

Сверхтяжелые элементы

Лаборатория ядерных реакций имени Г.Н. Флерова

Периодическая система элементов Менделеева

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
ПЕРИОД	1 H hydrogen 1.00794(7)			19	32 I	r	Katerop Alkali m Alkaline ear	DNN netals th metals	Actinoid: Post-transition	s metals	Halogens Noble gases							2 He helium 4.002602(2)
2	3 Li lithium 6.941(2)	4 Be beryllium 9.012182(3)					Происхо Na Изн	metais hoids Эждение ачальный	Nonmeta Состоян	s Is ИС одое	roperties unkno	wn	5 B boron 10.811(7)	6 C carbon 12.0107(8)	7 N nitrogen 14,0067(2)	8 0 0xygen 15.9994(3)	9 F fluorine 18.9984032(5)	10 Ne neon 20.1797(6)
3	11 Na sodium 22.98976928(2)	12 Mg magnesium 24.3050(6)					Роди расг Смр Иско синт	иоактивный пад усственный тез	О жид О газо	кое образное			13 Al aluminium 26.9815386(8)	14 Si silicon 28:0855(3)	15 P phosphorus 30.973762(2)	16 S sulfur 32.065(5)	17 Cll chlorine 35.453(2)	18 Ar argon 39.948(1)
4	19 K potassium 39.0983(1)	20 Ca calcium 40.078(4)	21 Sc scandium 44.955912(6)	22 Ti titanium 47.867(1)	23 V vanadium 50.9415(1)	24 Cr chromium 51.9961(6)	25 Mn manganese 54.938045(5)	26 Fe iron 55.845(2)	27 CO cobalt 58.933195(5)	28 Ni nickel 58.6934(4)	29 Cu copper 63.546(3)	30 Zn zinc 65.38(2)	31 Ga gallium 69.723(1)	32 Ge germanium 72.64(1)	33 AS arsenic 74.92160(2)	34 Se selenium 78.96(3)	35 Br bromine 79.904(1)	36 Kr krypton 83.798(2)
5	37 Rb rubidium 85.4678(3)	38 Sr strontium 87.62(1)	39 Y yttrium 88.90585(2)	40 Zr zirconium 91.224(2)	41 Nb niobium 92.90638(2)	42 Mo molybdenum 95,96(2)	43	44 Ru ruthenium 101.07(2)	45 Rh rhodium 102.90550(2)	46 Pd palladium 106.42(1)	47 Ag silver 107.8682(2)	48 Cd cadmium 112.411(8)	49 In indium 114.818(3)	50 Sn 118.710(7)	51 Sb antimony 121.760(1)	52 Te tellurium 127.60(3)	53 iodine 126.90447(3)	54 Xe xenon 131.293(6)
6	55 CS caesium 132.9054519(2)	56 Ba barium 137.327(7)	* Lanthanoids 57-71	72 Hff hafnium 178.49(2)	73 Ta tantalum 180.9479(1)	74 W tungsten 183.84(1)	75 Re rhenium 186.207(1)	76 OS osmium 190.23(3)	77 Ir iridium 192.217(3)	78 Pt platinum 195.084(9)	79 Au gold 196.966569(4)	80 Hg mercury 200.59(2)	81 TL thallium 204.3833(2)	82 Pb lead 207.2(1)	83 Bi bismuth 208.98040(1)	84 PO polonium [208.9824]	85 At astatine 1209.99]	86 Rn radon [222.02]
7	87	88 Ra radium [226.0254]	** Actinoids 89-103															

* Lanthanoids

** Actinoids

ΓΡΥΠΠΑ

Распространенность нуклидов во Вселенной

АКТИНОИДЫ

1940 г. Э.М. Макмиллан, Ф.Х. Абельсон. ₉₃**Np** Нептуний

1941 г. Э.М. Макмиллан, Г.Т. Сиборг, Дж.В. Кеннеди, А.К. Валь. ₉₄**Ри** Плутоний

$$^{238}\text{U} + n \rightarrow ^{239}\text{U} \xrightarrow{\beta} ^{239}\text{Np} \xrightarrow{\beta} ^{239}\text{Pu}$$

$$T_{1/2}(^{237}Np) = 2,14 \cdot 10^6$$
 лет
 $T_{1/2}(^{239}Pu) = 2,41 \cdot 10^4$ лет

Нобелевская премия по химии 1951 г. – Э. М. Макмиллан, Г.Т. Сиборг. За открытия в области химии трансурановых элементов

АКТИНОИДЫ

Г.Т. Сиборг, А. Гиорсо и др. (Беркли, США) *1944* г. ₉₅**Ат** Америций, ₉₆**Ст** Кюрий *1949* г. ₉₇**Вk** Берклий, ₉₈**Сf** Калифорний

 ${}^{238}\text{U} + {}^{4}\text{He} \longrightarrow {}^{241}\text{Pu} + n$ ${}^{241}\text{Pu} \longrightarrow {}^{241}\text{Am} + e^{-} + \overline{\nu}_{e}$ ${}^{239}\text{Pu} + {}^{4}\text{He} \longrightarrow {}^{242}\text{Cm} + n$ ${}^{241}\text{Am} + {}^{4}\text{He} \longrightarrow {}^{243}\text{Bk} + 2n$ ${}^{242}\text{Cm} + {}^{4}\text{He} \longrightarrow {}^{245}\text{Cf} + n$

Наиболее долгоживущие изотопы

Изотоп	T _{1/2}
²⁴³ Am	7370 лет
²⁴⁷ Cm	1,56·10 ⁷ лет
²⁴⁷ Bk	1380 лет
²⁵¹ Cf	898 лет

АКТИНОИДЫ

1952 г. А. Гиорсо и др. (Беркли, США) ₉₉Es Эйнштейний, ₁₀₀Fm Фермий $^{238}\text{U} + 15n \longrightarrow ^{253}\text{U} \xrightarrow{\beta} ^{253}\text{Np} \dots \xrightarrow{\beta} ^{253}\text{Es}$ $^{238}\text{U} + 17n \longrightarrow ^{255}\text{U} \xrightarrow{\beta} ^{255}\text{Np} \dots \xrightarrow{\beta} ^{255}\text{Fm}$

Наиболее долгоживущие изотопы

Изотоп	T _{1/2}
²⁵² Es	472 дня
²⁵⁷ Cf	100 дней

1 ноября 1952 года. Атолл Эниветок. Айви Майк

Ядерная физика и Человек

Трансфермиевые элементы

Элемент	Год	Лаборатория	Реакция
₁₀₁Md Менделевий	1955	Беркли, США	$^{253}\text{Es} + {}^{4}\text{He} \longrightarrow {}^{256}\text{Md} + n$
₁₀₂No Нобелий	1963	Дубна, СССР	248 Cm + 13 C \rightarrow \rightarrow 257 No + 4n
₁₀₃ Lr	1961	Беркли, США	$ \overset{249}{\longrightarrow} \text{Cm} + \overset{10'11}{\longrightarrow} \text{B} \rightarrow \overset{255'}{\longrightarrow} \overset{255'}{\longrightarrow} \overset{256}{\text{Lr}} + (4,5)n $
Лоуренсий	1965	Дубна, СССР	$ \overset{243}{\longrightarrow} \text{Am} + \overset{16'18}{\longrightarrow} \text{O} \rightarrow \\ \xrightarrow{255'} \overset{256}{\longrightarrow} \text{Lr} + (3,5)n $

Наиболее долгоживущие изотопы

-
T _{1/2}
56 суток
58 минут
4 часа

проблемы:

•Отсутствие в требуемых количествах мишеней из тяжелых трансурановых элементов.

•Существенное уменьшение по мере увеличения Z времени жизни изотопов, что значительно усложняет их идентификацию.

Капельная модель Для Z ≥ 104 время жизни ~10⁻¹⁹ с

Горячее слияние

Элемент	Год	Лаборатория	Реакция
₁₀₄ Rf	1964	Дубна, СССР	$^{242}Pu + {}^{22}Ne \rightarrow \longrightarrow {}^{260'}259Rf + (4,5)n$
Резерфордий	1969	Беркли, США	$^{249}\text{Cf} + {}^{12}\text{C} \longrightarrow {}^{257}\text{Rf} + 4n$
Du	1970	Дубна, СССР	$^{242}Am + ^{22}Ne \longrightarrow ^{264}Db$
105 00 Дубний	1970	Беркли, США	242 Cf + 15 N $\rightarrow $ ²⁶⁴ Db + 4n
10cSa	1974	Беркли, США	$^{249}\text{Cf} + {}^{18}\text{O} \longrightarrow {}^{263}\text{Sg} + 4\text{n}$
Сиборгий	1974	Дубна, СССР	$ \overset{243}{\longrightarrow} \text{Am} + \overset{16'18}{\longrightarrow} \text{O} \rightarrow \\ \xrightarrow{255'} \overset{256}{\longrightarrow} \text{Lr} + (3,5)n $

Наиболее
долгоживущие изотопы

Изотоп	T _{1/2}
²⁶³ Rf	10 минут
²⁶⁸ Db	32 часа
²⁷¹ Sg	2,4 минуты

Объединенный институт ядерных исследований, Дубна, СССР

Лаборатория ядерных реакций

Георгий Николаевич ФЛЕРОВ

Ha 2015 г: $T_{1/2} (^{259}Rf) \sim 3,2 c$ $T_{1/2} (^{260}Rf) \sim 0,02 c$

Взятие 104-го

$^{242}Pu + ^{22}Ne \longrightarrow ^{264}104 \longrightarrow$ $\longrightarrow ^{260' 259}104 + (4,5)n$

НА ОТКРЫТИЕ

Явление образования радиоактивного изотопа элемента с атомным номером 106

В соответствии с Положением об открытиях, изобретениях и рационализаторских предложениях Государственный комитет СССР по делам изобретений и открытий установил, что граждане Союза Советских Социалистических Республик

> ТРЕТЬЯКОВ ЮРИЙ ПЕТРОВИЧ ИЛЫНОВ АЛЕКСАНДР СЕРГЕЕВИЧ ДЕМИН АЛЕКСАНДР СЕРГЕЕВИЧ ПЛЕВЕ АНАТОЛИЙ АЛЕКСЕЕВИЧ ТРЕТЬЯКОВА СВЕТЛАНА ПАВЛОВНА ПЕНИОНЖКЕВИЧ ЮРИЙ ЭРАСТОВИЧ ПЛОТКО ВАСИЛИЙ МАКСИМОВИЧ ИВАНОВ МИХАИЛ ПЕТРОВИЧ ДАНИЛОВ НИКОЛАЙ АНДРЕЕВИЧ КОРОТКИН ЮРИЙ СЕМЕНОВИЧ ФЛЕРОВ ГЕОРГИЙ НИКОЛАЕВИЧ 0ГАНЕСЯН ЮРИЙ ЦОЛАКОВИЧ

На снимке — участники открытия сто шестого элемента (слева направо): кандидат физико-математических наук С. П. Третьякова, инженер Н. А. Данилов, механик В. М. Плотко, научный сотрудник Ю. С. Короткин, доктор физико-математических наук Ю. Ц. Оганесян, академик Г. Н. Флеров, кандидат физико-математических наук А. С. Ильинов, инженер Ю. П. Третьяков, научный сотрудник М. П. Иванов.

Синтез сверхтяжелых элементов в Дубне

Год	Номер	Символ	Название					
1966	102	No	Нобелий					
1965	103	Lr	Лоуренсий					
1964	104	Rf	Резерфордий					
1970	105	Db	Дубний					
1974	106	Sg	Сиборгий					
1982	107	Bh	Борий					
1984	108	Hs	Хассий					
2003	109	Mt	Мейтнерий					
	110	Ds	Дармштадтий					
	111	Rg	Рентгений					
	112	Cn	Коперниций					
2003	113	Uut						
1998	114	FI	Флеровий					
2003	115	Uup						
2000	116	Lv	Ливерморий					
2010	117	Uus						
2002	118	Uuo						

Твердотельные детекторы

Холодное слияние

ПРОБЛЕМА горячего синтеза:

•Высокая энергия возбуждения (E_x ~ 20 – 40 МэВ):

- Вероятность испустить нейтрон в 100 раз меньше вероятности деления. Для охлаждения необходимо 4-5 нейтронов, следовательно вероятность «выживания» ядра ~ (10⁻²)⁴ = 10⁻⁸
- Уменьшение роли оболочек

1974 г. Ю.Ц. Оганесян, А.Г. Дёмин и др. Реакции «холодного слияния» Мишень: ²⁰⁸Pb (Z=82, N=126) или ²⁰⁹Bi (Z=83, N=126) Пучок: Z > 18 (^{40, 48}Ca, ⁵⁴Cr, ⁵⁸Fe, ^{62, 64}Ni и др) Минимальная кинетическая энергия пучка Слияние магических ядер E_x ~ 12 – 20 МэВ

1976 - 96 гг. GSI, Дармштадт, ГДР. Синтез элементов с **Z** = **107 - 112**

ПРОБЛЕМЫ:

•Рост кулоновского отталкивания при Z > 50 (208 Pb+ 50 Zn : Z₁xZ₂ = 2460)

•Недостаток нейтронов в компаунд-ядре

⁴⁸Ca + Actinide

- Природный кальций: 0,187% ⁴⁸Са
- Пучок: ⁴⁸Ca 8·10¹² /с (расход 0.5 мг/час)
- Мишени: Pu, Am, Cm и Cf (Z = 94-96, 98) [Ок-Ридж, США; Димитроград, Россия; Саров, Россия]

Синтез элементов с **Z** = **104** - **118**

⁴⁸Ca + Actinide

- Силы Кулона ~ Z₁xZ₂< 2000
- 48Са дважды магическое ядро
- Энергия возбуждения компаунд-ядра ~ 30-35 МэВ
- Регистрация семейства альфа-распадов

Синтез элементов

20

Низкофоновая схема детектирования

Четные Z 1999 - 2005

²⁴⁹Cf + ⁴⁸Ca

Спектры альфа-частиц

From Yuri Oganessian. ARIS 2014, June 5, 2014 in Tokyo, Japan

Периодическая система элементов Менделеева

	ГРУППА																	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
ПЕРИОД	1 H hydrogen 1.00794(7)			20	06 I		Katerop Alkali n Alkaline ear	DUN netals th metals	Actinoid Post-transition	s metais	Halogens Noble gases							2 He helium 4.002602(2)
2	3 Li lithium 6.941(2)	4 Be beryllium 9.012182(3)					Происхо (Na) Изн	metals hoids ЭЖДЕНИЕ ачальный	Nonmeta Состоян	Is Is ИС одое	roperties unkno	own	5 B boron 10.811(7)	6 C carbon 12.0107(8)	7 N nitrogen 14,0067(2)	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 F fluorine 18.9984032(5)	10 Ne neon 20.1797(6)
3	11 Na sodium 22.98976928(2)	12 Mgg magnesium 24.3050(6)					Рад расп Страст Иск син	иоактивный пад усственный тез	от жид С газо	кое робразное			13 Al aluminium 26.9815386(8)	14 Si silicon 28.0855(3)	15 P phosphorus 30.973762(2)	16 S sulfur 32.065(5)	17 Cll chlorine 35 453(2)	18 Ar argon 39.948(1)
4	19 K potassium 39.0983(1)	20 Ca calcium 40.078(4)	21 Sc scandium 44.955912(6)	22 Ti titanium 47.867(1)	23 V vanadium 50.9415(1)	24 Cr chromium 51.9961(6)	25 Mn manganese 54.938045(5)	26 Fe	27 CO cobalt 58.933195(5)	28 Ni nickel 58.6934(4)	29 Cu copper 63.546(3)	30 Zn cinc 65.38(2)	31 Ga gallium 69.723(1)	32 Ge germanium 72.64(1)	33 As arsenic 74.92160(2)	34 Se selenium 78.96(3)	35 Br bromine 79.904(1)	36 Kr krypton 83.798(2)
5	37 Rb rubidium 85.4678(3)	38 Sr strontium 87.62(1)	39 Y yttrium 88.90585(2)	40 Zr ^{zirconium} 91.224(2)	41 Nb niobium 92.90638(2)	42 Mo molybdenum 95.96(2)	43 TC technetium [98.9063]	44 Ru ruthenium 101.07(2)	45 Rh rhodium 102.90550(2)	46 Pd palladium 106.42(1)	47 Ag silver 107.8682(2)	48 Cd cadmium 112.411(8)	49 In indium 114.818(3)	50 Sn 118.710(7)	51 Sb antimony 121.760(1)	52 Te tellurium 127.60(3)	53 iodine 126.90447(3)	54 Xe xenon 131.293(6)
6	55 CS caesium 132.9054519(2)	56 Ba barium 137.327(7)	* Lanthanoids 57-71	72 Hff hafnium 178.49(2)	73 Ta tantalum 180.9479(1)	74 W tungsten 183.84(1)	75 Re rhenium 186.207(1)	76 OS osmium 190.23(3)	77 I iridium 192.217(3)	78 Pt platinum 195.084(9)	79 Au gold 196.966569(4)	80 Hg mercury 200.59(2)	81 TL thallium 204.3833(2)	82 Pb lead 207.2(1)	83 Bi bismuth 208.98040(1)	84 PO polonium [208.9824]	85 At astatine [209,99]	86 Rn radon [222.02]
7	87 Fr francium [223.0197]	88 Ra radium [226.0254]	** Actinoids 89-103	104 RF rutherfordium [265.12]	105 DD dubnium [268.13]	106 Sg seaborgium [271.13]	107 Bh bohrium [270]	108 HS hassium [277.15]	109 Mft meitnerium [276.15]	110 DS darmstadtium [281.16]	111 Rg roentgenium [280.16]	112 CD copernicium [285.17]	113 Uut ununtrium [284.18]	114 Fl flerovium [289.19]	115 Uup ununpentium [288.19]	116 LV livermorium [293]	117 UUS ununseptium [294]	118 UUO ununoctium [294]

* Lanthanoids

62 57 58 58 60 61 63 64 65 66 67 68 69 70 Ho Pr Nd Sm Eu Gd Tb Dy Er Tm Yb Ce La Lu gadolinium 157.25(3) samarium 150.36(2) 94 102 89 90 91 92 93 95 96 97 98 99 100 101 103 Th U Es Fm Md No Pu Lr ** Actinoids nobelium [259.1009] actinium [227.03] thorium 232.03806(2) protactinium 231.03588(2) neptunium [237.0482] plutonium [244.0642] americium [243.0614] berkelium [247.0703] californium [251.0796] einsteinium [252.0829] fermium [257.0951] mendelevium [258.0986] lawrencium [262.11]

Детектор дыма

²⁴¹₉₅Am $\rightarrow {}^{237}_{93}$ Np + ${}^{4}_{2}\alpha$ T_{1/2} = 432,6 года E_{α} = 5,64 МэВ

Проблема Америция

$$^{241}_{94}$$
Pu $\rightarrow ^{241}_{95}$ Am + e^- + $\overline{\nu_e}$ T_{1/2} = 14,4 лет

Взаимодействие тяжелых ионов с веществом. Модификация физических свойств облученных материалов

- моделирование эффектов, вызываемых осколками деления в конструкционных реакторных материалах;
- исследование структурных эффектов ионизации высокой плотности в радиационно-стойких диэлектриках;
- разработка основ технологии высокоэнергетической ионной имплантации;
- исследование процессов формирования наноразмерных дефектов, вызываемых единичными тяжелыми ионами высоких энергий на поверхности твердых тел.

 Bi_{M^2}

Наноразмерные структуры, образованные на поверхности MgAl₂O₄, образованные ионами Bi с энергией 710 МэВ при потоке 5х10¹⁰ см⁻²

Циклотрон

Ускорительный комплекс У400 Запущен в 1979 году

Пучки ускоренных ионов А = 4 – 209 с энергией 3 – 29 МэВ/нуклон Магнит 2100 тонн, диаметр 4 м Потребление энергии 1,5 МВт

ИЦ-100

диаметр полюсов 1 метр Потребление энергии 150 кВт.

Энергия ионов (Xe, Kr) Толщина пленки 1,2 МэВ/нуклон 20 мкм

диаметр пор – от 30 нм до 15000 нм;

плотность – 10⁶ ÷ 10⁸ пор/см²

Загрязнение на поверхности мембраны в результате очистки водопроводной воды

Медная трубка с микроструктурами на поверхности гораздо лучше отводит тепло, чем гладкая. На фото видно, что на участке с микроструктурами происходит интенсивное кипение охлаждающей жидкости.

Уникальность трековых мембран как фильтрующего материала:

- правильная геометрия пор;
- возможность контролировать количество пор на единице поверхности;
- исключительно малая дисперсия пор по размерам (2 5 %);
- высокая селективность;
- биологическая инертность;
- радиационная безопасность;
- низкий уровень дефектности

Основные параметры трековых мембран

Принципиальная схема разделения крови на плазму и эритроцитарную массу на мембранном фильтре

ЛЯР ОИЯИ

Кластер ядерно-физических и нанотехнологий

Премия Правительства РФ 2008 года в области науки и техники за разработку и создание технологии плазмафереза и внедрение ее в медицинскую практику

Мембрана с плоской поверхностью для сбора и анализа клеток

Вертикальный срез трековой мембраны для ультрафильтрации с поверхностным слоем. Диаметр пор на поверхностном слое равен 20 нм.

Асимметричная нано-пора пулеобразной формы

микроколодцы

