Первые секунды

 \boldsymbol{q}

g

Через 3

минуты

Большой ВЗрыв Возникновение космического

реликтового излученя

Через 14 миллиардов лет Ј

Через

лет

Через миллиард

300 000 -

лет

Микромир и Вселенная 2018

Сверхтяжелые элементы

Распространенность нуклидов во Вселенной

АКТИНОИДЫ

1940 г. Э.М. Макмиллан, Ф.Х. Абельсон. ₉₃**Np** Нептуний

1941 г. Э.М. Макмиллан, Г.Т. Сиборг, Дж.В. Кеннеди, А.К. Валь. ₉₄**Ри** Плутоний

$$^{238}\text{U} + n \rightarrow ^{239}\text{U} \xrightarrow{\beta} ^{239}\text{Np} \xrightarrow{\beta} ^{239}\text{Pu}$$

$$T_{1/2}(^{237}Np) = 2,14.10^{6}$$
 лет
 $T_{1/2}(^{239}Pu) = 2,41.10^{4}$ лет

Нобелевская премия по химии 1951 г. – Э. М. Макмиллан, Г.Т. Сиборг. За открытия в области химии трансурановых элементов

АКТИНОИДЫ

Г.Т. Сиборг, А. Гиорсо и др. (Беркли, США) *1944* г. ₉₅Am Америций, ₉₆Cm Кюрий *1949* г. ₉₇Bk Берклий, ₉₈Cf Калифорний

 ${}^{238}\text{U} + {}^{4}\text{He} \longrightarrow {}^{241}\text{Pu} + n$ ${}^{241}\text{Pu} \longrightarrow {}^{241}\text{Am} + e^{-} + \overline{\nu}_{e}$ ${}^{239}\text{Pu} + {}^{4}\text{He} \longrightarrow {}^{242}\text{Cm} + n$ ${}^{241}\text{Am} + {}^{4}\text{He} \longrightarrow {}^{243}\text{Bk} + 2n$ ${}^{242}\text{Cm} + {}^{4}\text{He} \longrightarrow {}^{245}\text{Cf} + n$

Наиболее долгоживущие изотопы

Изотоп	T _{1/2}
²⁴³ Am	7370 лет
²⁴⁷ Cm	1,56·10 ⁷ лет
²⁴⁷ Bk	1380 лет
²⁵¹ Cf	898 лет

АКТИНОИДЫ

1952 г. А. Гиорсо и др. (Беркли, США) ₉₉Es Эйнштейний, ₁₀₀Fm Фермий $^{238}\text{U} + 15n \longrightarrow ^{253}\text{U} \xrightarrow{\beta} ^{253}\text{Np} \dots \xrightarrow{\beta} ^{253}\text{Es}$ $^{238}\text{U} + 17n \longrightarrow ^{255}\text{U} \xrightarrow{\beta} ^{255}\text{Np} \dots \xrightarrow{\beta} ^{255}\text{Fm}$

Наиболее долгоживущие изотопы

Изотоп	T _{1/2}
²⁵² Es	472 дня
²⁵⁷ Cf	100 дней

1 ноября 1952 года. Атолл Эниветок. Айви Майк

Микромир и Вселенная

Трансфермиевые элементы

Элемент	Год	Лаборатория	Реакция
101^{Md} Менделевий	1955	Беркли, США	$^{253}\text{Es} + {}^{4}\text{He} \longrightarrow {}^{256}\text{Md} + n$
₁₀₂No Нобелий	1963	Дубна, СССР	$^{248}Cm + {}^{13}C \rightarrow \rightarrow {}^{257}No + 4n$
₁₀₃ Lr	1961	Беркли, США	$ \overset{249}{\longrightarrow} \text{Cm} + \overset{10'11}{\longrightarrow} \text{B} \rightarrow \\ \xrightarrow{255'} \overset{256}{\longrightarrow} \text{Lr} + (4,5)n $
Лоуренсий	1965	Дубна, СССР	$ \overset{243}{\longrightarrow} \text{Am} + \overset{16'18}{\longrightarrow} \text{O} \rightarrow \\ \xrightarrow{255'} \overset{256}{\longrightarrow} \text{Lr} + (3,5)n $

Наиболее долгоживущие изотопы

T _{1/2}
56 суток
58 минут
4 часа

проблемы:

•Отсутствие в требуемых количествах мишеней из тяжелых трансурановых элементов.

•Существенное уменьшение по мере увеличения Z времени жизни изотопов, что унивримиель Послусилежняет их идентификацию. ⁸

Капельная модель Для Z ≥ 104 время жизни ~10⁻¹⁹ с

Объединенный институт ядерных исследований, Дубна, СССР

Лаборатория ядерных реакций

Георгий Николаевич ФЛЕРОВ

Ha 2015 г: $T_{1/2}$ (²⁵⁹Rf) ~ 3,2 с $T_{1/2}$ (²⁶⁰Rf) ~ 0,02 с

Взятие 104-го

$^{242}Pu + ^{22}Ne \longrightarrow ^{264}104 \longrightarrow$ $\longrightarrow ^{260' 259}104 + (4,5)n$

НА ОТКРЫТИЕ

Явление образования радиоактивного изотопа элемента с атомным номером 106

В соответствии с Положением об открытиях, изобретениях и рационализаторских предложениях Государственный комитет СССР по делам изобретений и открытий установил, что граждане Союза Советских Социалистических Республик

> ТРЕТЬЯКОВ ЮРИЙ ПЕТРОВИЧ ИЛЫНОВ АЛЕКСАНДР СЕРГЕЕВИЧ ДЕМИН АЛЕКСАНДР СЕРГЕЕВИЧ ПЛЕВЕ АНАТОЛИЙ АЛЕКСЕЕВИЧ ТРЕТЬЯКОВА СВЕТЛАНА ПАВЛОВНА ПЕНИОНЖКЕВИЧ ЮРИЙ ЭРАСТОВИЧ ПЛОТКО ВАСИЛИЙ МАКСИМОВИЧ ИВАНОВ МИХАИЛ ПЕТРОВИЧ ДАНИЛОВ НИКОЛАЙ АНДРЕЕВИЧ КОРОТКИН ЮРИЙ СЕМЕНОВИЧ ФЛЕРОВ ГЕОРГИЙ НИКОЛАЕВИЧ 0ГАНЕСЯН ЮРИЙ ЦОЛАКОВИЧ

На снимке — участники открытия сто шестого элемента (слева направо): кандидат физико-математических наук С. П. Третьякова, инженер Н. А. Данилов, механик В. М. Плотко, научный сотрудник Ю. С. Короткин, доктор физико-математических наук Ю. Ц. Оганесян, академик Г. Н. Флеров, кандидат физико-математических наук А. С. Ильинов, инженер Ю. П. Третьяков, научный сотрудник М. П. Иванов.

Синтез сверхтяжелых элементов в Дубне

Год	Номер	Символ	Название
1966	102	No	Нобелий
1965	103	Lr	Лоуренсий
1964	104	Rf	Резерфордий
1970	105	Db	Дубний
1974	106	Sg	Сиборгий
1982	107	Bh	Борий
1984	108	Hs	Хассий
2003	109	Mt	Мейтнерий
	110	Ds	Дармштадтий
	111	Rg	Рентгений
	112	Cn	Коперниций
2003	113	Uut	
1998	114	FI	Флеровий
2003	115	Uup	
2000	116	Lv	Ливерморий
2010	117	Uus	
2002	118	Uuo	

Твердотельные детекторы

1980 г. Трек ядра из состава галактических лучей длиной более 330 мкм, обнаруженный в кристалле оливина из метеорита Игл Стейшн. Предполагаемое Z ядра ~ 110.

Горячее слияние

Элемент	Год	Лаборатория	Реакция
₁₀₄Rf Резерфордий	1964	Дубна, СССР	$^{242}Pu + {}^{22}Ne \rightarrow \longrightarrow {}^{260'}259Rf + (4,5)n$
	1969	Беркли, США	$^{249}\text{Cf} + {}^{12}\text{C} \longrightarrow {}^{257}\text{Rf} + 4n$
₁₀₅ Du	1970	Дубна, СССР	$^{242}Am + ^{22}Ne \rightarrow ^{264}Db$
Дубний	1970	Беркли, США	$^{242}Cf + {}^{15}N \longrightarrow {}^{264}Db + 4n$
6-	1974	Беркли, США	$^{249}\text{Cf} + {}^{18}\text{O} \longrightarrow {}^{263}\text{Sg} + 4n$
106⁵⁹ Сиборгий	1974	Дубна, СССР	$ \overset{243}{\longrightarrow} \text{Am} + \overset{16'18}{\longrightarrow} \text{O} \rightarrow \\ \xrightarrow{255'} \overset{256}{\longrightarrow} \text{Lr} + (3,5)n $

Изотоп	T _{1/2}
²⁶³ Rf	10 минут
²⁶⁸ Db	32 часа
²⁷¹ Sg	2,4 минуты

Наиболее долгоживущие изотопы

Холодное слияние

ПРОБЛЕМА горячего синтеза:

•Высокая энергия возбуждения (E_x ~ 20 – 40 МэВ):

- Вероятность испустить нейтрон в 100 раз меньше вероятности деления. Для охлаждения необходимо 4-5 нейтронов, следовательно вероятность «выживания» ядра ~ (10⁻²)⁴ = 10⁻⁸
- Уменьшение роли оболочек

1974 г. Ю.Ц. Оганесян, А.Г. Дёмин и др. Реакции «холодного слияния» Мишень: ²⁰⁸Pb (Z=82, N=126) или ²⁰⁹Bi (Z=83, N=126) Пучок: Z > 18 (^{40, 48}Ca, ⁵⁴Cr, ⁵⁸Fe, ^{62, 64}Ni и др) Минимальная кинетическая энергия пучка Слияние магических ядер E_x ~ 12 – 20 МэВ

1976 - 96 гг. GSI, Дармштадт, ГДР. Синтез элементов с **Z = 107 - 112**

ПРОБЛЕМЫ:

•Рост кулоновского отталкивания при Z > 50 (208 Pb+ 50 Zn : Z₁xZ₂ = 2460)

•Недостаток нейтронов в компаунд-ядре

⁴⁸Ca + Actinide

- Природный кальций: 0,187% ⁴⁸Са
- Пучок: ⁴⁸Ca 8·10¹² /с (расход 0.5 мг/час)
- Мишени: Pu, Am, Cm и Cf (Z = 94-96, 98) [Ок-Ридж, США; Димитроград, Россия; Саров, Россия]

Синтез элементов с **Z** = **104** - **118**

⁴⁸Ca + Actinide

- Силы Кулона ~ Z₁xZ₂< 2000
- 48Са дважды магическое ядро
- Энергия возбуждения компаунд-ядра ~ 30-35 МэВ
- Регистрация семейства альфа-распадов

Производство тяжелых изотопов

HFIR, ORNL, Oak Ridge, USA, 85 MW

СМ-3, IAR, Димитровград, РФ, 100 MW

Мишень

Work on mixed Cf at REDC ORNL

249Cf (351 y)250Cf (13 y)251Cf (898 y)5.61 mg1.43 mg4.03 mg50.7%12.9%36.4%Average thickness 0.35 mg/cm²

перед экспериментом...

и после

Сверхпроводящий источник ионов 18 GHz ECR

DECRIS-SC2

Пучок ⁴⁸Са на ускорителе тяжелых ионов **U400**

```
Энергия: 235-250 МэВ
(v ≈ 0.1 c);
Интенсивность: 1.0-1.5 рµА
(n×10<sup>12</sup> ÷ 10<sup>13</sup> 1/c);
Потребление: 0.5-0.8 мг/ч
Доза: (0.3-3.0)·10<sup>19</sup>
```


Цена за 1 мг

¹⁹⁷Au ≈ 0.045 US\$ ^{nat}U₃O₈ ≈ 0.03 US\$ ²³⁹Pu ≈ 4 US\$ ⁴⁸Ca ≈ 80 US\$ ²⁴⁹Cf ≈ 60,000 US\$

Синтез сверхтяжелых элементов (U-400)

OTACHO

Низкофоновая схема детектирования

Микромир и Вселенная

Июнь, 2013

International Union of Pure and Applied Chemistry *Май 2011:* Признание открытия новых элементов 114 и 116

Май 2012:

Утверждение названия *Flerovium* для элемента 114 и названия *Livermorium* для элемента 116

30 декабря 2015:

Признание открытия новых элементов 113, 115, 117 и 118

Приоритет :

•**118**:

- •113: RIKEN (Япония)
- •115 и 117: ОИЯИ (Дубна) LLNL (США) ORNL (США)
 - ОИЯИ (Дубна) LLNL (США)

8 июня 2016:

Предварительные рекомендации по названиям элементов 113, 115, 117, 118

Все эти элементы впервые были синтезированы на ускорительном комплексе У400

Лаборатории ядерных реакций имени Г.Н. Флерова (ОИЯИ, Дубна).

FROM Yuri Oganessian. ARIS 2014, June 5, 2014 in Tokyo, Japan

2017: Тестирование пучков 2018: Работы по наладке DC-280 завершены

Циклотрон DC-280

Новые установки: •Новый газо-наполненный сепаратор •пре-сепаратор для химии SHE •Сепаратор SHELS •Etc.

ИЦ-100

диаметр полюсов 1 метр Потребление энергии 150 кВт.

Энергия ионов (Xe, Kr) Толщина пленки 1,2 МэВ/нуклон 20 мкм

Микромир и Вселенная

диаметр пор – от 30 нм до 15000 нм;

плотность – 10⁶ ÷ 10⁸ пор/см²

Загрязнение на поверхности мембраны в результате очистки водопроводной воды

Медная трубка с микроструктурами на поверхности гораздо лучше отводит тепло, чем гладкая. На фото видно, что на участке с микроструктурами происходит интенсивное кипение охлаждающей жидкости. Микромир и Вселенная

Уникальность трековых мембран как фильтрующего материала:

- правильная геометрия пор;
- возможность контролировать количество пор на единице поверхности;
- исключительно малая дисперсия пор по размерам (2 5 %);
- высокая селективность;
- биологическая инертность;
- радиационная безопасность;
- низкий уровень дефектности

