300 000 -Через 3 Первые минуты секунды

9

g

Большой взрыв

Возникновение космического реликтового излученя

Через 14 миллиардов лет .

Через

лет

Через миллиард

лет

Микромир и Вселенная 2019

Фундаментальные взаимодействия

Фундаментальные частицы Стандартной Модели

Как устроен Мир. 30-е годы ХХ века

В середине 30-х годов XX века физическая картина мира строилась исходя из трёх элементарных частиц — электрона, протона и нейтрона. Вещество состоит из атомов и молекул, в состав атома входят электроны. Основную массу атома составляет атомное ядро, состоящее из протонов и нейтронов.

1897 г. Дж. Томсон. Открытие электрона

Характеристика	Численное значение	
Спин Ј	1/2	
Масса <i>m_ec</i> ², МэВ	0.51099892±0.0000004	
Электрический заряд, Кулон	$-(1.60217653\pm0.0000014)\cdot10^{-19}$	
Магнитный момент, <i>ећ/2т_ес</i>	$1.001159652187 \pm 0.000000000004$	
Время жизни <i>т</i> , лет	> 4.6·10 ²⁶	
Лептонное число L _e	+1	
Лептонные числа L_{μ} , $L_{ au}$	0	

Нобелевская премия по физике

1906 г. – Дж. Томсон.

В знак признания его теоретических и экспериментальных исследований, посвящённых проводимости электричества газами

1932 г. Открытие позитрона

К. Андерсон (1905 – 1991)

Позитрон, зарегистрированный в камере Вильсона, помещенной в магнитное поле.

Нобелевская премия по физике 1936 г. – К. Андерсон. За открытие позитрона

Нейтрино v

1931 г. В. Паули выдвинул гипотезу о существовании нейтрино для объяснения спектра электронов βраспада

1956 г. Ф. Райнес, К. Коэн зарегистрировали антинейтрино.

Электронное антинейтрино

1953–1956. Ф. Райнес, К. Коэн

 $n \rightarrow p + e^- + \tilde{v}_e$ $\tilde{v} + p \rightarrow e^+ + n$

Первое свидетельство существования

 $p + e \xrightarrow{\text{нейтрино}} n + v$

$$^{7}\text{Be} + e^{-} \rightarrow ^{7}\text{Li} + v_{e}$$

Источник антинейтрино – ядерный $e^+ + e^- \rightarrow 2\gamma$ ~10 микросекунд $n + Cd(A) \rightarrow Cd(A+1)^* \rightarrow Cd(A+1) + (3-5)\gamma$ $\sigma(\tilde{\nu}p) = 10^{-43} \text{ см}^2$ t = 200 часов. N = 567. Фон = 209

Нобелевская премия по физике 1995 г. – Ф. Райнес. За детектирование нейтрино

Пример

Определить длину *L* и время *t* свободного пробега реакторного нейтрино в воде, $\sigma \approx 10^{-43}$ см².

Число нейтрино прошедших через слой вещества толщиной х,

$$N(x) = N(0)\exp(-n\sigma x),$$

п — количество ядер вещества в единице объема.

L — длина, на которой поток антинейтрино уменьшается в е раз, то есть $L = 1/n\sigma$. $n = \rho N_A / A$, N_A — число Авогадро, ρ — плотность вещества, A — молярная масса. Для воды $\rho = 1$ г/см³, $A(H_2 0) = 18$.

$$L = \frac{1}{n\sigma} = \frac{A}{\rho N_A \sigma} = \frac{18}{1 \, \Gamma/c \,\mathrm{m}^3 \times 6 \cdot 10^{23} \times 10^{-43} \, \mathrm{cm}^2} = 3 \cdot 10^{20} \, \mathrm{cm} = 3 \cdot 10^{15} \, \mathrm{km}$$

$$t = \frac{L}{c} = \frac{3 \cdot 10^{15} \text{ км}}{3 \cdot 10^5 \text{ км/c}} = 10^{10} \text{ с} \approx 320 \text{ лет,}$$

(1 год $\approx 3,156 \cdot 10^7 \text{ с}$).

Тождественны ли v_e и \tilde{v}_e ?

Если v_e и $\overline{v_e}$ являются тождественными частицами, то должна наблюдаться реакция

$$\tilde{\nu}_e + n \to p + e^- \tag{*}$$

Это следует из того, что наблюдается реакция

$$\tilde{\nu}_e + p \rightarrow n + e^+ \qquad \nu_e + n \rightarrow p + e^- \qquad (**)$$

Обе реакции ((*) и (**)) при тождественности v_e и \overline{v}_e должны иметь одинаковые, характерные для нейтрино (антинейтрино) сечения $\approx 10^{-43}$ см².

$$\overline{\nu}_{e} + {}^{37}_{17}\text{Cl} \rightarrow {}^{37}_{18}\text{Ar} + e^{-}.$$
 (***)

Если процесс (*) возможен, то под действием потока антинейтрино от реактора один из нейтронов, входящих в состав ядра ³⁷*CI*, должен превращаться в протон, что приводит к образованию радиоактивного изотопа ³⁷*Ar* с периодом полураспада 35.04 суток. Регистрируя радиоактивность изотопа ³⁷*Ar*, можно судить о возможности протекания реакции (*).

Образование изотопа ³⁷ *Аг* не было обнаружено.

$$\sigma < 2 \cdot 10^{-45}$$
 см². M (детектор) = 4000 литров

Спиральность

$$h = \frac{\vec{S} \cdot \vec{p}}{\left|\vec{S}\right| \cdot \left|\vec{p}\right|}.$$

Правополяризованная частица имеет положительную спиральность (h = +1), левополяризованная — отрицательную (h = -1).

Экспериментально показано, что спиральность нейтрино всегда отрицательна ($h_{\nu} = -1$), а спиральность антинейтрино всегда положительна ($h_{\overline{\nu}} = +1$). Нейтрино рождаются только в процессах слабого взаимодействия. Во всех наблюдаемых в природе слабых процессах с участием нейтрино участвуют только лево-поляризованные нейтрино. Правополяризованные нейтрино в наблюдаемых процессах не проявляются. Появление частиц с определенным значением поляризации обусловлено природой слабого взаимодействия.

1937 г. Открытие мюона

Мюон был открыт К. Андерсоном при исследовании космических лучей

Характеристика	Численное значение
Спин Ј	1/2
Масса $m_\mu c^2$, МэВ	105.6583692±0.0000094
Электрический заряд	Равен заряду электрона
Магнитный момент, ећ/2 <i>т</i> µс	1.0011659203±0.000000000
Время жизни, сек	(2.19703±0.00004)·10 ⁻⁶
Лептонное число L_{μ}	+1
Лептонные числа L_e, L_{τ}	0

 $\mu^- \rightarrow e^- + \overline{\nu}_e + \nu_\mu, \quad \mu^+ \rightarrow e^+ + \nu_e + \overline{\nu}_\mu$ μ^- и μ^+ соответственно частица и античастица

1962 г. Открытие мюонного нейтрино

Мюонное нейтрино отличается от электронного нейтрино.

$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu}$$

$$\pi^{-} \rightarrow \mu^{-} + \tilde{\nu}_{\mu}$$

$$V_{\mu} \neq V_{e} \qquad \tilde{\nu}_{\mu} \neq \tilde{\nu}_{e}$$

Нобелевская премия по физике

1988 г. – Л. Ледерман, М. Шварц, Дж. Стейнбергер.

За метод нейтринного пучка и демонстрацию дублетной структуры лептонов через открытие мюонного нейтрино

Мюонные нейтрино образовывались в результате распада π+, π- - мезонов.

 $\pi^+ \rightarrow \mu^+ + \nu_{\mu} \qquad \pi^- \rightarrow \mu^- + \tilde{\nu}_{\mu}$

Мюонные нейтрино детектировались в искровых камерах по результатам их взаимодействия с протонами и нейтронами вещества искровых камер.

 $\tilde{v}_{\mu} + p \rightarrow \mu^{+} + n$ $\tilde{v}_{\mu} + p \not\rightarrow e^{+} + n$ $v_{\mu} + n \rightarrow \mu^{-} + p \qquad v_{\mu} + n \not\rightarrow e^{-} + p$

В искровых камерах наблюдались только положительно и отрицательно заряженные мюоны. Не было зарегистрировано ни одного случая образования электронов или позитронов.

1975 г. Открытие τ-лептона

τ -лептон и τ -нейтрино образуют третье поколение лептонов $\mu^+(\mu^-)$

Наблюдались события образования µ,е-пары с противоположными знаками заряженных частиц

Нобелевская премия по физике 1995 г. – М. Перл. За открытие тау-лептона

Наблюдение τ-лептона

 au^- -лептон имеет время жизни $au \approx 2.9 \cdot 10^{-13}$ с и поэтому, как правило, регистрируется по каналам его распада. au^- -лептоны наблюдались в реакции $e^+ + e^- \rightarrow au^+ + au^-$.

$$e^{+} + e^{-} \rightarrow \begin{cases} \tau^{-} \rightarrow e^{-} \overline{v}_{e} v_{\tau} & \text{или } \mu^{-} \overline{v}_{\mu} v_{\tau} \\ \tau^{+} \rightarrow e^{+} v_{e} \overline{v}_{\tau} & \text{или } \mu^{+} v_{\mu} \overline{v}_{\tau} \end{cases}$$
(*)

е μ -пары, имеющие противоположные электрические заряды, являются наиболее подходящими для наблюдения τ -лептонов, так как в этом случае не образуются адроны, которые трудно регистрировать и интерпретировать. Нейтрино и антинейтрино, образующиеся в реакции (*), непосредственно не регистрируются.

Распад τ-лептона

 τ^- -лептон в результате слабого взаимодействия, которое происходит под действием W^- -бозона, превращается в τ -нейтрино v_{τ} . W^- -бозон затем распадается, превращаясь в одну из следующих пар частиц:

- электрон e^- , электронное антинейтрино \overline{v}_e ,
- отрицательно заряженный мюон μ^- , мюонное антинейтрино \overline{v}_{μ} ,
- кварк d, антикварк \overline{u} .

τ-лептон

Характеристика	Численное значение	
Спин Ј	1/2	
Масса $m_{ au}c^2$, МэВ	1776.99±0.28	
Электрический заряд	Равен заряду электрона	
Магнитный момент, <i>ећ/2m_тс</i>	1±0.06	
Время жизни, сек	(2.906±0.011)·10 ⁻¹³	
Лептонное число $L_{ au}$	+1	
Лептонные числа L_e , L_μ	0	

 $\tau^- \rightarrow e^- + \overline{\nu}_e + \nu_\tau$

$$\tau^- \to \mu^- + \overline{\nu}_\mu + \nu_\tau$$

17.84%

17.36%

$$\tau^- \rightarrow a \partial pohu + v_{\tau}$$

63%

Тау-нейтрино и тау-антинейтрино были впервые зарегистрированы в 2000 г. на нейтринном детекторе DONUT (Direct Observation of the NU Tau) в реакциях:

$$\nu_{\tau} + n \rightarrow \tau^- + p$$

(*)

$$\overline{\nu_{\tau}} + p \rightarrow \tau^{+} + n$$

Нейтринный детектор DONUT состоял из железных пластин, между которыми располагались слои фотоэмульсии.

DONUT (Direct Observation of the NU Tau)

DONUT (Direct Observation of the NU Tau)

Detecting a Tau Neutrino

В результате взаимодействия ν_τ с железом образовывались τ-лептоны, которые оставляли следы в фотоэмульсии

$$\begin{array}{ccc}
\nu_{\tau} + n \rightarrow \tau + p \\
\tilde{\nu}_{\tau} + p \rightarrow \tau^{+} + n
\end{array}$$
(*)

В результате анализа 10⁷ событий было надёжно зарегистрировано 4 события (*).

Основные характеристики тау-нейтрино

Характеристика	Численное
	значение
Спин Ј, ħ	1/2
Масса $m_{V_{\tau}}c^2$, МэВ	< 18.2
Электрический заряд	0
Магнитный момент,	< 3.9.10 ⁻⁷
ећ/2 <i>m_ec</i>	
Время жизни	не измерено
Лептонное число L_{τ}	+1
Лептонные числа L_e , L_μ	0

Лептоны – класс фундаментальных частиц Стандартной Модели, не участвующих в сильных взаимодействиях. Заряженные лептоны участвуют в электромагнитных и слабых взаимодействия. Нейтрино — только в слабых.

Все лептоны обладают полуцелым спином J = 1/2 и в соответствии с этим являются фермионами.

Лептонные числа

Почему е[−] и е⁺ являются стабильными частицами? Это следует из закона сохранения электрического заряда.

Лептонные числа

Каждому поколению лептонов следует приписать свой лептонный заряд, соответственно L_e , L_{μ} , L_{τ} Этот заряд, как и обычный электрический заряд, является сохраняющимся и аддитивным, т. е. заряд системы лептонов равняется сумме лептонных зарядов отдельных лептонов и должен быть одинаковым до и после завершения любого процесса.

Закон сохранения L_e , L_μ , L_τ

В процессах, происходящих в замкнутой системе в результате сильных, слабых и электромагнитных взаимодействий, каждое лептонное число *L*_e, *L*_µ, *L*₇ сохраняется порознь.

Лептонные числа L_e , L_u , L_τ

Во всех процессах происходящих в замкнутой системе в результате сильных, слабых и электромагнитных взаимодействий лептонные числа L_e, L_µ, L_т сохраняются порознь. Поэтому

наблюдаются процессы

не наблюдаются процессы

$$\begin{split} \tilde{\psi}_{\mu} + p \rightarrow \mu^{+} + n & \mu^{-} \rightarrow e^{-} + \gamma \\ \psi_{\mu} + n \rightarrow \mu^{-} + p & \nu_{\mu} + n \\ \pi^{-} \rightarrow \mu^{-} + \tilde{\nu}_{\mu} & \nu_{\mu} + n \\ \mu^{-} \rightarrow e^{-} + \tilde{\nu}_{e} + \nu_{\mu} & \nu_{\mu} + n \rightarrow e^{-} + p \\ \pi^{-} \rightarrow e^{-} + \tilde{\nu}_{e} + \nu_{\tau} & w(\mu^{-} \rightarrow e^{-} + \gamma)/w(\mu^{-} \rightarrow e^{-} + \overline{\nu}_{e} + \nu_{\mu}) < 10^{-11}, \\ w(\mu^{-} \rightarrow e^{-} + e^{+} + \gamma)/w(\mu^{-} \rightarrow e^{-} + \overline{\nu}_{e} + \nu_{\mu}) < 10^{-12}, \\ w(\tau^{-} \rightarrow e^{-} + \gamma)/w(\tau^{-} \rightarrow \text{ Bce моды распада}) < 3 \cdot 10^{-6}, \\ w(\tau^{-} \rightarrow \mu^{-} + \gamma)/w(\tau^{-} \rightarrow \text{ Bce моды распада}) < 10^{-6}. \end{split}$$

Взаимодействие. Классическая физика

Дальнодействие

В классической физике, несмотря на разнообразие сил, действующих между телами, взаимодействия между ними описываются двумя фундаментальным взаимодействиями:

•Гравитационным,

•Электромагнитным.

Гравитационное и электромагнитное взаимодействия – дальнодействующие. Поэтому они ответственны за все макроскопические крупно масштабные явления, от окружающей нас повседневной жизни до взаимодействий звезд и галактик.

Одним из проявлений близкодействия в классической физике является соударение бильярдных шаров.

Гравитационное и электромагнитное взаимодействия

Гравитационное и электромагнитное взаимодействия имеют бесконечный радиус т.к. их потенциалы взаимодействия спадают по закону 1/r. Сравнение гравитационного и электромагнитного взаимодействий двух протонов показывает, что гравитационное взаимодействие слабее электромагнитного на 36 порядков:

$$\frac{F_{2pab}}{F_{KYR}} = \frac{G\frac{m_{1}m_{2}}{r^{2}}}{\frac{q_{1}q_{2}}{r^{2}}} \approx 10^{-36}$$

G – гравитационная постоянная Ньютона, G = $6.67 \cdot 10^{-11}$ м³ кг⁻¹ сек⁻².

Гравитационное взаимодействие также слабее сильного и слабого взаимодействий. Однако в повседневной жизни, мы в основном ощущаем гравитационное взаимодействие. Человеку для того, чтобы оторваться от Земли, отправить спутник в космическое пространство, необходимо затратить большие усилия. И они определяются необходимостью преодолевать гравитационное взаимодействие. Происходит это потому, что несмотря на то, что электромагнитное взаимодействие имеют бесконечный радиус действия, оно сконцентрировано на расстояниях $\approx 10^{-8} \div 10^{-10}$ см в атомах и молекулах. На большем расстоянии

образуются электрически нейтральные системы.

Механизм взаимодействия частиц

Из соотношений неопределенности

 $\Delta x \cdot \Delta p \ge \hbar, \quad \Delta t \cdot \Delta E \ge \hbar$

следует, что если частица существует в течение короткого промежутка времени Δt , то ее энергия может флюктуировать на величину $\hbar/\Delta t$, а если она находится в области размером Δx , то ее импульс флюктуирует на величину $\hbar/\Delta x$. В течение малых промежутков времени Δt и на малых расстояниях Δx может нарушаться соотношение между импульсом и энергией частицы.

$E \neq (p^2 c^2 + m^2 c^4)^{1/2}$

Такие частицы называются виртуальными. Говорят, что они находятся вне массовой поверхности. В виртуальных процессах действуют законы сохранения зарядов — электрического, барионного, лептонных.

В квантовой теории взаимодействия происходят в результате обмена виртуальными частицами — переносчиками этих взаимодействий. Масса виртуальной частицы *m* и расстояние *R*, на которое она переносит взаимодействие связаны соотношением

$R = \hbar / mc$.

Чем больше масса виртуальной частицы, тем меньше радиус действия сил, обусловленных обменом этой частицей. Электромагнитное взаимодействие происходит с помощью обмена фотонами. Радиус электромагнитнитного взаимодействия бесконечен.

Фундаментальная вершина описывающая локальное взаимодействие в квантовой теории.

Фундаментальный фермион (кварк, лептон) испускает или поглощает виртуальный бозон – переносчик взаимодействия (фотон, глюон, промежуточный бозон).

Фундаментальные взаимодействия. Калибровочные бозоны

		r	Сильное
Взаимодействие	На какие частицы действует	Калибровочные бозоны	
Сильное	Все цветные частицы	8 безмассовых глюонов, спин J = 1	$d_{c} \qquad d_{k}$
Электромагнитное	Все электрически заряженные частицы	Безмассовый фотон, спин J = 1	Электромагнитное <u>е</u> е
Слабое	Кварки, лептоны, калибровочные бозоны W^\pm, Z	Массивные бозоны $W^+, W^-, Z,$ спин J = 1, $m_W c^2 \approx 80$ ГэВ, $m_Z c^2 \approx 91$ ГэВ	e^{-} e^{-} e^{-} e^{-} $C_{\text{лабое}}$ n
Гравитационное	Все частицы	Безмассовый гравитон, спин J = 2	$V \qquad e^+$

Источником калибровочных бозонов являются заряды фундаментальных взаимодействий.

соответствующих

Константы связи

Константы связи определяют интенсивность тех преобразований, которые вызываются элементарными амплитудами. Эти константы обычно выбираются безразмерными и обозначаются через α_e , α_w , α_s . В элементарные амплитуды непосредственно входят квадратные корни из этих величин:

*g*_{эл} = √α_e – элементарная амплитуда электромагнитного взаимодействия;

 $g_w = \sqrt{\alpha_w}$ – элементарная амплитуда слабого взаимодействия;

 $g_s = \sqrt{\alpha_s}$ – элементарная амплитуду сильного взаимодействия.

Величина константы электромагнитного взаимодействия определяется квадратом заряда электрона, обезразмеренного с помощью мировой постоянной (*ħc*):

$$f - f$$

 $g_{3\pi(w,s)}$

Постоянная тонкой структуры

$$\alpha_e = \frac{e^2}{\hbar c} = \frac{1}{137}$$

Амплитуда вероятности испускания или поглощения частицы, которое происходит в результате электро-магнитного взаимодействия, пропорциональна константе связи $g_{_{\mathfrak{I}\!\mathcal{I}}}$.

$$\boldsymbol{g}_{_{\mathcal{I}\!\mathcal{I}}} = (e^2 \,/\,\hbar c)^{1/2} = (1/137)^{1/2}$$

Вершины электромагнитного взаимодействия

Все вершины диаграмм, получающиеся одна из другой изменением ориентаций образующих вершину линий частиц, характеризуются одной и той же константой связи g_{эл}. Этой же константой описываются процессы рождения или поглощения трёх частиц в вакууме.

 α_e

Пример. Фотоэффект

Поглощение у-кванта атомом с вылетом одного из атомных электронов е.

Двух- и трёх- фотонная е⁺е⁻ аннигиляция

Амплитуда процесса А пропорциональна произведению констант связи, описывающих каждый узел. Поэтому амплитуда электромагнитных процессов, описываемых с помощью n узлов, будет пропорциональна g^n_{3n}

Сравнивая количество узлов диаграмм Фейнмана для двух- и трехфотонной аннигиляции легко получить, что сечение двухфотонной е⁺е⁻ аннигиляции приблизительно в 100 раз больше сечения трехфотонной аннигиляции.

