300 000 -Через 3 Первые минуты секунды

9

g

Большой взрыв

Возникновение космического реликтового излученя

Через 14 миллиардов лет .

Через

лет

Через миллиард

лет

Микромир и Вселенная 2019

Кварки. Адроны

Фундаментальные частицы Стандартной Модели

ЭЛЕКТРОН

Диаграмма, описывающая свободный электрон

Адроны — элементарные частицы?

- **п** (939.6 *М*э*В*)
- **р** (938.3 *М*эВ)
- **∧** (1116 *М*э*В*)
- <mark>∑</mark>⁺ (1189 *М*э*В*)
- Σ (1197 МэВ)
- <mark>Σ⁰ (1193 *М*эВ)</mark>
- **Ξ**⁰ (1315 *М*э*В*)

Ξ⁻ (1321 МэВ)

- π^+ (139 *М*э*В*)
- *π*⁻ (139 *М*э*В*)
- π^0 (134 *М*э*В*)
- **К**⁺ (494 *М*э*В*)
- **К**⁻ (494 *М*э*В*)

Ι.

Λ

1963 г. М. Гелл-Манн, Г. Цвейг

Все обнаруженные до 1974 г. адроны можно было описать, составляя их из кварков трех типов — u, d, s. Каждой комбинации кварков соответствовала экспериментально наблюдаемая частица Наблюдались только связанные состояния кварка в адронах.

S

Возникла проблема — отсутствие кварков в свободном состоянии.

Кварковая структура адронов

Кварки должны иметь дробный электрический заряд

π^+	$(u\overline{d})$	K^+	$(u\overline{s})$
π^{-}	$(\overline{u}d)$	K^{-}	$(\overline{u}s)$

Кварки имеют спин $J(q) = \frac{1}{2}$

Кварки являются реальными частицами, т.к. имеются наблюдаемые эффекты их существования на малых расстояниях. Один из таких эффектов проявляется в образовании адронных струй.

Адронная струя — это совокупность адронов летящих в одном направлении. Если бы кварки реально не существовали, то адроны, рождающиеся в e^+e^- -столкновениях, разлетались бы равномерно по всем направлениям.

Одновременно две группы физиков объявили о наблюдении новой частицы.

• $p + Be \rightarrow e^+e^- + ocmaльные$ частицы.

Резонанс в спектре e^+e^- был назван Ј-частицей.

• $e^+ + e^- \to a \partial p o h b i$, $e^+ + e^- \to e^+ + e^-$, $e^+ + e^- \to \mu^+ + \mu^-$.

Резонанс был назван ү-частицой.

Наиболее интересным свойством новой частицы, окончательно названной *J / ψ* -частицей, является узкая ширина резонанса $\Gamma = 91$ КэВ. E = 3,1 ГэВ.

Нобелевская премия по физике

1976 г. – Б. Рихтер, С. Тинг.

За открытие тяжелой элементарной частицы нового типа

с-кварк

$$\tau = \frac{\hbar}{\Gamma}.$$

Время жизни J/ψ -частицы почти в 1000 раз больше, чем у известных частиц такой массы. J/ψ -частица — мезон, состоящий из с-кварка и с-антикварка, т.е. частица со скрытым очарованием. с-кварк несет новое квантовое число с, названное «очарованием». Очарованный кварк порождает новое семейство адронов, имеющих в своем составе с-кварк или с-антикварк.

1977 г. b-кварк

Было открыто несколько мезонов с массами в районе 10 ГэВ/с². Они получили название ипсилон-мезонов. Так же как и J/ψ -мезоны они наблюдались в реакции образования мюонных пар в протон-ядерных столкновениях и на электронно-позитронных коллайдерах. Также как J/ψ -мезоны это были долгоживущие частицы — ширина распада Υ -мезона 52 кэВ. Это означало существование пятого кварка b (beauty).

В состав Υ -мезона входят b-кварк и b-антикварк, поэтому он обладает скрытой красотой.

Открытие t-кварка

t-кварк был открыт в 1995 г. в столкновении пучков протонов и антипротонов (Теватрон, Фермилаб, США)

Один из кварков, входящих в состав протона, в результате сильного взаимодействия с одним из антикварков антипротона образует глюон *g* — квант сильного поля, который затем порождает пару *tt*. По оценкам, вероятность рождения пары *tt*-кварков в столкновении протона и антипротона с энергиями ≈ 1 ТэВ должна была составлять 10⁻⁹-10⁻¹⁰ от общего числа наблюдаемых событий. Поэтому потребовалось несколько месяцев измерений и тщательного анализа событий, чтобы убедиться в существовании t-кварка и определить его характеристики.

Пример

Один из случаев распада $t \bar{t}$ -кварков, образовавшихся в реакции: $p + \bar{p} \rightarrow t + \bar{t}$

Кварки UC t dSb

На современном этапе развития наших представлений о структуре материи на первый план выходят «новые элементарные частицы» — кварки. Все адроны состоят из различных комбинаций

 $qqq, q\overline{q}, \overline{q}\overline{q}\overline{q}\overline{q}$ этих шести кварков.

Есть достаточно серьезные основания считать, что число кварков не должно быть больше шести.

Кварки являются фундаментальными частицами из которых состоят все сильновзаимодействующие частицы.

Кварки не существуют в свободном состоянии.

Они заключены в адронах.

Силы, связывающие кварки в адронах, растут с увеличением расстояния между кварками. Это называют удержанием кварков в адронах или конфайнментом.

Кварки являются фермионами

Электрические заряды кварков Q(e) $u c t + \frac{2}{3}$ $d s b - \frac{1}{3}$

Так же, как в случае лептонов, известно 3 поколения кварков

u, c, t кварки имеют электрический заряд +2/3 d, s, b кварки имеют электрический заряд -1/3 $\overline{u}, \overline{c}, \overline{t}$ антикварки имеют электрический заряд -2/3 $\overline{d}, \overline{s}, \overline{b}$ антикварки имеют электрический заряд +1/3

Электрические заряды кварков

Электрические заряды кварков

$$V_{\mu} + p \rightarrow \mu +$$
струи адронов
 $\overline{V}_{\mu} + u \rightarrow \mu^{+} + d$

 $Q(d) = -0.33 \pm 0.09$

Барионный заряд кварков В

Стандартная Модель приписывает лептонам три лептонных заряда *Le*, *Lµ*, *L*τ. Аналогичной характеристикой кварков – но одной и той же для всех кварков – является барионный заряд *B*. Барионный заряд кварков B(q)=+1/3. Барионный заряд антикварков B(q)=-1/3. Барионный заряд является аддитивным сохраняющимся квантовым числом. Не обнаружено каких-либо указаний на его несохранение.

Адроны, состоящие из трех кварков, имеют барионный заряд *B* = 1/3 + 1/3 + 1/3 = +1 и называются барионами.

Антибарионы, состоящие из трех антикварков, имеют барионный заряд B = -1/3 + (-1/3) + (-1/3) = -1.

Мезоны, состоящие из одного кварка и одного антикварка, имеют барионный заряд B = +1/3 + (-1/3) = 0.

$$B(q) = +\frac{1}{3} \qquad B(\overline{q}) = -\frac{1}{3}$$

Изоспин u, d кварков

u- и *d*- кваркам приписывается изоспин I = 1/2 с проекциями I_3 на ось квантования в изоспиновом пространстве, равными соответственно $I_3 = +1/2$ (изоспин направлен вверх) и $I_3 = -1/2$ (изоспин направлен вниз):

$$u \rightarrow I = \frac{1}{2}, \quad I_3 = +\frac{1}{2}$$

 $d \rightarrow I = \frac{1}{2}, \quad I_3 = -\frac{1}{2}$

$$\overline{u} \rightarrow I = \frac{1}{2}, \quad I_3 = -\frac{1}{2}$$

 $\overline{d} \rightarrow I = \frac{1}{2}, \quad I_3 = +\frac{1}{2}$

Проблема цвета

 $\Omega^{-}(sss) \perp \uparrow \uparrow \qquad J^{P} = \frac{3}{2}^{+}, I = 0$ $m(\Omega^{-}) = 1672 \text{ M} \Rightarrow B$

$$\Delta^{++}(uuu) \qquad \uparrow \uparrow \uparrow \qquad J^{P} = \frac{3}{2}^{+}, I = \frac{3}{2}$$
$$m(\Delta^{++}) = 1232 \text{ M} \Rightarrow B$$
$$\Delta^{-}(ddd) \qquad \uparrow \uparrow \uparrow \qquad J^{P} = \frac{3}{2}^{+}, I = \frac{3}{2}$$
$$m(\Delta^{-}) = 1232 \text{ M} \Rightarrow B$$

Проблема цвета

Без введения квантового числа «цвет», принимающего три значения, кварковая структура Δ^{++} , Δ^- , Ω^- противоречит принципу Паули.

 Δ^{++} , Δ^{-} , Ω^{-} состоят из трех тождественных кварков: Δ^{++} – (uuu), Δ^{-} – (ddd), Ω^{-} – (sss). У всех частиц $J^{P} = 3/2^{+}$. Орбитальный момент относительного движения кварков равен нулю. Кварки являются фермионами и имеют спин J = 1/2. Для них возможны только две проекции спина на выделенное направление: +1/2 и –1/2. Для того чтобы образовалось состояние $3/2^{+}$, все три кварка должны иметь одинаковые проекции спинов. В каждом барионе три тождественных кварка имеют одинаковые квантовые числа. В то же время согласно принципу Паули тождественные фермионы не могут иметь одинаковые квантовые числа. Чтобы выполнялся принцип Паули, необходимо ввести для кварков ещё одно квантовое число – «цвет». Чтобы восстановить принцип Паули, «цвет» должен принимать три разных значения.

$$\Omega^{-}(sss) \perp 1 \qquad J^{P} = \frac{3}{2}^{+}, I = 0$$

Ω⁻ состоит из одного красного s-кварка, одного зеленого s-кварка и одного синего s-кварка. Составляющие Ω⁻-частицу s-кварки находятся в разных цветовых состояниях в полном соответствии с принципом Паули.

Цветные кварки

uuu ccc ttt ddd sss bbb

6 × 3 = 18 цветных кварков

- Кварки не существуют в свободном состоянии, а заключены в кварковых системах адронах. Им нельзя освободиться от взаимодействий с находящимися в том же объеме другими кварками и глюонами.
- Конституэнтные кварки это «эффективные» кварки в адронах, движение и взаимодействие которых формирует адрон.
- Токовые кварки кварки, не испытывающие взаимодействия.

Кварки

	Тип кварка (аромат)						
Характеристика	d	u	S	С	b	t	
Электрический заряд Q, в единицах е	-1/3	+2/3	-1/3	+2/3	-1/3	+2/3	
Барионное число В	1/3	+1/3	+1/3	+1/3	+1/3	+1/3	
Спин Ј	1/2	1/2	1/2	1/2	1/2	1/2	
Четность Р	+1	+1	+1	+1	+1	+1	
Изоспин I	1/2	1/2	0	0	0	0	
Проекция изоспина I ₃	-1/2	+1/2	0	0	0	0	
Странность s	0	0	-1	0	0	0	
Очарование (charm) с	0	0	0	+1	0	0	
Bottom b	0	0	0	0	-1	0	
Top t	0	0	0	0	0	+1	
Масса конституэнтного кварка mc ² , ГэВ	0.33	0.33	0.51	1.8	5	180	
Масса токового кварка	4–8 МэВ	1.5–4 МэВ	80–130 МэВ	1.1-1.4 ГэВ	4.1–4.9 ГэВ	174±5 ГэВ	

Адроны – системы связанных кварков

Кварки объединяются в частицы, называемые адронами.

Модель кварков

- Квантовые числа кварков, образующих адрон, определяют квантовые числа адронов. Адроны имеют определенные значения электрического заряда *Q*, спина *J*, чётности *P*, изоспина *I*. Квантовые числа s (странность), *c* (очарование или шарм), *b* (*bottom*) и *t* (*top*) разделяют адроны на обычные нестранные частицы (*p*, *n*, *π*, ...), странные частицы (*K*, Λ, Σ, ...), очарованные (*D*, Λ_c, Σ_c, ...) и боттом-частицы (*B*, Λ_B, Ξ_B).
- *t*-кварк имеет время жизни ≈ 10⁻²⁵ с, поэтому он не успевает образовать адрон.
- Всё многообразие адронов возникает в результате различных сочетаний *u*-, *d*-, *s*-, *c*-, *b*-кварков, образующих связанные состояния.
- барионы (фермионы с барионным числом В = 1) строятся из трех кварков;
- мезоны (бозоны с барионным числом В = 0) строятся из кварка и антикварка;
- квантовое число цвет кварка имеет три значения: красный, зеленый, синий;
- все известные адроны бесцветны.

Нобелевская премия по физике 1959 г. – Э. Сегре, О. Чемберлен. За открытие антипротона

Антинейтрон 1956

Схема эксперимента по регистрации антинейтронов

 $\overline{p} + p \to n + \overline{n}$

$$\overline{p} + n \rightarrow n + \overline{n} + \pi^{-}$$

В результате *n* – *n*̄ -аннигиляции образуются сильновзаимодействующие частицы — *π*-, К-мезоны.

 $n + \overline{n} \rightarrow nuohbl, \kappa aohbl$

Связь характеристик частиц и античастиц

Характеристика		Частица	Античастица		
Масса		M			
Сп	ИН	J			
Чётность	фермион бозон	+(–)1 +(–)1	-(+)1 +(-)1		
Электриче	ский заряд	+(-)Q -(+)Q			
Магнитнь	ый момент	+ (–) <i>µ</i>	- (+) µ		
Барионное число		+B	-В		
Лептонное число		$+L_e,+L_\mu,+L_\tau$	$-L_e, -L_\mu, -L_\tau$		
Изоспин		1			
Проекция	изоспина	+ (-) I ₃	- (+) I ₃		
Стран	ность	-(+)s	+(–)s		
Очарование (Charm)		+(–)c	-(+)c		
Bottom		-(+)b	+(–) <i>b</i>		
Тор		+(-) <i>t</i>	-(+) <i>t</i>		
Время жизни		τ			
Схема распада (пример)		$d \rightarrow u + e^- + \overline{v}_e$	$\overline{d} \to \overline{u} + e^+ + v_e$		

Мезоны $(q\overline{q})$

Мезоны — связанные состояния кварка и антикварка. Мезоны имеют барионное число В = 0. Массы и квантовые числа мезонов определяются типами кварка и антикварка, входящих в состав мезона, взаимной ориентацией их спинов и орбитальных моментов. Кварковая модель позволяет качественно

описать структуру мезонов, получить их квантовые числа.

 π^+ (ud)

	u	d	π^+
Q	+2/3	+1/3	+1
В	+1/3	-1/3	0
J	1/2	1/2	0
I	1/2	1/2	1
I ₃	+1/2	+1/2	+1
Р	+1	-1	-1

 $M(\pi^+) = 139.57 MэB$ $\tau(\pi^+) = 2.6 \cdot 10^{-8} c$ $J^P(I) = 0^-(1)$

	ū	d	π
Q	-2/3	-1/3	-1
В	-1/3	+1/3	0
J	1/2	1/2	0
I	1/2	1/2	1
I ₃	-1/2	-1/2	-1
Ρ	-1	1	-1

 $M(\pi^{-}) = 139.57 MэB$

$$\tau(\pi^{-}) = 2.6 \cdot 10^{-8} c$$
$$J^{P}(I) = 0^{-}(1)$$

Барионы(*qqq*) Heйтрон (udd) Протон (uud) $M(n) = 939.565 M \Im B$ $M(P) = 938.272 M \Im B$ $\tau(n) = 885.7 \pm 0.8 c$ $\tau(P) = стабильный$ $J^{P}(I) = \frac{1}{2}^{+} \left(\frac{1}{2}\right)$ $J^{P}(I) = \frac{1}{2}^{+} \left(\frac{1}{2}\right)$ $n \rightarrow p + e^- + \overline{v}_{e}$

	u	u	d	р		u	d	d	n
Q	+2/3	+2/3	-1/3	+1	Q	+2/3	-1/3	-1/3	0
В	+1/3	+1/3	+1/3	+1	В	+1/3	+1/3	+1/3	+1
J	1/2	1/2	1/2	1/2	J	1/2	1/2	1/2	1/2
I	1/2	1/2	1/2	1/2	I	1/2	1/2	1/2	1/2
I ₃	+1/2	+1/2	-1/2	+1/2	I ₃	+1/2	-1/2	-1/2	-1/2
Р	+1	+1	+1	+1	Р	+1	+1	+1	+1
s, c, b, t	0	0	0	0	s, c, b, t	0	0	0	0

Кварковая структура барионов

Барионы — связанные состояния трёх кварков

Частица	Кварковый СОСТАВ	Macca, mc² (MəB)	Время жизни (с) или ширина (МэВ)	Спин, чётность, изоспин Ј ^Р (I)	Основные каналы распада
р	uud	938.272	>10 ³¹ лет	1/2+(1/2)	
n	udd	939.565	885.7±0.8	1/2+(1/2)	pe ⁻ v
Λ	uds	1115.683	2.63·10 ⁻¹⁰	1/2+(0)	$p\pi^-, n\pi^0$
Σ^+	uus	1189.37	0.802·10 ⁻¹⁰	1/2+(1)	$p\pi^0, n\pi^+$
Σ^0	uds	1192.64	7.4 ·10 ⁻²⁰	1/2+(1)	Λγ
Σ^{-}	dds	1197.45	1.48 · 10 ⁻¹⁰	1/2+(1)	$n\pi^-$
Ξ0	USS	1314.8	2.9 ·10 ⁻¹⁰	1/2+(1/2)	$\Lambda\pi^0$
	dss	1321.3	1.64 ·10 ⁻¹⁰	1/2+(1/2)	$\Lambda\pi^0$
Ω-	SSS	1672.4	0.81 ·10 ⁻¹⁰	3/2+(0)	$\Lambda K^{-}, \Xi^{0}\pi^{-}$
Δ^{++}	uuu				
Δ^+	uud	1000 1004	115 125	2/2+(2/2)	$\langle \rangle = 0^+$
Δ^0	udd	1230-1234	110-120	$S/Z^{-}(S/Z)$	$(p,n)\pi^{\circ,\perp}$
Λ^{-}	ddd				

Возбужденное состояния протона. <u>∆</u>–резонанс (М = 1232 МэВ)

Фундаментальные взаимодействия. Калибровочные бозоны

		1	Сильное
Взаимодействие	На какие частицы действует	Калибровочные бозоны	
Сильное	Все цветные частицы	8 безмассовых глюонов, спин J = 1	d_c d_k
Электромагнитное	Все электрически заряженные частицы	Безмассовый фотон, спин J = 1	Электромагнитное <u>e</u> е
Слабое	Кварки, лептоны, калибровочные бозоны W^\pm, Z	Массивные бозоны $W^+, W^-, Z,$ спин J = 1, $m_W c^2 \approx 80$ ГэВ, $m_Z c^2 \approx 91$ ГэВ	$e^ e^-$ Слабое p n
Гравитационное	Все частицы	Безмассовый гравитон, спин J = 2	$ \qquad \qquad$

Источником калибровочных бозонов являются заряды фундаментальных взаимодействий.

соответствующих