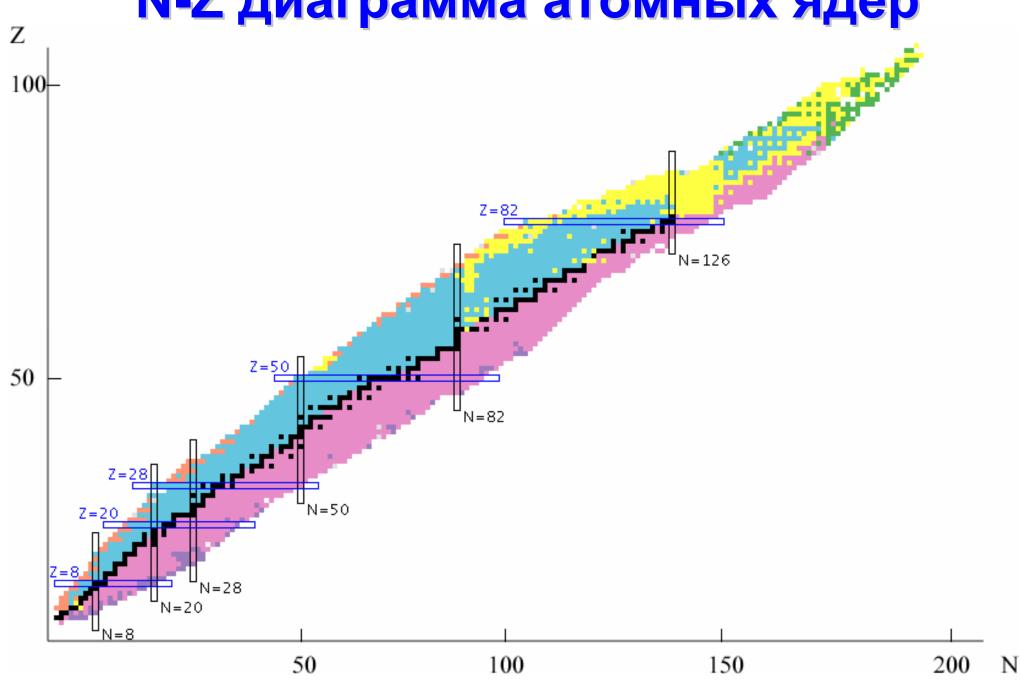
PAUNOAKTNBHOCTЬ

N-Z диаграмма атомных ядер



Радиоактивность

Радиоактивность – свойство атомных ядер самопроизвольно изменять свой состав в результате испускания частиц или ядерных фрагментов.

Радиоактивный распад

- α -распад испускание ядрами α -частиц,
- В-распад испускание (или поглощение) лептонов,
- γ -распад испускание γ -квантов,
- спонтанное деление распад ядра на два осколка сравнимой массы.

К более редким видам радиоактивного распада относятся испускание ядрами одного или двух протонов, а также испускание *кластеров* — лёгких ядер от ^{12}C до ^{32}S . Во всех видах радиоактивности (кроме гамма-радиоактивности) изменяется состав ядра — число протонов Z, массовое число A или то и другое одновременно.

Радиоактивность

Радиоактивный распад происходит только в том случае, если масса исходного ядра M_i больше суммы масс продуктов распада $\sum M_f$

$$M_i > \sum M_f$$

Разность

$$Q = \left(M_i - \sum M_f\right)c^2$$

выделяется в виде энергии продуктов распада.

Постоянная распада λ

Постоянная распада λ характеризует вероятность распада атомного ядра в единицу времени.

Если в образце в момент времени t содержится N радиоактивных ядер, то количество dN ядер, распадающихся в интервал времени t — t+dt, определяется соотношением

$$dN = -\lambda Ndt$$

Знак «минус» означает, что общее число радиоактивных ядер уменьшается в результате распада.

Закон радиоактивного распада

$$N(t) = N_0 e^{-\lambda t}$$

- N_0 количество ядер в радиоактивном источнике в начальный момент времени t=0,
- N(t) количество радиоактивных ядер, оставшихся в источнике в момент времени t ,
- λ постоянная распада.

Количество ядер радиоактивного источника, распавшихся за время $t\,,$

$$N_0 - N(t) = N_0 (1 - e^{-\lambda t})$$

Постоянная распада λ Среднее время жизни τ Период полураспада $T_{1/2}$

т — среднее время жизни ядра

$$\tau = \frac{\int_0^\infty t \left| \frac{dN}{dt} \right| dt}{\int_0^\infty \left| \frac{dN}{dt} \right| dt}$$

T_{1/2} - период полураспада – время, за которое число радиоактивных ядер уменьшается вдвое

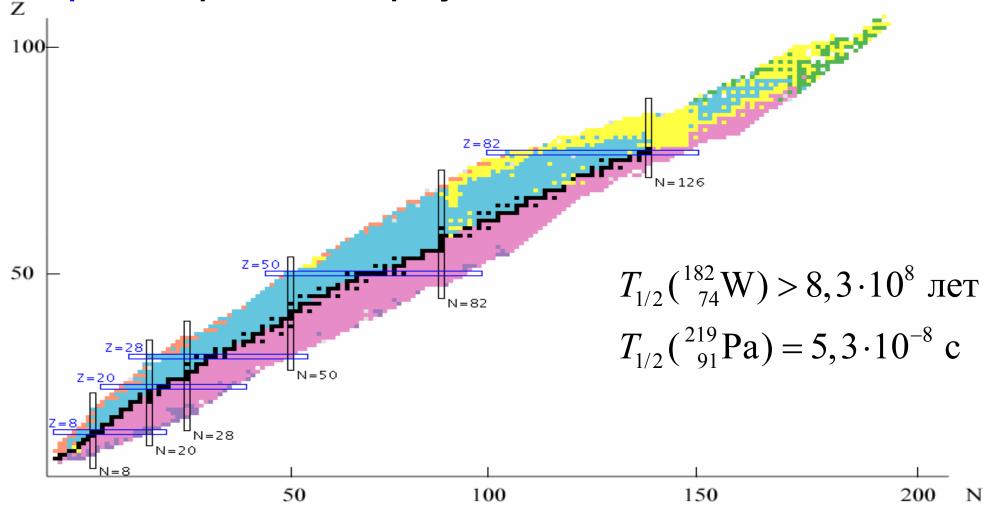
$$\frac{N_0}{2} = N_0 e^{-\lambda T_{1/2}}$$

$$T_{1/2} = \frac{\ln 2}{\lambda} = \frac{0,693}{\lambda} = \tau \cdot \ln 2$$

α-распад

 α -распад — распад атомных ядер, сопровождающийся испусканием α -частицы (ядра ${}^4{\rm He}$).

α-распад происходит в результате сильного взаимодействия.



Энергия α-распада Qα

Необходимым условием α -распада ядра (A,Z) является

$$M(A,Z) > M(A-4,Z-2) + M_{\alpha}$$

M(A,Z) — масса исходного ядра,

M(A-4,Z-2) — масса конечного ядра,

 M_{α} — масса lpha-частицы.

В результате α -распада конечное ядро (A-4,Z-2) и α -частица приобретают суммарную кинетическую энергию Q_{α}

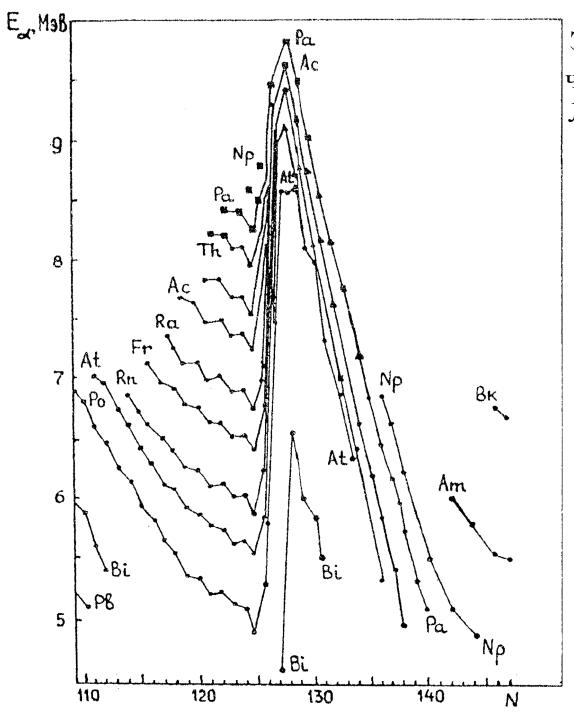
$$Q_{\alpha} = [M(A,Z) - M(A-4,Z-2) - M_{\alpha}]c^{2}$$
,

 Q_{α} — энергия α -распада.

Из законов сохранения энергии и импульса следует, что энергия α -частицы T_{α}

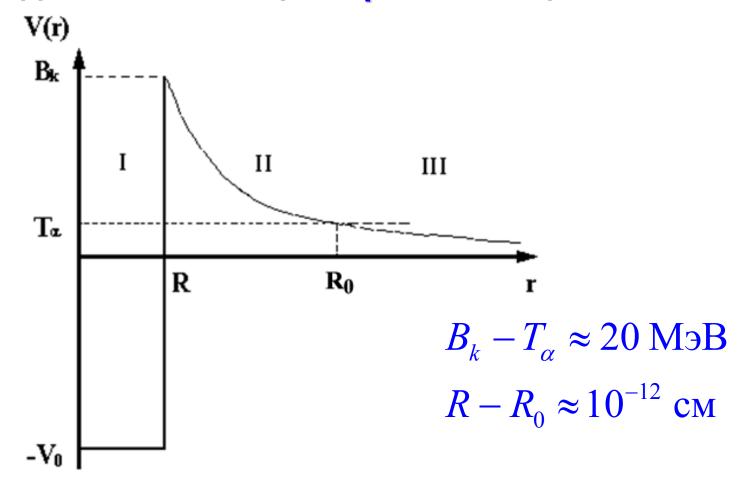
$$T_{\alpha} = Q_{\alpha} \frac{M(A-4,Z-2)}{M(A-4,Z-2)+M_{\alpha}}$$

lpha-частица уносит 98% энергии lpha-распада.



Энергии α -частиц в зависимости от числа нейтронов N в исходном ядре. Линии соединяют изотопы одного и того же элемента.

Прохождение α-частицы через потенциальный барьер



Вероятность P прохождения α -частицы с энергией T_{α} через потенциальный барьер V(r)

$$P = \exp\left(-\frac{2}{\hbar}\int_{R}^{R_0} \sqrt{2\mu_{\alpha}\left[V(r) - T_{\alpha}\right]dr}\right) \approx e^{-84} \approx 10^{-36}.$$

Физика процесса α-распада

Вероятность α -распада λ равна произведению вероятности обнаружить α -частицу на границе ядра f на вероятность её прохождения через потенциальный барьер P.

$$\lambda = f \cdot P$$

$$f = \frac{v}{2R} = \frac{v}{2r_0 A^{1/3}} \approx \frac{c}{2r_0 A^{1/3}} \left[\frac{2(T_\alpha + V(r))}{\mu_\alpha c^2} \right]^{1/2} \approx 10^{21} \text{ cek}^{-1}$$

v — скорость α -частицы внутри ядра $v \approx (0,1-0,2)c$,

 T_{α} — кинетическая энергия α -частицы,

 μ_{α} — приведенная масса lpha-частицы,

V(r) — ядерный потенциал (V_0 ≈30 МэВ).

α-распад на возбужденные состояния ядра

Допустимые значения орбитального момента \emph{l} , который может унести α -частица, ограничены законами сохранения момента количества движения и чётности

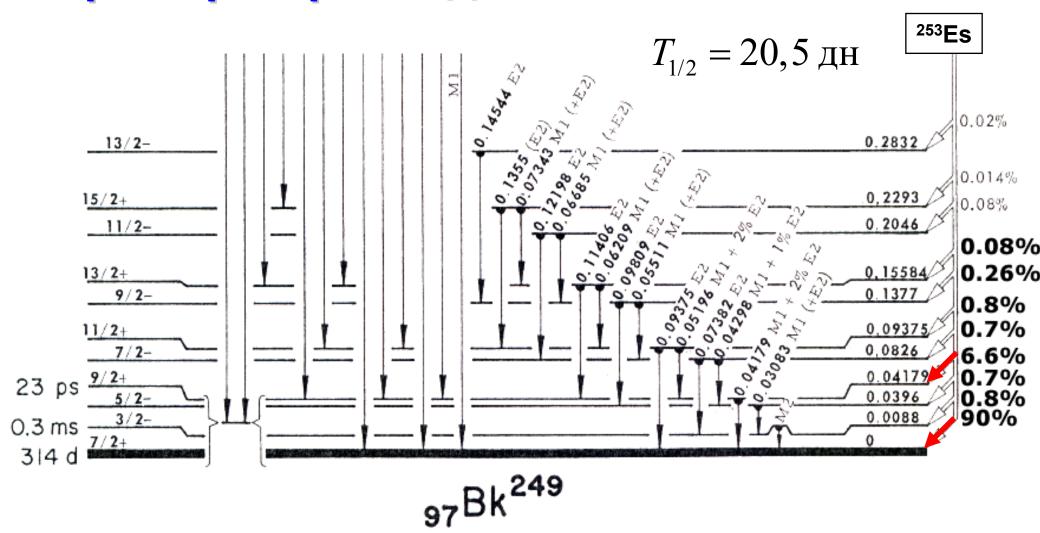
$$\left|J_f - J_i\right| \le l \le J_f + J_i$$

 J_f и J_i – спины конечного и начального ядер. Из закона сохранения чётности следует, что значение l должно быть чётным, если чётности начального и конечного ядер совпадают, и нечётным, если чётности различны.

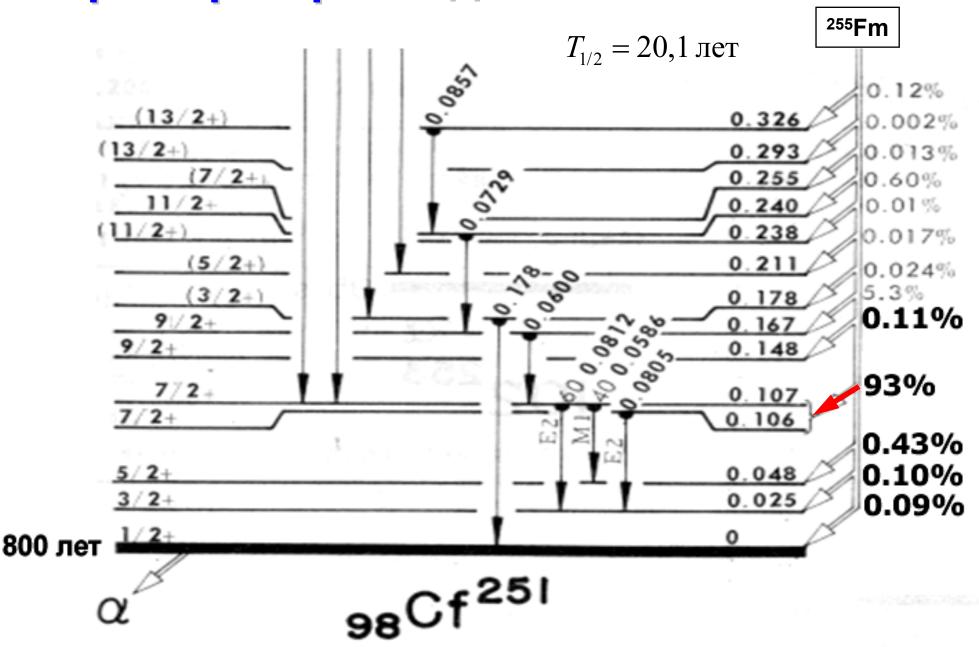
$$p_i = p_f \cdot p(\alpha) \cdot (-1)^l$$

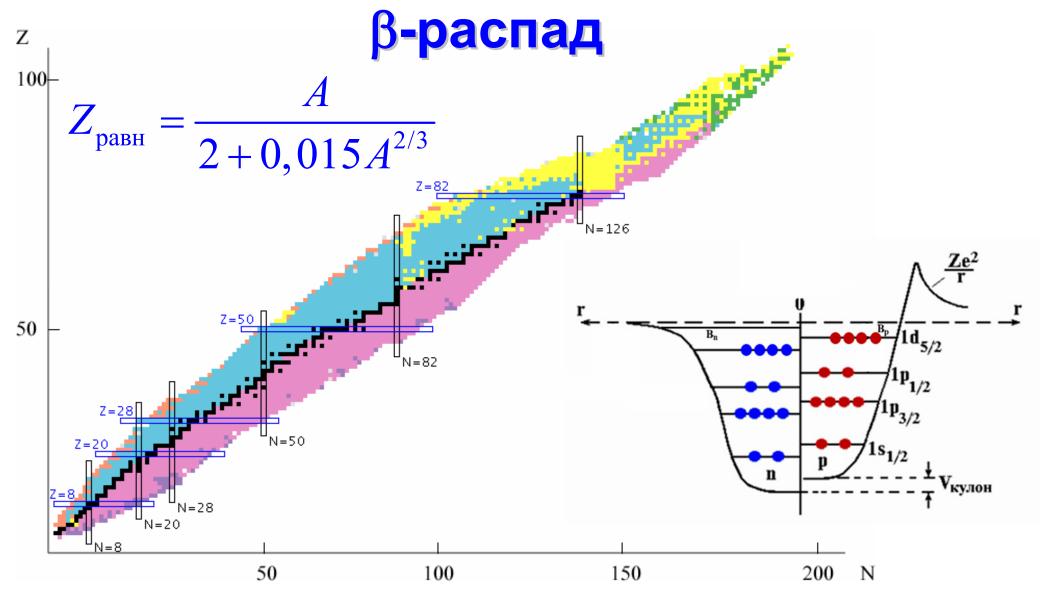
$$E_{\text{II.6.}} = \frac{\hbar^2 l(l+1)}{2mr^2}$$

Пример. α -распад ²⁵³Es $J^p(^{253}$ Es) = 7 / 2+

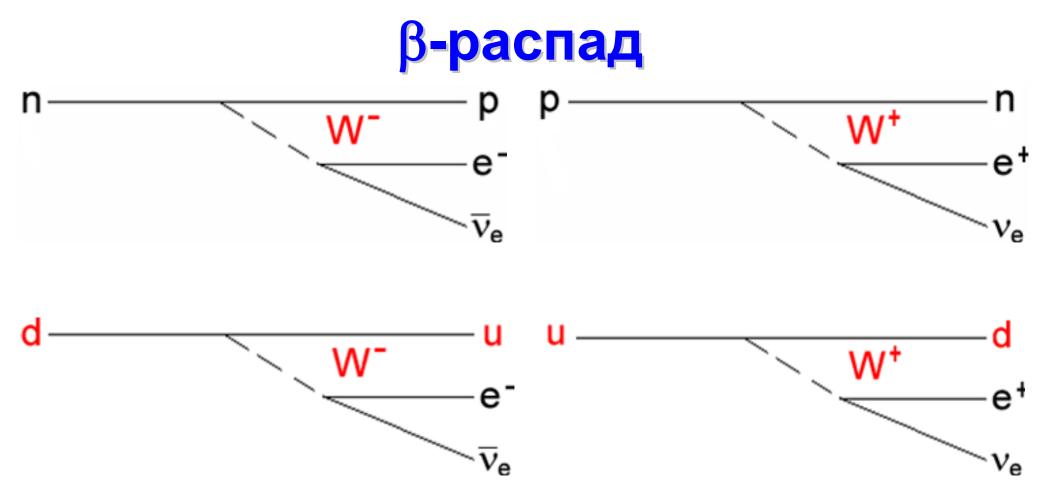


Пример. α -распад ²⁵⁵Fm $J^{p}(^{255}Fm) = 7/2^{+}$





β-радиоактивные ядра наблюдаются во всей области значений массового числа *A*, от свободного нейтрона до самых тяжёлых ядер.



β-распад происходит в результате слабых взаимодействий. На нуклонном уровне это соответствует переходам нейтрона в протон или протона в нейтрон.

На кварковом уровне при β -распаде происходит превращение d-кварка в d-кварк или превращение u-кварка в d-кварк.

Энергия β-распада

$$Q_{eta^-} = \left[M^{\mathcal{H}}(A,Z) - M^{\mathcal{H}}(A,Z+1) - m_e \right] c^2$$
 - eta^- -распад $Q_{eta^+} = \left[M^{\mathcal{H}}(A,Z) - M^{\mathcal{H}}(A,Z-1) - m_e \right] c^2$ - eta^+ -распад $Q_{e^{-3}} = \left[M^{\mathcal{H}}(A,Z) + m_e - M^{\mathcal{H}}(A,Z-1) \right] c^2$ - е-захват

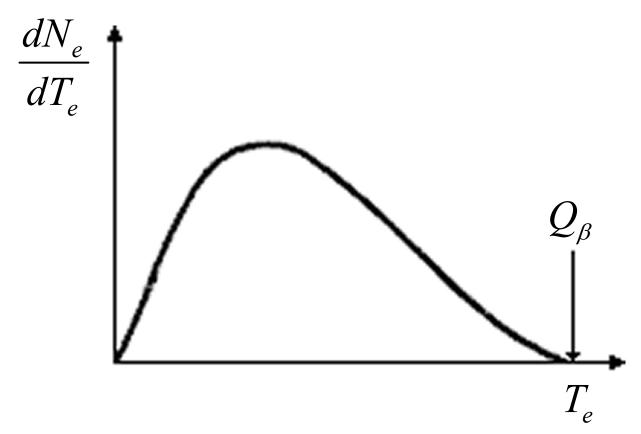
 $M^{\mathcal{A}}$ - массы ядер, \emph{m}_{e} - масса электрона.

В справочных таблицах обычно приводятся массы или избытки масс атомов, поэтому для энергий β-распадов в этом случае

$$Q_{eta^-} = \Big[M^{ ext{at}}(A,Z) - M^{ ext{at}}(A,Z+1) \Big] c^2$$
 - eta^- -распад $Q_{eta^+} = \Big[M^{ ext{at}}(A,Z) - M^{ ext{at}}(A,Z-1) \Big] c^2 - 2m_e c^2$ - eta^+ -распад $Q_{e ext{-}3} = \Big[M^{ ext{at}}(A,Z) - M^{ ext{at}}(A,Z-1) \Big] c^2$ - е-захват

 M^{at} - массы атомов.

Спектр электронов β-распада

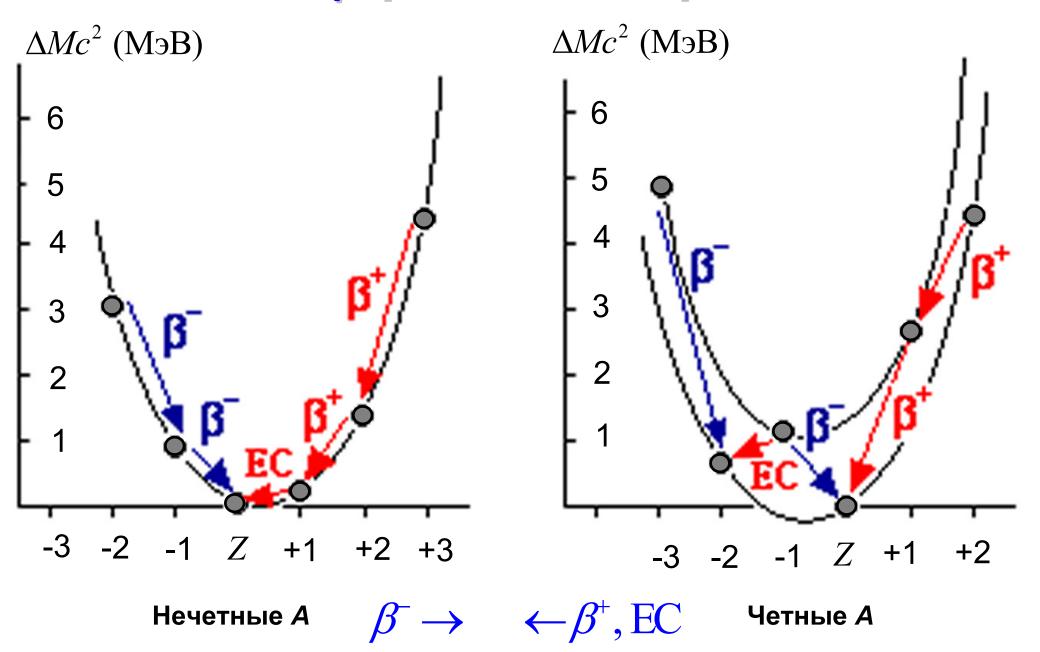


Энергии β-распада изменяются от 0.02 МэВ до ~20 МэВ.

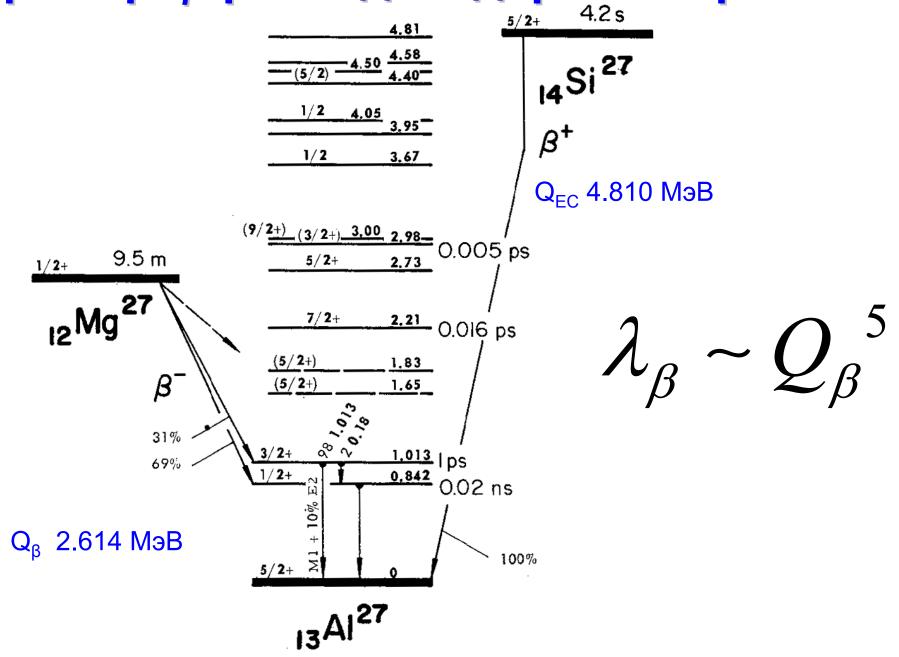
$${}^{3}\text{H} \rightarrow {}^{3}\text{He} + e^{-} + \overline{\nu}_{e} + 0,02 \text{ M}\ni \text{B}$$
 ${}^{11}\text{Li} \rightarrow {}^{11}\text{Be} + e^{-} + \overline{\nu}_{e} + 20,4 \text{ M}\ni \text{B}$

Периоды полураспада изменяются от 10⁻³ с до 10¹⁶ лет.

β-распад ядер



Пример. β-распады ядер-изобар А=27



е-захват

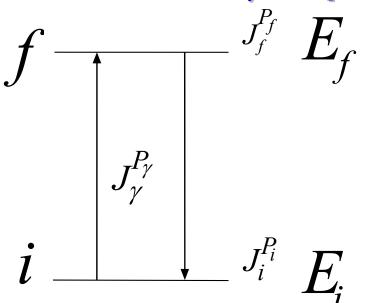
$$(A,Z) + e^{-} \rightarrow (A,Z-1) + \nu_{e} \qquad \begin{array}{c} p \\ \\ e^{-} \end{array}$$

е-захват — захват ядром электрона из электронной оболочки собственного атома.

В случае захвата ядром электрона в конечном состоянии образуются две частицы — конечное ядро и нейтрино. Так как это двухчастичный распад распределение энергий между образовавшимся ядром и нейтрино является однозначным. Практически вся она уносится нейтрино.

е-захват имеет существенное значение в тяжелых ядрах, в которых атомные К- и L-оболочки расположены близко к ядру.

γ-переходы в ядрах



Квантовые числа фотона

$$J_{\gamma} = 1$$

$$P_{_{\gamma}} = -1$$

 γ -переходы происходят в результате электромагнитного взаимодействия.

Законы сохранения энергии E, момента количества движения J и четности P в электромагнитных переходах:

$$ec{J}_f = ec{J}_i + ec{J}_\gamma$$
 или $\left| J_i - J_f
ight| \leq J_\gamma \leq J_i + J_f$, $P_f = P_i \cdot P_\gamma$ или $P_\gamma = P_i \cdot P_f$, $E_f = E_i + E_\gamma + T_R$.

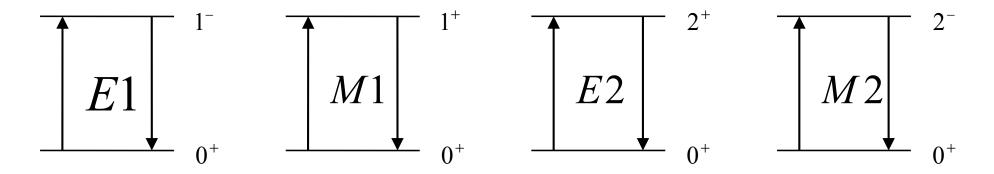
 $T_{\scriptscriptstyle R}$ - энергия ядра отдачи.

Магнитные и электрические фотоны

Фотоны с определённым значением полного момента *J* имеют разные значения орбитального момента *l* и, следовательно, разные чётности. В зависимости от чётности при определенном значении *J* фотоны различают на магнитные и электрические:

$$l=J, \qquad P=(-1)^{J+1}$$
 — магнитные фотоны $MJ;$ $l=J\pm 1, P=(-1)^{J}$ — электрические фотоны $EJ.$

Мультипольности γ-переходов



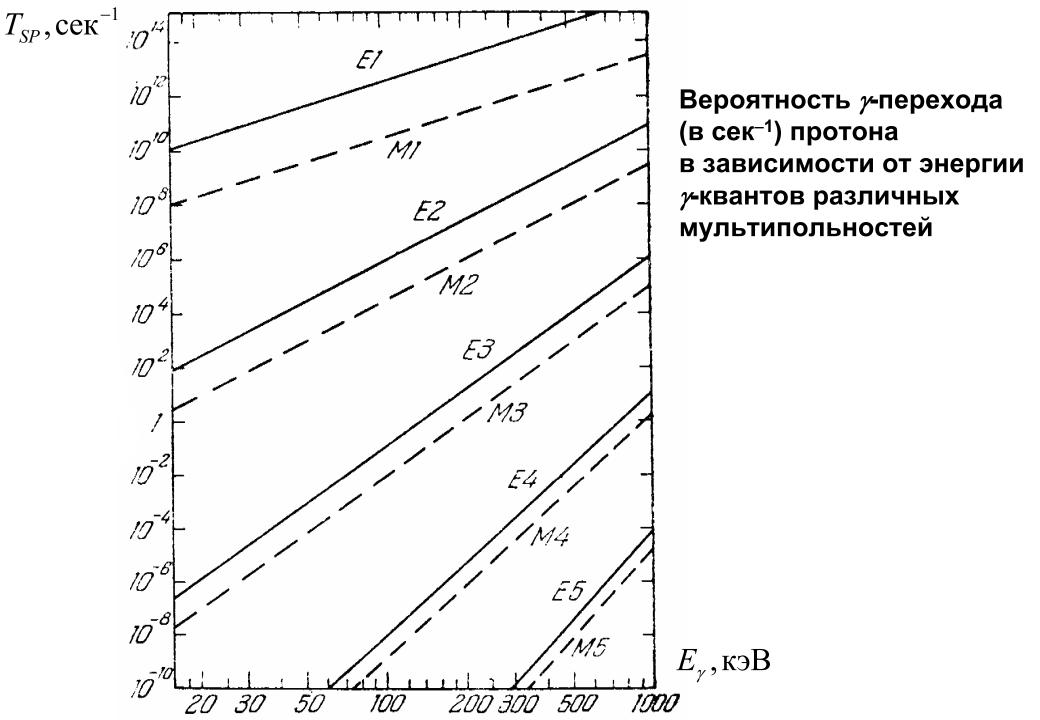
Правила отбора по чётности

$$P_i P_f = (-1)^J$$
 для *EJ*-фотонов;

$$P_i P_f = (-1)^{J+1}$$
 для *MJ*-фотонов.

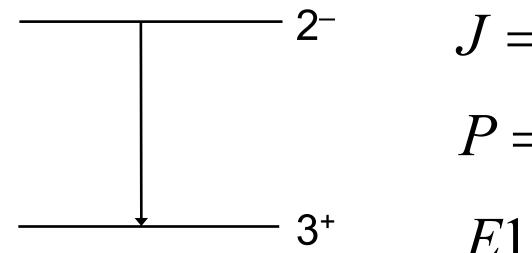
Вероятности испускания или поглощения магнитных и электрических фотонов описываются приближенными соотношениями

$$w(MJ) \sim \frac{1}{\lambda} \left(\frac{R}{\lambda}\right)^{2J+2}, \quad w(EJ) \sim \frac{1}{\lambda} \left(\frac{R}{\lambda}\right)^{2J}.$$



Пример

Определить спин J, четность P и мультипольность ү-перехода



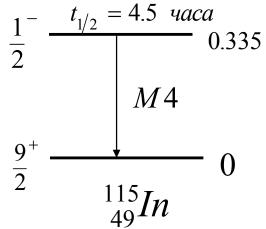
$$J = \vec{2} + \vec{3} = 1, 2, 3, 4, 5$$

$$P = (-1)(+1) = -1$$

E1, M2, E3, M4, E5

Изомерные состояния в ядрах

$$\frac{J^P}{\frac{5}{2}} - \frac{E}{0.597 \text{ M} \ni B}$$



Времена жизни γ -радиоактивных ядер — 10^{-17} — 10^{-8} с.

Однако в некоторых случаях при сочетании высокой степени запрета с малой энергией перехода могут наблюдаться γ -радиоактивные ядра с временами жизни до нескольких часов и даже лет. Такие долгоживущие возбужденные состояния ядер называются изомерами. Примером изомера может служить изотоп индия $^{115}_{49}In$. Основное состояние $^{115}_{49}In$ имеет характеристики 9/2⁺. Первый возбужденный уровень имеет энергию 335 кэВ, и характеристики 1/2⁻. Поэтому переход между этими состояниями происходит в результате испускания М4 γ -кванта. Этот переход настолько сильно запрещен, что период полураспада возбужденного состояния 335 кэВ равен 4,5 часа.

Резонансное поглощение у-квантов

1958 г. Р. Мессбауэр открыл явление ядерного резонанса (эффект Мессбауэра)

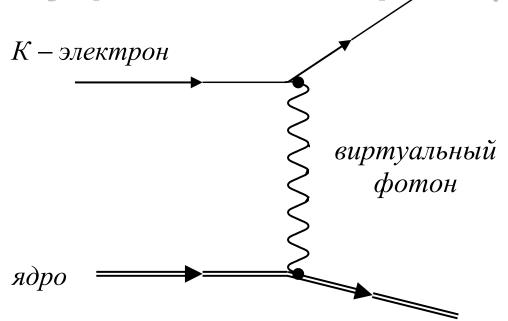
Для свободных ядер и ядер, связанных в кристаллической решётке условия отдачи при испускании ү-квантов существенно различны. В кристаллах возможны ү-переходы, при которых энергию отдачи получает не отдельное ядро, а весь кристалл.

Нобелевская премия по физике

1961 г. – Р. Мессбауэр.

За исследования в области резонансного поглощения гамма-излучения и открытия в этой связи эффекта, носящего его имя

Внутренняя конверсия у-квантов



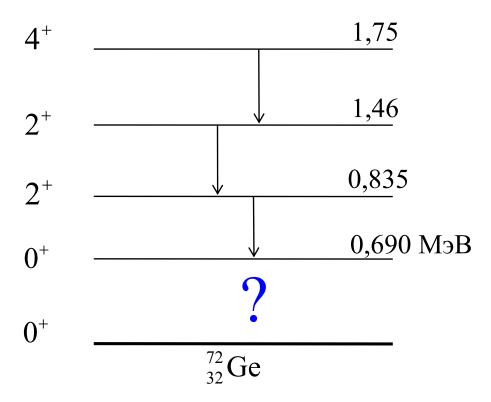
Ядро, находящееся в возбужденном состоянии, может перейти в основное состояние не только путем испускания γ -кванта, но и посредством передачи энергии возбуждения одному из электронов атомной оболочки. Такой процесс носит название внутренней конверсии. Фотон, участвующий в нем, является виртуальным.

$$E_e = E - \varepsilon$$
.

Моноэнергетичность вылетающих при внутренней конверсии электронов позволяет отличить их от электронов β -распада, спектр которых непрерывный.

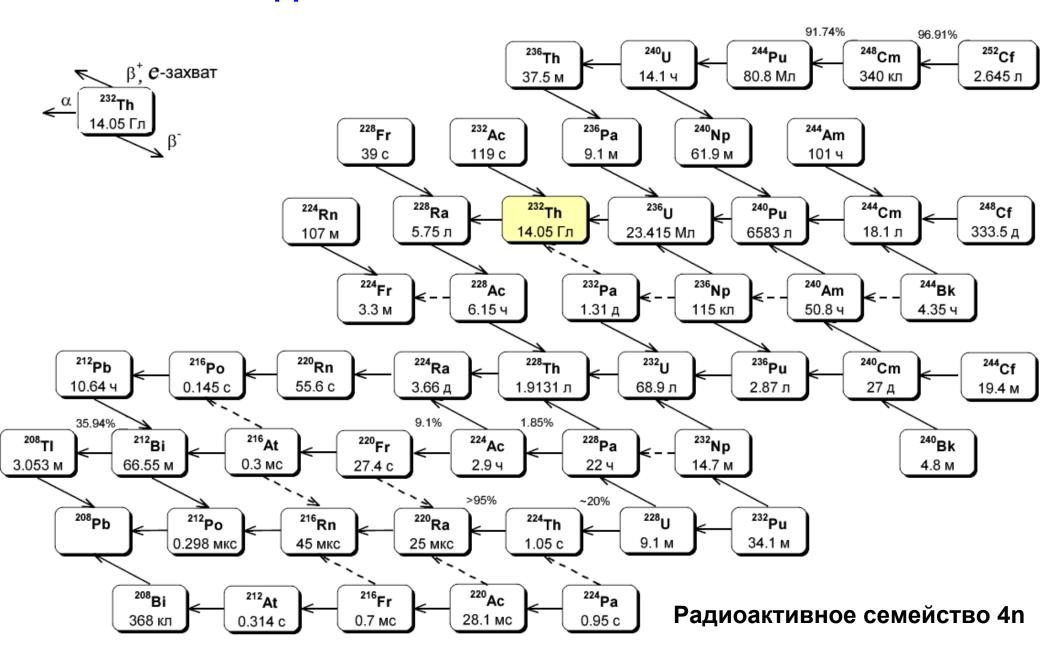
При внутренней конверсии наблюдаются кванты рентгеновского излучения, возникающие при переходе одного из наружных электронов на уровень *К-* или *L*-оболочки, освобожденный вылетевшим из атома электроном.

0-0-переходы

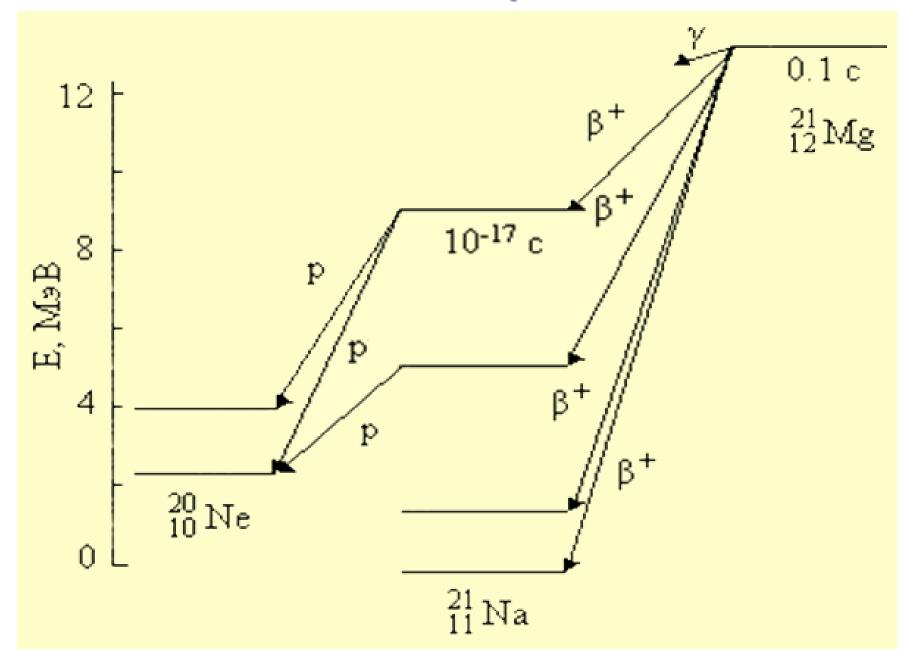


Явление 0-0-перехода возникает в том случае, когда основной и первый возбужденный уровни ядра имеют спин 0. Если ядро оказывается в первом возбуждённом состоянии, оно не может перейти в основное состояние путём испускания у-кванта, так как реального фотона E0 с нулевым моментом не существует. Виртуальный E0-квант с нулевым моментом и положительной четностью может существовать. И этот квант обеспечивает снятие возбуждения ядра путем внутренней конверсии.

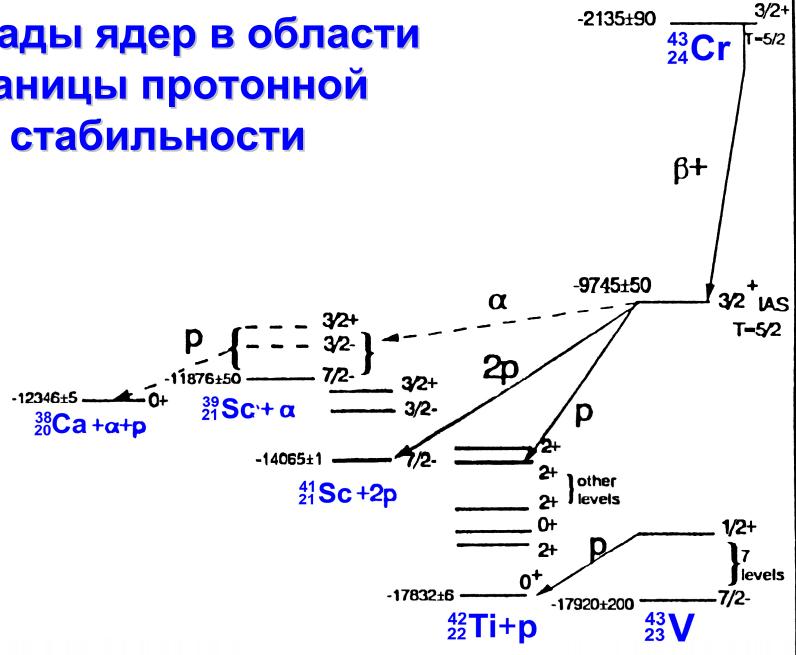
Радиоактивное семейство 4n



Запаздывающие протоны ²¹Na

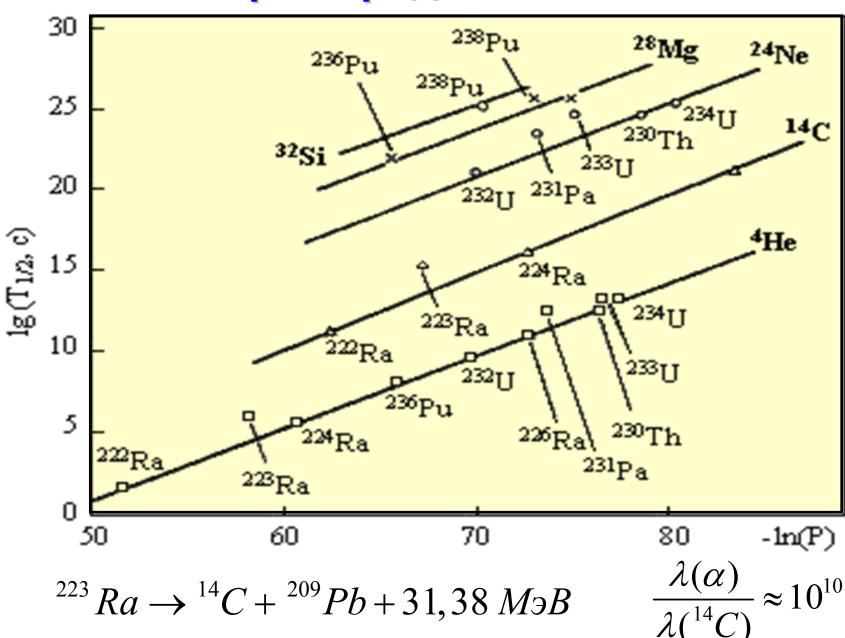


Распады ядер в области границы протонной



E(keV)

Кластерная радиоактивность



Выводы

- 1. Радиоактивность свойство атомных ядер самопроизвольно изменять свой состав в результате испускания частиц или ядерных фрагментов.
- 2. Закон радиоактивного распада

$$N(t) = N_0 e^{-\lambda t}$$

3. Период полураспада

$$T_{1/2} = \frac{\ln 2}{\lambda}$$

4. Единицы радиоактивности

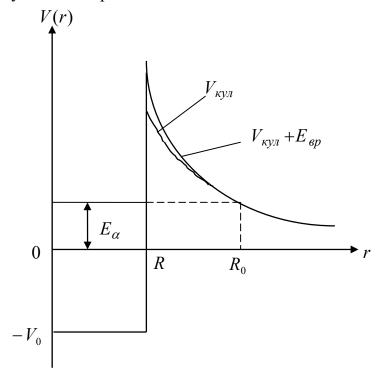
1 Беккерель = 1 распад/с, 1 Кюри = $3,7 \cdot 10^{10}$ распад/с.

- 5. Основные типы радиоактивного распада:
- lpha -распад испускание из атомного ядра lpha -частиц ядер 4 He .
- β -распад испускание из атомного ядра пары лептонов $(e^-\tilde{v}_e), (e^+v_e)$ или поглощение ядром электрона атомной оболочки с испусканием нейтрино v_e .
- γ -распад испускание коротковолнового электромагнитного излучения γ -квантов.

Приложение.

Прохождение α-частицы через потенциальный барьер

Пусть внутри ядра радиуса R двигается «готовая» α -частица. В те моменты, когда она оказывается на поверхности ядра, она имеет возможность покинуть его с вероятностью P.



Потенциал, в котором находится α -частица

Рассмотрим потенциал V(r), в котором движется α -частица. За пределами ядра (r > R) — это положительный потенциал кулоновского отталкивания. На границе ядра вступает в игру мощное притяжение, обусловленное ядерными силами, и потенциальная кривая резко уходит вниз. Образуется потенциальный барьер. Потенциал внутри ядра (r < R) отрицателен, и его можно считать примерно постоянным.

$$V(r) = \begin{cases} \frac{2(Z-2)e^2}{r}; & r > R \\ -V_0; & r \le R \end{cases}$$

Максимальная высота кулоновского барьера $V_{\text{кул}}^{\text{max}} >> E_{\alpha}$. Действительно, $E_{\alpha} \approx$ 2- 9 МэВ. В то же время, например, для $^{238}_{92}U$

$$V_{\kappa y\pi}^{\text{max}} = \frac{2(Z-2)e^2}{R} \approx 35 \text{ M} \cdot \text{B}.$$

Рассчитаем вероятность α -частице пройти сквозь такой барьер. Для этого необходимо решить стационарное уравнение Шредингера для частицы массы μ в центральном потенциале V(r):

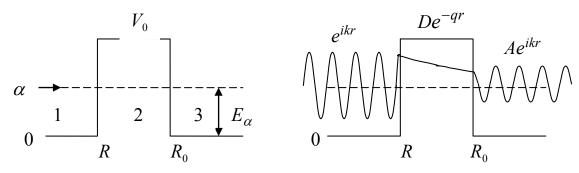
$$\widehat{H}\psi(\vec{r}) = \left[\hat{E}_{\alpha} + V(r)\right]\psi(\vec{r}) = E_{\alpha}\psi(\vec{r}),$$

где $\hat{E}_{\alpha} = -\frac{\hbar^2}{2m_{\alpha}}\Delta$ — оператор кинетической энергии, а лапласиан $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$. Вместо m_{α} нужно брать приведённую массу системы $\mu = \frac{m_{\alpha}M}{m_{\alpha}+M} \approx m_{\alpha}$, где M — масса конечного ядра, образующегося в результате α -распада.

Тогда, представив волновую функцию частицы в виде $\psi(\vec{r}) \equiv \psi(r) = \frac{u(r)}{r}$, приходим к одномерному уравнению Шредингера

$$\left(-\frac{\hbar^2}{2\mu}\frac{d^2}{dr^2} + V(r)\right)u(r) = Eu(r)$$

Для простоты рассмотрим случай прямоугольного барьера шириной $d = R_0 - R$.



Прохождение частицы через прямоугольный барьер

Уравнение Шредингера надо решить для областей 1, 2, 3. Пусть частица проходит барьер слева направо. Тогда искомое решение должно иметь вид распространяющейся вправо плоской волны Ae^{ikr} в области $r > R_0$ и суммы падающей на барьер и отражённой от барьера волн (падающие и отраженные частицы) в области r < R:

$$u(r) = \begin{cases} Ae^{ikr}, & r > R_0, \\ e^{ikr} + Be^{-ikr}, & r < R. \end{cases}$$

Здесь $k = \frac{1}{\hbar} \sqrt{2\mu E}$.

Внутри барьера (область 2) волновая функция имеет вид

$$u(r) = Ce^{qr} + De^{-qr}, \qquad q = \frac{1}{\hbar} \sqrt{2\mu(V_0 - E)}.$$

Вероятность (коэффициент) прохождения через барьер P есть отношение вероятностей обнаружить частицу в точках R_0 и R. Для этого достаточно знать волновую функцию u(r) в области барьера (область 2):

$$P = \left| \frac{u(R_0)}{u(R)} \right|^2 = e^{-2q(R_0 - R)} = e^{-\frac{2(R_0 - R)}{\hbar} \sqrt{2\mu(V_0 - E)}}.$$

Для определения вероятности проникновения через барьер произвольной формы необходимо выполнить интегрирование

$$P = exp\left(-\frac{2}{\hbar} \int_{R}^{R_0} \sqrt{2\mu[V(r) - E]} dr\right),$$

где пределами интегрирования являются границы барьера, т. е. той области, в которой кинетическая энергия отрицательна.