Микромир и Вселенная

Air

Earth

 Quark

 Interim

 Nucleus

 Interim

 Interim

ДЕЛЕНИЕ ЯДЕР

Структура материи

Молекулы *T* = 300 К

Атомы $(N,Z)+e^{-}$

Атомные ядра $(N_n, Z_p) e^-$

Стабильные частицы

p протон (uud) $e^$ n нейтрон (udd) $\tau = 885,7$ с $n \rightarrow p + e^- + \tilde{\nu}_e$

Адроны			Лептоны		
БарионыМезоныqqqqqq		<i>e</i> ⁻	μ^{-}	$ au^-$	
		$q\overline{q}$	V_{e}	${oldsymbol{ u}}_{\mu}$	${m v}_{ au}$
Кварки		Лептоны			
u	c	t	e	μ^-	$ au^-$
d	S	b	V_{e}	${oldsymbol{ u}}_{\mu}$	${m v}_{ au}$

Известно ~300 стабильных ядер и ~3500 радиоактивных ядер. Это только часть радиоактивных ядер. Всего их может быть ~7000.

Энергия связи ядра W(A,Z)

Энергия связи ядра W(A,Z) – минимальная энергия, которую необходимо затратить для того, чтобы разделить атомное ядро на отдельные составляющие его нейтроны и протоны.

 $M(A,Z)c^{2} + W(A,Z) =$ $= Z \cdot m_{p}c^{2} + (A - Z)m_{n}c^{2}$

Магические числа

 Δ – разница между экспериментально измеренной энергией связи ядра и результатами расчета по формуле Бете-Вайцзеккера.

Удельная энергия связи ядра

Деление ядер. История

1934 г. — Э. Ферми, облучая уран тепловыми нейтронами, обнаружил среди продуктов реакции радиоактивные ядра.

1939 г. — О. Ган и Ф. Штрассман обнаружили среди продуктов реакций барий (Z = 56).

Л. Мейтнер и **О.** Фриш впервые объявили, что под действием нейтронов происходило деление урана на сравнимые по массе осколки.

Н. Бор и Дж. Уилер дали количественную интерпретацию деления ядра, введя параметр деления.

Я. Френкель развил капельную теорию деления ядер медленными нейтронами.

Л. Сцилард, Э. Вигнер, Э. Ферми, Дж. Уилер, Ф.Жолио-Кюри, Я.Зельдович, Ю.Харитон обосновали возможность протекания в уране цепной ядерной реакции деления.

1934 г. – Л. Сцилард выдвинул идею цепной ядерной реакции.

1940 г. — Г. Флеров и К. Петржак открыли явление спонтанного деления ядер U.

1942 г. – Э. Ферми. Первый ядерный реактор.

1946 г. – И. Курчатов. Реактор СССР.

1945 г. – Ядерный взрыв. Хиросима. Нагасаки.

1954 г. – Первая атомная электростанция. Обнинск.

Симметричное деление

Энергия деления Q_f определяется изменением поверхностной E_{noe} и кулоновской E_{\kappayn} энергий осколков деления относительно исходного ядра. В случае, когда ядро делится на два равных осколка, $A_1 = A_2 = A/2$ и $Z_1 = Z_2 = Z/2$.

 $Q_{f} = 2W(A/2, Z/2) - W(A, Z) \approx \left[E_{noe}(A, Z) + E_{\kappa y \pi}(A, Z) \right] - 2 \left[E_{noe}(A/2, Z/2) + E_{\kappa y \pi}(A/2, Z/2) \right] = 0$

$$= \beta \left[A^{2/3} - 2\left(\frac{A}{2}\right)^{2/3} \right] + \gamma \left[\frac{Z^2}{A^{1/3}} - 2\frac{(Z/2)^2}{(A/2)^{1/3}} \right] = \beta A^{2/3} \left(1 - \sqrt[3]{2} \right) + \gamma \frac{Z^2}{A^{1/3}} \left(1 - \frac{1}{\sqrt[3]{4}} \right) \approx$$

$$\approx 0.37 \beta \frac{Z^2}{A^{1/3}} - 0.26 \gamma A^{2/3}$$

Деление ядер энергетически выгодно (Q_f > 0), когда

$$(0.37 \cdot \beta \frac{Z^2}{A^{1/3}} - 0.26 \cdot \gamma A^{2/3}) > 0,$$
$$\frac{Z^2}{A} > \frac{0.26}{0.37} \frac{\beta}{\gamma} = \frac{0.26}{0.37} \cdot \frac{17.2}{0.72} \approx 17.$$

Величина Z^2 / A называется *параметром деления*. $Z^2 / A > 17$ для ядер с A > 90. Деление энергетически выгодно для тяжелых ядер.

В процессе деления форма ядра изменяется, последовательно проходя несколько стадий — шар → эллипсоид → гантель → два грушевидных осколка → два сферических осколка.

Изменение энергии ядра в процессе деления определяется изменением суммы поверхностной и кулоновской энергий *Е*_{пов} + *Е*_{кул} начального ядра.

Изменение поверхностной $ilde{E}_{noe}$ и кулоновской $ilde{E}_{\kappa y \pi}$ энергий исходного сферически симметричного ядра зависит от величины параметра деформации ядра $\mathcal E$

$$\tilde{E}_{nob} = E_{nob} \left(1 + \frac{2}{5}\varepsilon^2\right)$$
$$\tilde{E}_{\kappa y \pi} = E_{\kappa y \pi} \left(1 - \frac{1}{5}\varepsilon^2\right)$$

Деление ядра

Массовое распределение осколков деления

Осколки деления образуются в широком диапазоне A = 72–161 и Z = 30–65. Асимметричное деление объясняется оболочечной структурой ядра. Ядро стремится разделиться так, чтобы основная часть нуклонов каждого осколка образовала устойчивые ядра близкие к магическому остову.

$$\frac{A_{\pi}}{A_{T}} \approx \frac{2}{3}, \qquad \frac{Z_{\pi}}{Z_{T}} \approx \frac{2}{3}.$$

Спектр нейтронов деления

Радиоактивность осколков деления

$${}^{235}_{92}\text{U} + n \rightarrow {}^{236}_{92}\text{U} \rightarrow {}^{95}_{38}\text{Sr} + {}^{139}_{54}\text{Xe} + 2n$$
$$\frac{N}{Z} = 1 + 0.015A^{2/3}$$

A = 95

 $_{38}\text{Sr} \xrightarrow{24.4c} _{39}\text{Y} \xrightarrow{10.4m} _{40}\text{Zr} \xrightarrow{64\pi} _{41}\text{Nb} \xrightarrow{35\pi} _{42}\text{Mo}$

A = 139

Энергия деления

Продукты распада	Энергия деления, МэВ
Кинетическая энергия осколков	167
Мгновенные нейтроны	5
Электроны <i>β</i> -распада	5
Антинейтрино <i>β</i> -распада	10
Мгновенное у-излучение	7
<i>у</i> -излучение продуктов распада	6
Полная энергия деления	200

Изотопы U

Энергия присоединения нейтрона	Барьер деления		
²³⁵ U 6.5 МэВ	²³⁶ U 6.0 МэВ		
²³⁸ U 6.0 МэВ	²³⁹ U 7.0 МэВ		

Реакции (n,f), (n,γ), (n,n), (n,n') на ²³⁵U, ²³⁸U

При взаимодействии нейтрона с тяжелым ядром возможен радиационный захват нейтрона — реакция (*n*, *γ*). Этот процесс будет конкурировать с делением и следовательно, уменьшать коэффициент размножения. Вероятность деления для моноэнергетических нейтронов определяется соотношением

 $\sigma_{nf} + \sigma_{n\gamma}$

Делящееся яд	$^{234}_{92}{ m U}$	$^{236}_{92}{ m U}$	²⁴⁰ ₉₄ Pu	
Тепловые	V	2.52	2.47	2.91
(<i>E</i> = 0.025 эВ)	η	2.28	2.07	2.09
Быстрые	ν	2.7	2.65	3.0
(<i>E</i> = 1 МэВ)	η	2.45	2.3	2.7

Цепная реакция деления

v - число нейтронов, образующихся на один акт деления

При взаимодействии нейтрона с тяжелым ядром всегда возможен радиационный захват нейтрона (*n*, *y*). Этот процесс будет конкурировать с делением (peakциeй (*n*, *f*)) и тем самым уменьшать коэффициент размножения нейтронов. Эта вероятность для моноэнергетических нейтронов равна

 $\frac{\sigma_{nf}}{\sigma_{nf} + \sigma_{n\gamma}}$

σ_{nf}, *σ_{nγ}* – соответственно сечения реакций деления и радиационного захвата. Для одновременного учета как числа нейтронов, образующихся в одном акте деления, так и вероятности радиационного захвата нейтронов вводится коэффициент *η*, равный среднему числу вторичных нейтронов на один захват нейтрона делящимся ядром

$$\eta = v \frac{\sigma_{nf}}{\sigma_{nf} + \sigma_{n\gamma}}.$$

Величина η зависит от типа горючего и от энергии нейтронов.

Цепная реакция деления

Основной частью реактора является активная зона, в которой происходит реакция деления и выделяется энергия. В гетерогенных тепловых реакторах активная зона состоит из замедлителя, в котором помещаются кассеты, в которых находится делящееся вещество. Т.к. энергия выделяется в этих кассетах, их обычно называют твелами — тепловыделяющими элементами. Расстояние между твелами не должно превышать суммарную длину замедления и диффузии нейтронов. Активная зона реактора обычно окружается отражателем. Для управления реактором в активной зоне располагаются стержни регулирования мощности реактора и аварийной защиты.

Ядерный реактор на тепловых нейтронах

Атомная электростанция (АЭС)

Деление 1 г урана-235 в течение суток даёт мощность в 1 МВт

Машинный зал АЭС

<u>Активная зона</u>

Диаметр = 1.5 м Высота = 1.7 м

Графитовый замедлитель

<u>Горючее</u>

130 твелов 550 кг обогащенного ²³⁵U - 5%

 Мощность реактора
 5 Мвт

 1.5 · 10¹⁷
 Делений

Атомные реакторы

Доля атомной энергетики в мировой энергетике

Страна	Число АЭС	Мощность , МВт	Доля, %
США	104	95622	19,6
Франция	59	63113	74,1
Япония	54	44394	29,2
Германия	19	21072	28,4
Россия	30	20739	17,8
Канада	20	13602	15,1
Южная Корея	16	12990	35,5
Англия	32	12427	15,3
Украина	13	11358	48,1
Швеция	11	9401	38,1
Индия	14	2446	2,9

Воспроизводство ядерного горючего

$$\mathbf{n} + {}^{238}_{92}U \rightarrow {}^{239}_{92}U \xrightarrow{\beta^{-}, 23 \text{ MUH}} {}^{239}_{93}Np \xrightarrow{\beta}, 2.4 \text{ }\partial H\pi \rightarrow {}^{239}_{94}Pu \xrightarrow{\alpha, 2,4\cdot10^{4} \text{ }nem} {}^{\alpha, 2,4\cdot10^{4$$

Эти две реакции открывают возможность воспроизводства ядерного горючего в процессе цепной реакции.

Ядерный взрыв

Для осуществления ядерного взрыва в результате цепной реакции деления необходимо, чтобы масса делящегося вещества (урана-235, плутония-239 и др.) превышала критическую (50 кг для ²³⁵*U* и 11 кг для ²³⁹*Pu*). До взрыва система должна быть подкритической.

Ядерный взрыв развивается за счёт экспоненциально растущего со временем числа разделившихся ядер:

$$N(t) = N_0 e^{t/\tau}$$

Среднее время τ между двумя последовательными актами деления — 10⁻⁸ с. Время полного деления 1 кг ядерной взрывчатки — 10⁻⁷-10⁻⁶ с. В результате большого энерговыделения в центре ядерной бомбы температура поднимается до 10⁸ К, а давление – до 10¹² атм. При полном делении 1 кг урана выделяется энергия равная энерговыделению при взрыве

20 килотонн тротила.

Ядерный взрыв

Зависимость от времени числа нейтронов при ядерном взрыве.

Зависимость от времени энергии ядерного взрыва.

Критическая масса

Критическая масса – минимальная масса делящегося вещества, в которой протекает незатухающая цепная реакция деления

Термоядерный взрыв

 ${}^{2}H + {}^{3}H \rightarrow {}^{4}He + n + 17.59 \text{ M}∋B$ ${}^{2}H + {}^{2}H \rightarrow {}^{3}He + n + 3.27 \text{ M}∋B$ ${}^{2}H + {}^{2}H \rightarrow {}^{3}H + p + 4.03 \text{ M}∋B$ ${}^{3}He + {}^{2}H \rightarrow {}^{4}He + p + 18.35 \text{ M}∋B$ ${}^{6}Li + n \rightarrow {}^{3}H + {}^{4}He + 4.78 \text{ M}∋B$

Двухступенчатый ядерный взрыв

Основная идея: рентгеновское излучение атомного взрыва опережает ударную волну деления и успевает вызвать синтез до того, как вся система разлетится

Американское испытание термоядерной бомбы Атолл Бикини (28.02.1954)

Распределение энергии термоядерного взрыва

Царь-бомба (100 Мт)

Характеристики: двухфазная водородная бомба мощностью 101,5 Мт. Атомный взрыв 1-й ступени должен был дать 1,5 Мт. Термоядерный взрыв 2-й ступени - 50 Мт. Оболочка урана-238 должна была дать ещё 50 Мт. Проектная мощность уменьшена вдвое за счёт замены урана-238 инертным к делению свинцом.

Взорвана 30.11.1961 над Новой Землёй. Сброшена на парашюте с самолёта на высоте 10,5 км. Взрыв на высоте 4 км. Мощность взрыва 58 Мт.

