Ядерная физика и Человек

Сверхтяжелые элементы

- Большой Взрыв
- Малые звезды

- Космические лучи
- Массивные звезды

- Сверхновая

Распространенность нуклидов во Вселенной

АКТИНОИДЫ

1940 г. ₉₃Np Нептуний (Макмиллан, Абельсон) 1941 г. ₉₄Pu Плутоний (Макмиллан, Сиборг, Кеннеди, Валь) $^{238}\text{U} + n \rightarrow ^{239}\text{U} \stackrel{\beta}{\rightarrow} ^{239}\text{Np} \stackrel{\beta}{\rightarrow} ^{239}\text{Pu}$

1944 г. ₉₅Am Америций, ₉₆Cm Кюрий 1949 г. ₉₇Bk Берклий, ₉₈Cf Калифорний (Г.Т. Сиборг, А. Гиорсо и др. (Беркли, США)) 238 U + 4 He $\rightarrow ^{241}$ Pu + n, 241 Pu $\stackrel{\beta}{\rightarrow} ^{241}$ Am 239 Pu + 4 He $\rightarrow ^{242}$ Cm + n 241 Am + 4 He $\rightarrow ^{242}$ Cm + n 242 Cm + 4 He $\rightarrow ^{243}$ Bk + 2n 242 Cm + 4 He $\rightarrow ^{245}$ Cf + n

Нобелевская премия по химии

1951 г. – Э. М. Макмиллан, Г.Т. Сиборг. За открытия в области химии трансурановых элементов

Движение частиц в электромагнитном поле

Электрическое поле

$$E_{\rm KMH} = q(\varphi_2 - \varphi_1)$$

Магнитное поле

$$T = \frac{2\pi R}{v} = \frac{2\pi m}{qB}$$

Циклотрон

1929 г. Э. Лоуренс предложил идею циклотрона

1932 г. *Е_{кин}* (**p**)= 1,2 МэВ (D = 25 cm)

АКТИНОИДЫ

1952 г. А. Гиорсо и др. (Беркли, США) ₉₉Es Эйнштейний, ₁₀₀Fm Фермий ²³⁸U + 15 $n \rightarrow {}^{253}U \xrightarrow{\beta} {}^{253}Np \dots \xrightarrow{\beta} {}^{253}Es$ ²³⁸U + 17 $n \rightarrow {}^{255}U \xrightarrow{\beta} {}^{255}Np \dots \xrightarrow{\beta} {}^{255}Fm$

Наиболее долгоживущие изотопы

Изотоп	T _{1/2}
²⁵² Es	472 дня
²⁵⁷ Fm	100 дней

1 ноября 1952 года. Атолл Эниветок. Айви Майк

Трансфермиевые элементы

Элемент	Год	Лаборатория	Реакция
₁₀₁Md Менделевий	1955	Беркли, США	$^{253}\text{Es} + {}^{4}\text{He} \longrightarrow {}^{256}\text{Md} + n$
₁₀₂No Нобелий	1963	Дубна, СССР	$^{248}Cm + {}^{13}C \rightarrow \rightarrow {}^{257}No + 4n$
₁₀₃Lr Лоуренсий	1961	Беркли, США	$ \overset{249}{\longrightarrow} \text{Cm} + \overset{10'11}{\longrightarrow} \text{B} \rightarrow \overset{255'}{\longrightarrow} \overset{255'}{\longrightarrow} \text{Lr} + (4,5)n $
	1965	Дубна, СССР	$ \overset{243}{\longrightarrow} \text{Am} + \overset{16'18}{\longrightarrow} 0 \rightarrow \\ \xrightarrow{255'} \overset{256}{\longrightarrow} \text{Lr} + (3,5)n $

Наиболее долгоживущие изотопы

-
T _{1/2}
56 суток
58 минут
4 часа

проблемы:

•Отсутствие в требуемых количествах мишеней из тяжелых трансурановых элементов.

•Существенное уменьшение по мере увеличения Z времени жизни изотопов, что значительно усложняет их идентификацию.

Ю.Ц. Оганесян, Дубна, 15 марта 2019 г.

Горячее слияние

Элемент	Год	Лаборатория	Реакция
₁₀₄Rf Резерфордий	1964	Дубна, СССР	²⁴² Pu + ²² Ne → → ^{260' 259} Rf + (4,5)n
	1969	Беркли, США	$^{249}\text{Cf} + {}^{12}\text{C} \longrightarrow {}^{257}\text{Rf} + 4n$
₁₀₅Du Дубний	1970	Дубна, СССР	$^{242}Am + ^{22}Ne \rightarrow ^{264}Db$
	1970	Беркли, США	$^{242}Cf + {}^{15}N \longrightarrow {}^{264}Db + 4n$
₁₀₆Sg Сиборгий	1974	Беркли, США	$^{249}\text{Cf} + {}^{18}\text{O} \longrightarrow {}^{263}\text{Sg} + 4n$
	1974	Дубна, СССР	$ \overset{243}{\longrightarrow} \text{Am} + \overset{16'18}{\longrightarrow} 0 \rightarrow \\ \xrightarrow{255'} \overset{256}{\longrightarrow} \text{Lr} + (3,5)n $

Наиболее	
долгоживущие изотопы	

Изотоп	T _{1/2}
²⁶³ Rf	10 минут
²⁶⁸ Db	32 часа
²⁷¹ Sg	2,4 минуты

15-летний штурм "Острова Стабильности" 1970-1985

Los Alamos (USA) **Berkeley (USA)** Dubna (JINR) Oak Ridge (USA) Mainz (Germany) **Darmstadt (Germany) Orsay** (France) Würenlingen (Switzerland) **Tokyo (Japan) some later**

Производство тяжелых изотопов

HFIR, ORNL, Oak Ridge, USA, 85 MW

СМ-3, IAR, Димитровград, РФ, 100 MW

Мишень

Work on mixed Cf at REDC ORNL

249Cf (351 y)250Cf (13 y)251Cf (898 y)5.61 mg1.43 mg4.03 mg50.7%12.9%36.4%Average thickness 0.35 mg/cm²

перед экспериментом...

и после

Сверхпроводящий источник ионов 18 GHz ECR

DECRIS-SC2

Пучок ⁴⁸Са на ускорителе тяжелых ионов **U400**

```
Энергия: 235-250 МэВ
(v ≈ 0.1 c);
Интенсивность: 1.0-1.5 рµА
(n×10<sup>12</sup> ÷ 10<sup>13</sup> 1/c);
Потребление: 0.5-0.8 мг/ч
Доза: (0.3-3.0)·10<sup>19</sup>
```


Цена за 1 мг

¹⁹⁷Au ≈ 0.045 US\$ ^{nat}U₃O₈ ≈ 0.03 US\$ ²³⁹Pu ≈ 4 US\$ ⁴⁸Ca ≈ 80 US\$ ²⁴⁹Cf ≈ 60,000 US\$

Синтез сверхтяжелых элементов (U-400)

Пучки ускоренных ионов A = 4 – 209 с энергией 3 – 29 МэВ/нуклон Магнит 2100 тонн, диаметр 4 м Потребление энергии 1,5 МВт

OTACHO

Низкофоновая схема детектирования

Ю.Ц. Оганесян, Дубна, 15 марта 2019 г.

Ю.Ц. Оганесян, Дубна, 15 марта 2019 г.

FROM Yuri Oganessian. ARIS 2014, June 5, 2014 in Tokyo, Japan

Трековые мембраны

ИЦ-100

диаметр полюсов 1 метр Потребление энергии 150 кВт.

Энергия ионов (Xe, Kr) Толщина пленки 1,2 МэВ/нуклон 20 мкм

Твердотельные детекторы

Трековые мембраны

Трековые мембраны

толщина – от 12 мкм до 21 мкм;

диаметр пор – от 30 нм до 15000 нм;

плотность – 10⁶ ÷ 10⁸ пор/см²

Загрязнение на поверхности мембраны в результате очистки водопроводной воды

Принципиальная схема разделения крови на плазму и эритроцитарную массу на мембранном фильтре

Премия Правительства РФ 2008 года в области науки и техники за разработку и создание технологии плазмафереза и внедрение ее в медицинскую практику

Трековые мембраны

Медная трубка с микроструктурами на поверхности гораздо лучше отводит тепло, чем гладкая. На фото видно, что на участке с микроструктурами происходит интенсивное кипение охлаждающей жидкости.

