

Сверхтяжелые элементы

Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

90 91 92 93 94 95 96 97 98 99 100 101 102 103

Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

- Большой Взрыв
- Малые звезды

- Космические лучи
- Массивные звезды
- Сверхновая

Распространенность нуклидов во Вселенной

АКТИНОИДЫ

1940 г. ₉₃**Np** Нептуний (Макмиллан, Абельсон)

1941 г. ₉₄**Ри** Плутоний (Макмиллан, Сиборг, Кеннеди, Валь)

$$^{238}\text{U} + n \rightarrow ^{239}\text{U} \xrightarrow{\beta} ^{239}\text{Np} \xrightarrow{\beta} ^{239}\text{Pu}$$

1944 г. ₉₅**Ат** Америций, ₉₆**Ст** Кюрий

1949 г. ₉₇**Bk** Берклий, ₉₈**Cf** Калифорний (Г.Т. Сиборг, А. Гиорсо и др. (Беркли, США))

$$^{238}\text{U} + ^{4}\text{He} \rightarrow ^{241}\text{Pu} + n, ^{241}\text{Pu} \xrightarrow{\beta} ^{241}\text{Am}$$
 $^{239}\text{Pu} + ^{4}\text{He} \rightarrow ^{242}\text{Cm} + n$
 $^{241}\text{Am} + ^{4}\text{He} \rightarrow ^{243}\text{Bk} + 2n$
 $^{242}\text{Cm} + ^{4}\text{He} \rightarrow ^{245}\text{Cf} + n$

Нобелевская премия по химии

1951 г. – Э. М. Макмиллан, Г.Т. Сиборг. За открытия в области химии трансурановых элементов

Движение частиц в электромагнитном поле

Электрическое поле

$$E_{\text{\tiny KUH}} = q(\varphi_2 - \varphi_1)$$

Магнитное поле

$$T = \frac{2\pi R}{v} = \frac{2\pi m}{qB}$$

Циклотрон

1929 г. Э. Лоуренс предложил идею циклотрона

1932 г.
$$E_{\kappa u H}$$
 (p)= 1,2 МэВ (D = 25 cm)

$$\omega = \frac{v}{R} = v \frac{qB}{mv} = \frac{qB}{m}$$

Максимальная кинетическая энергия протонов

$$E_{\kappa u H} (\mathbf{p}) = 22 \text{ M} \ni \text{B}$$
 (1939 r. 60")

АКТИНОИДЫ

1952 г. А. Гиорсо и др. (Беркли, США)

99**Es** Эйнштейний, 100**Fm** Фермий

$$^{238}\text{U} + 15n \longrightarrow ^{253}\text{U} \stackrel{\beta}{\rightarrow} ^{253}\text{Np} \stackrel{\beta}{\dots} \stackrel{253}{\rightarrow} ^{253}\text{Es}$$

$$^{238}\text{U} + 17n \longrightarrow ^{255}\text{U} \stackrel{\beta}{\rightarrow} ^{255}\text{Np} \dots \stackrel{\beta}{\rightarrow} ^{255}\text{Fm}$$

Наиболее долгоживущие изотопы

Изотоп	T _{1/2}
²⁵² Es	472 дня
²⁵⁷ Fm	100 дней

1 ноября 1952 года. Атолл Эниветок. Айви Майк

Трансфермиевые элементы

Элемент	Год	Лаборатория	Реакция
_{101} Md Менделевий	1955	Беркли, США	$^{253}\text{Es} + ^{4}\text{He} \longrightarrow ^{256}\text{Md} + \text{n}$
102No Нобелий	1963	Дубна, СССР	$^{248}\text{Cm} + ^{13}\text{C} \longrightarrow \\ \longrightarrow ^{257}\text{No} + 4\text{n}$
₁₀₃Lr Лоуренсий	1961	Беркли, США	249 Cm + $^{10'11}$ B \rightarrow \rightarrow $^{255'}$ 256 Lr + $(4,5)$ n
	1965	Дубна, СССР	243 Am + $^{16'18}$ O \rightarrow \rightarrow $^{255'}$ 256 Lr + $(3,5)$ n

Наиболее долгоживущие изотопы

Изотоп	T _{1/2}
²⁵⁸ Md	56 суток
²⁵⁹ No	58 минут
²⁶² Lr	4 часа

проблемы:

- •Отсутствие в требуемых количествах мишеней из тяжелых трансурановых элементов.
- •Существенное уменьшение по мере увеличения Z времени жизни изотопов, что значительно усложняет их идентификацию.

Ю.Ц. Оганесян, Дубна, 15 марта 2019 г.

Горячее слияние

Элемент	Год	Лаборатория	Реакция
104Rf Резерфордий	1964	Дубна, СССР	242 Pu + 22 Ne \rightarrow \rightarrow $^{260'}$ 259 Rf + $(4,5)$ n
	1969	Беркли, США	$^{249}\text{Cf} + ^{12}\text{C} \longrightarrow ^{257}\text{Rf} + 4\text{n}$
105Du Дубний	1970	Дубна, СССР	242 Am + 22 Ne \rightarrow 264 Db
	1970	Беркли, США	$^{242}\text{Cf} + ^{15}\text{N} \longrightarrow ^{264}\text{Db} + 4\text{n}$
106Sg Сиборгий	1974	Беркли, США	$^{249}\text{Cf} + ^{18}\text{O} \longrightarrow ^{263}\text{Sg} + 4\text{n}$
	1974	Дубна, СССР	243 Am + $^{16'18}$ O \rightarrow \rightarrow $^{255'}$ 256 Lr + $(3,5)$ n

Наиболее долгоживущие изотопы

Изотоп	T _{1/2}
²⁶³ Rf	10 минут
²⁶⁸ Db	32 часа
²⁷¹ Sg	2,4 минуты

15-летний штурм "Острова Стабильности" 1970-1985

Los Alamos (USA)

Berkeley (USA)

Dubna (JINR)

Oak Ridge (USA)

Mainz (Germany)

Darmstadt (Germany)

Orsay (France)

Würenlingen (Switzerland)

Tokyo (Japan) some later

Производство тяжелых изотопов

HFIR, ORNL, Oak Ridge, USA, 85 MW

СМ-3, IAR, Димитровград, РФ, 100 MW

Мишень

Work on mixed Cf at REDC ORNL

²⁴⁹Cf (351 y) ²⁵⁰Cf (13 y) ²⁵¹Cf (898 y) 5.61 mg 1.43 mg **4.03 mg** 50.7% 12.9% **36.4%** Average thickness 0.35 mg/cm²

и после

Сверхпроводящий источник ионов 18 GHz ECR

DECRIS-SC2

Пучок ⁴⁸Са на ускорителе тяжелых ионов **U400**

Энергия: 235-250 МэВ (v ≈ 0.1 c);

Интенсивность: 1.0-1.5 рµА

 $(n\times10^{12} \div 10^{13} 1/c);$

Потребление: 0.5-0.8 мг/ч

Доза: (0.3-3.0)·10¹⁹

Цена за 1 мг

 197 Au ≈ 0.045 US\$ nat U₃O₈ ≈ 0.03 US\$ 239 Pu ≈ 4 US\$ 48 Ca ≈ 80 US\$ 249 Cf $\approx 60,000$ US\$

Синтез сверхтяжелых элементов (U-400)

Dubna Gas-Filled Recoil Separator

Газонаполненный Сепаратор (водород 10^{-3} атм)

Эффективность регистрации:

для α-частиц 87%

для SF осколков один фрагмент 100% два фрагмента ≈ 40%

Низкофоновая схема детектирования

Впервые 52 новых, нейтронно-избыточных изотопов 15-ти тяжелейших элементов были получены в реакциях под действием

Периоды полураспада изотопов с Z ≥ 110

Трековые мембраны

ИЦ-100

диаметр полюсов 1 метр

Потребление энергии 150 кВт.

Энергия ионов (Xe, Kr) 1,2 МэВ/нуклон

Толщина пленки 20 мкм

Твердотельные детекторы

Трековые мембраны

Трековые мембраны

толщина – от 12 мкм до 21 мкм;

диаметр пор – от 30 нм до 15000 нм;

плотность – $10^6 \div 10^8$ пор/см²

Загрязнение на поверхности мембраны в результате очистки водопроводной воды

Премия Правительства РФ 2008 года в области науки и техники за разработку и создание технологии плазмафереза и внедрение ее в медицинскую практику

Трековые мембраны

Медная трубка с микроструктурами на поверхности гораздо лучше отводит тепло, чем гладкая. На фото видно, что на участке с микроструктурами происходит интенсивное кипение охлаждающей жидкости.

Лабораторная фильтрация

Промышленная фильтрация

Культивирование клеток

Очистка воды в домашних условиях

Мембранный катализ

Медицина

Сенсоры

Нанотехнологии

