \frac{\hbar}{mc} \approx 1,5 - 2,0 \ \Phi_{M}.$

 $m_{\pi}c^2 = \frac{\hbar c}{R} \approx \frac{200 \text{ M} \cdot \Theta M}{1.5 \text{ } \Theta M} \approx 130 \text{ M} \cdot B.$

Положительные, отрицательные и нейтральные пионы (π^+, π^0, π^-) описывают взаимодействие между *nn*-, *np*-, *pp*-парами на характерных внутриядерных расстояниях 1.5-2.0 Фм.

Однопионное пр-взаимодействие

Кварковая диаграмма пр-взаимодействия

Потенциал Юкавы

Радиальная зависимость нуклон-нуклонного потенциала

Потенциал, создаваемый облаком испускаемых нуклоном мезонов, носит название потенциала Юкавы

$$V(r) = g_N \frac{e^{-\frac{r}{a}}}{r},$$

где $a = \frac{\hbar}{mc}$, g_N – ядерный заряд нуклона.

Диаграммы N-N взаимодействий

Взаимодействие между нуклонами зависит от спина частицы, переносящей взаимодействие. Обмен векторными частицами J=1 приводит к отталкиванию между нуклонами. Это отталкивание является аналогом отталкивания двух одноимённых зарядов в электростатике. Обмен скалярными мезонами J=0 приводит к притяжению между нуклонами.

мезон	π	η	ρ	ω
J ^p (I)	0-(1)	0 ⁻ (0)	1-(1)	1-(0)

Атомное ядро представляет собой связанную систему протонов и нейтронов. В результате взаимодействия между нуклонами в ядре образуются компактные структуры, состоящие из двух или большего числа частиц, которые могут возникать внутри атомного ядра. Кластерная структура атомных ядер проявляется в процессах α -распада, в различных ядерных реакциях.

Экзотические ядра

Антиядра

Гиперядра

Выводы

1. Атомные ядра состоят из Z протонов и N нейтронов. Массовое число A = Z + N. Ядра с одинаковым Z и разными N и A называются изотопами. Ядра с одинаковыми A и разными N и Z называются изобарами.

2. Нуклоны имеют спин J = 1/2 и являются фермионами.

3. Энергия связи ядра

$$W(A,Z) = M(A,Z)c^{2} - Zm_{p}c^{2} - (A-Z)m_{N}c^{2}$$

4. Формула Бете-Вайцзеккера

$$W(A,Z) = \alpha A - \beta A^{2/3} - \gamma \frac{Z(Z-1)}{A^{1/3}} - \delta \frac{(A-2Z)^2}{A} + \zeta A^{-3/4}$$

5. Удельная энергия связи ядра

$$\varepsilon(A,Z) = \frac{W(A,Z)}{A} \approx 8 \text{ M} \Rightarrow B$$

6. Радиус атомного ядра $R = 1, 3A^{1/3}$ фм.

7. Ядерные потенциалы – прямоугольный, осцилляторный, Вудса-Саксона.

8. Потенциал нуклон-нуклонного взаимодействия

$$V = V_1(r) + V_2(r)(\vec{s}_1 \vec{s}_2) + V_3(r)(\vec{s}_1 \vec{n})(\vec{s}_2 \vec{n}) + V_4(r)(\vec{L}\vec{s})$$

 9. Модель оболочек объяснила магические числа протонов и нейтронов в ядре 2, 8, 20, 28, 50, 82, 126

влиянием спин-орбитального взаимодействия.

10. Одночастичные и коллективные возбужденные состояния атомных ядер.

11. Ядерное взаимодействие – результат обмена мезонами. π -мезоны – кванты ядерного поля. Потенциал Юкавы $V(r) = g_N \frac{e^{-r/a}}{r}$.