300 000 -Через 3 Первые минуты секунды

9

g

Большой взрыв

Возникновение космического реликтового излученя

Через 14 миллиардов лет .

Через

лет

Через миллиард

лет

Микромир и Вселенная 2019

Взаимодействие кварков

Распады адронов

Фундаментальные частицы Стандартной Модели

Фундаментальные взаимодействия. Калибровочные

	Сильное		
Взаимодействие	На какие частицы действует	Калибровочные бозоны	
Сильное	Все цветные частицы	8 безмассовых глюонов, спин J = 1	d_c d_k
Электромагнитное	Все электрически заряженные частицы	Безмассовый фотон, спин J = 1	Электромагнитное <u>e</u> <u>e</u> <u>e</u>
Слабое	Кварки, лептоны, калибровочные бозоны W^\pm, Z	Массивные бозоны $W^+, W^-, Z,$ спин J = 1, $m_W c^2 \approx 80$ ГэВ, $m_Z c^2 \approx 91$ ГэВ	e^{-} e^{-} e^{-} e^{-} $C_{\text{лабое}}$ n
Гравитационное	Все частицы	Безмассовый гравитон, спин J = 2	$W \longrightarrow W$ $V \qquad e^+$

Источником калибровочных бозонов являются заряды фундаментальных взаимодействий.

соответствующих

Взаимодействие кварков

Кварки участвуют в электромагнитных взаимодействиях, излучая или поглощая у-квант, при этом не изменяется ни цвет, ни тип (аромат) кварков:

 W^{\pm}

g

Вершина электромагнитного взаимодействия кварков

Кварки участвуют в слабых взаимодействиях излучая или поглощая W[±] бозоны, при этом изменяется тип (аромат) кварка, цвет кварка остаётся без изменения

Вершина слабого взаимодействия кварков

Кварки участвуют в сильных взаимодействиях излучая или поглощая глюон, при этом изменяется цвет кварка, но его тип (аромат) остаётся неизменным

Вершина сильного взаимодействия кварков

Глюоны – безмассовые электрически нейтральные частицы со спином *J* = 1, четностью *P* = –1, переносят сильное, т. е. цветное взаимодействие между кварками.

Они как бы склеивают кварки в адронах (название глюона происходит от англ. *glue* – клей).

При испускании или поглощении глюона кварки изменяют цвет. При этом остальные квантовые числа кварка и его аромат не изменяются.

Глюоны обладают цветом. Цветовая структура глюона отличается от цветовой структуры кварка.

 $J^{P}(g) = 1^{-1}$

Глюоны – переносчики сильного взаимодействия

Глюоны в отличие от фотонов обладают цветом, поэтому для них наряду с одноглюонным обменом

Взаимодействие глюонов ответственно за удержание кварков внутри адрона. В отличие от константы электромагнитного взаимодействия, константа сильного цветного взаимодействия растет с увеличением расстояния между кварками, что приводит к принципиально новому поведению системы кварков и глюонов. При увеличении расстояния между кварками и глюонами их энергия взаимодействия растёт. В результате свободные кварки и глюоны в природе не наблюдаются. Они «заперты» внутри бесцветных адронов. Это явление носит название конфайнмента.

W⁺, W⁻, <mark>Z - бо</mark>зоны

Переносчиками слабого взаимодействия являются W⁺, W-, Z бозоны которые называют промежуточными бозонами. Бозоны W и Z были предсказаны теоретически задолго до их экспериментального обнаружения как «промежуточные» частицы, переносящие слабое взаимодействие. Слабое взаимодействие, также как и электромагнитное, передается частицами со спином J = 1. Однако, отличие от переносчика электромагнитного B взаимодействия — фотона, W⁺, W⁻ бозоны являются заряженными частицами.

Z-бозон, также как и фотон, не имеет электрического заряда.

Нобелевская премия по физике

1984 г. – К. Руббиа, С. Ван дер Меер.

За решающий вклад в большой проект, который привел к открытию полевых частиц W и Z, переносчиков слабого взаимодействия

W бозон

Заряд $Q = \pm 1e$ Спин J = 1Масса $m = 80.419 \pm 0.056 \Gamma \Im B$ $m_{W^+} - m_{W^-} = 0.2 \pm 0.6 \Gamma \Im B$ $m_Z - m_W = 10.76 \pm 0.05 \Gamma \Im B$ Полная ширина $\Gamma = 2.4952 \pm 0.0023 \Gamma \Im B$ Среднее число $\langle N \rangle = 19.3 \pm 0.4$

Каналы распада

 $W^+ \rightarrow e^+ v_e$ $(10.66 \pm 0.20)\%$ $W^+ \rightarrow \mu^+ v_{\mu}$ $(10.49 \pm 0.29)\%$ $W^+ \rightarrow \tau^+ v_{\tau}$ $(10.4 \pm 0.4)\%$ $W^+ \rightarrow a \partial po h bi$ $(68.5 \pm 0.6)\%$

Z бозон

Заряд		Q = 0
Спин		J = 1
Масса		$m = 91.1876 \pm 0.0021 \Gamma \Im B$
Полная ширина		$\Gamma = 2.4952 \pm 0.0023$ ГэВ
•		$\Gamma(adpohu) = 1.7444 \pm 0.002 \ \Gamma \ni B$
		$\Gamma(e^+e^-) = 84.00057 \ M \ni B$
		$\frac{\Gamma(\mu^+\mu^-)}{\Gamma(e^+e^-)} = 0.9999 \pm 0.0032$
		$\frac{\Gamma(\tau^{+}\tau^{-})}{\Gamma(e^{+}e^{-})} = 1.0012 \pm 0.0036$
		$\Gamma(inv) = 499.0 \pm 1.5 M \Im B$
Среднее число заря	женных	$\langle N \rangle = 21.07 \pm 0.11$
частиц	Каналы распада	
	$Z \rightarrow e^+ e^-$	$(3.367 \pm 0.005)\%$
	$Z ightarrow \mu^+ \mu^-$	$(3.367 \pm 0.008)\%$
	$Z \rightarrow \tau^+ \tau^-$	$(3.371 \pm 0.009)\%$
	$Z \rightarrow inv$	$(20.02 \pm 0.006)\%$
	$Z \rightarrow a$ дроны	$(69.84 \pm 0.07)\%$

Распад нейтрона

Пример

 $M(K^+) = 494 \text{ M}3B$ $M(\mu^+) = 105, 6 \text{ M}3B$ $M(\pi^+) = 139, 6 \text{ M}3B$ $M(\pi^0) = 135 \text{ M}3B$

 $K^+ \rightarrow \pi^+ \pi^0$ (20%)

Сильные распады адронов

Все адроны за исключением протона являются *нестабильными частицами* и характеризуются способом распада и средним временем жизни *т*. Определяющим для скорости распада является фундаментальное взаимодействие, ответственное за распад адрона. Быстрее всех – за характерное время ≈ 10^{-23} с – происходят распады за счёт сильного взаимодействия.

 $M(\Delta) = 1232 \text{ МэВ}$

+

Электромагнитные и слабые распады адронов

Следующими по скорости являются распады за счёт электромагнитного взаимодействия. Обычно это время больше 10⁻¹⁹ с.

 $\Sigma^+ \rightarrow p + \pi^{\circ}$

W

 $M(\Sigma^+) = 1189 \text{ M}_{\Im}\text{E}$

 $M(p) = 938,3 \text{ M} \Rightarrow B$

 $M(\pi^0) = 135 \text{ M}_{9}\text{B}$

слабый распад $\tau = 0, 8 \cdot 10^{-10} \text{ c}$

U

U

U

Распад с-кварка

Распад b-кварка

Распады b→с происходят гораздо чаще, чем распады b→u

Распады К+ - мезона

 $M(K^+) = 494 M \ni B$ $\tau = 1.2 \times 10^{-8} c$ $J^p = 0^-$

Каналы распада	Относительные вероятности
$\mu^+ { m v}_{\mu}$	63.4%
$\pi^+ \pi^0$	21.1%
$\pi^+ \pi^+ \pi^-$	5.6%
$\pi^0 \ e^+ u_e$	4.9%
$\pi^0~\mu^+ { m u}_\mu$	3.3%
$\pi^+ \pi^0 \pi^0$	1.7%
$\mu^+ \nu_{\mu} \gamma$	5.5·10 ^{−3}
$\pi^0 \pi^0 \gamma$	2.8-10 ⁻⁴
$\pi^0 e^+ v_e oldsymbol{\gamma}$	2.7 ⋅10 ⁻⁴
$\pi^+ \pi^+ \pi^- \gamma$	1.0-10 ⁻⁴
$\pi^+ \pi^- e^+ v_e$	4.1 •10 ^{−5}
$\pi^0 \ \pi^0 \ e^+ v_e$	2.1 .10 ^{−5}
$e^+ v_e$	1.6 ⋅10 ⁻⁵
$\pi^+ \pi^- \mu^+ v_\mu$	1.4 ⋅10 ⁻⁵

Распады К⁺ - мезона

 $M(K^+) = 494 \text{ M}_{9}B$ $\tau = 1.2 \times 10^{-8} \text{ c}$ $J^p(I) = 0^-(1/2)$

Распады т – мезонов

Каналы распада π^+ -мезона ($\tau = 2.6 \cdot 10^{-8}$ с)

Каналы распада	Относительная вероятность
$\mu^+ \nu_{\mu}$	99.988%
$\mu^+ \nu_\mu \gamma$	$2.0 \cdot 10^{-4}$
$e^+ v_e$	$1.2 \cdot 10^{-4}$
$e^+ v_e \gamma$	$1.6 \cdot 10^{-7}$
$e^+ u_e \ \pi^0$	$1.0 \cdot 10^{-8}$
$e^+ v_e e^+ e^-$	$3.2 \cdot 10^{-9}$
$e^+ v_e v \overline{v}$	$< 5 \cdot 10^{-6}$

Каналы распада π^0 -мезона ($\tau = 0.84 \cdot 10^{-16}$ с)

Каналы распада	Относительная вероятность
2γ	98.80%
$e^+e^-\gamma$	1.2%
e ⁺ e ⁺ e ⁻ e ⁻	$3.1 \cdot 10^{-5}$
e^+e^-	$6.2 \cdot 10^{-8}$
4γ	$< 2 \cdot 10^{-8}$

Так как π^{\pm} -мезон является самым легким положительно заряженным адроном, он должен распадаться на легкие заряженные лептоны e^{\pm} или μ^{\pm} и соответствующие нейтрино $v_e(v_{\mu})$ или антинейтрино $\overline{v}_e(\overline{v}_{\mu})$. Распад происходит в результате слабого взаимодействия, поэтому π^{\pm} -мезон имеет характерное для слабого взаимодействия время жизни $\tau(\pi^{\pm}) = 2.6 \cdot 10^{-8}$ с.

Распад π^0 -мезона происходит в результате электромагнитного взаимодействия. Поэтому время жизни π^0 -мезона ($\tau(\pi^0) = 0.84 \cdot 10^{-16}$ с) много меньше времени жизни заряженных пионов.

Законы сохранения

Характеристика	Взаимодействие		
	сильное	электромагнитное	слабое
Аддитивные закон	ы сохране	ЯИН	-
Электрический заряд Q	+	+	+
Энергия Е	+	+	+
Импульс	+	+	+
Момент количества движения	+	+	+
Барионный заряд В	+	+	+
Лептонные заряды L _e ,L _u ,L _т	+	+	+
Странность s	+	+	-
Очарование (charm) c	+	+	-
Bottom b	+	+	-
Top t	+	+	-
Изоспин І	+	-	-
Проекция изоспина Із	+	+	-
Мультипликативные зак	оны сохра	нения	
Пространственная чётность Р	+	+	-
Зарядовая чётность С	+	+	-
Комбинированная чётность СР	+	+	-
Обращение времени Т	+	+	-
СРТ-инвариантность	+	+	+

Размеры протона и нейтрона

Распределения электрического заряда и магнитного момента протона

Распределения электрического заряда и магнитного момента нейтрона

- Размер протона ~0.8 Фм. Размер нейтрона приблизительно такой же.
- Протон лишен четкой границы. Плотность заряда в протоне плавно убывает по закону

• Среднеквадратичный радиус протона

$$\left\langle r^{2} \right\rangle = \frac{\int_{0}^{\infty} 4\pi r^{2} \rho(r) r^{2} dr}{\int_{0}^{\infty} 4\pi r^{2} \rho(r) dr} = 0,62 \ \Phi M^{2}.$$

- Отличие величины <r²_E>^{1/2} от нуля означает, что заряд нейтрона только после усреднения по всему объему нейтрона равен нулю.
- В нейтроне центральная часть (r < 0.7 Фм) заряжена положительно, периферийная часть — отрицательно.
- Распределения магнитных моментов протона и нейтрона совпадают.

Данные о структуре нуклона свидетельствуют о том, что нуклон имеет сложную внутреннюю структуру. По современным представлениям он состоит из кварков, взаимодействующих посредством обмена квантами сильного взаимодействия — глюонами.

Структура протона

В экспериментах по глубоко неупругому рассеянию электронов и нейтрино были определены заряды и спины партонов внутри нуклона.

- Внутри нуклона обнаружены точечноподобные объекты – партоны, в которых сосредоточена вся масса нуклона. Размер партонов < 10⁻¹⁷ см.
- 2. Заряженные партоны имеют характеристики кварков их спин 1/2, а заряды в единицах е либо +2/3, либо –1/3.
- 3. Нейтральные партоны, отождествляемые с глюонами, несут около половины внутренней энергии нуклона.

Результаты этих исследований подтверждают, что нуклон это частица, состоящая из трех валентных кварков, виртуальных морских кварков-антикварков и глюонов.

Как устроен Мир (Стандартная Модель)

АДРОНЫ			
БАРИОНЫ (<i>qqq</i>)		МЕЗОНЫ (<i>q̄q</i>)	
нуклоны	p, n	пионы	π^+,π^0,π^-
резонансы	$\Delta^{-}, \Delta^{0}, \Delta^{+}, \Delta^{++}$ и тд	каоны	К⁺, К⁻, К⁰, <mark>К</mark> ⁰ и тд
гипероны	$\Lambda, \Sigma^0, \Sigma^+, \Sigma^-, \Omega^-$ и тд	«векторные»	ρ ⁺ ,ρ ⁰ , ρ ⁻ , ω и тд

Лептоны и кварки связаны в обычной материи. Атом

Догалактические этапы эволюции Вселенной

Время после Большого взрыва	Характерные температуры, К	Этап/Событие
< 10 ⁻⁴³ c	> 10 ³²	Квантовый хаос. Суперсимметрия
< 10 C	> 10-2	(объединение всех взаимодействий)
10-43 a	10 ³²	Планковский момент.
10 6		Отделение гравитационного взаимодействия
10-43 10-36	1.022 1.028	Великое объединение электрослабого и сильного
$10^{-43} - 10^{-50} \text{ c}$	$10^{52} - 10^{20}$	взаимодействий
10.36	10 ²⁸	Конец Великого объединения. Разделение сильного и электро-
$10^{-30} \mathrm{c}$		слабого взаимодействий
10 ⁻³⁵ c	10 ²⁸	Окончание инфляционной стадии расширения Вселенной
10 ⁻¹⁰ c	1015	Конец электрослабого объединения
10 ⁻⁶ c	10 ¹³	Кварк-адронный фазовый переход
$10^{-10} - 10^{-4} c$	$10^{15} - 10^{12}$	Адронная эра. Рождение и аннигиляция адронов и лептонов
10 ⁻⁴ - 10 c	$10^{12} - 10^{10}$	Лептонная эра. Рождение и аннигиляция лептонов
0.1 – 1 c	$2 \cdot 10^{10}$	Отделение нейтрино. Вселенная становится прозрачной для
		нейтрино (антинейтрино)
$10^2 - 10^3 c$	≈10 ⁹	Дозвёздный синтез гелия
10 с – 40 000 лет	10 ¹⁰ - 10 ⁴	Радиационная эра. Доминирование излучения над веществом
40 000 лет	104	Начало эры вещества.
		Вещество начинает доминировать над излучением
400.000	3·10 ³	Образование атомов. Разделение вещества и излучения
400 000 JIeT		(Вселенная прозрачна для излучения)
1 млрд. лет	20	Образование галактик

Космическая шкала времени

Время от настоящего	Событио	
момента, млрд. лет	Соортис	
13,7	Большой Взрыв	
13	Образование Галактик	
10	Сжатие нашей протогалактики	
10	Образование первых звёзд	
5	Образование Солнечной системы, планет	
4	Образование земных пород	
3	Зарождение микроорганизмов	
2	Формирование атмосферы Земли	
1	Зарождение жизни	
0,60	Ранние окаменелости	
0,45	Рыбы	
0,15	Динозавры	
0,05	Первые млекопитающие	
2 млн. лет	Человек	

Эволюция Вселенной

Элементарные амплитуды

Поглощение кварком фотона (электромагнитное взаимодействие), *W*-бозона (слабое взаимодействие), глюона (сильное взаимодействие)

Узлы, характеризующиеся одной и той же константой связи *а*_е

- а поглощение фотона электроном
- б испускание фотона электроном
- в аннигиляция электрон-позитронной пары в один фотон
- *г* рождение электрон-позитронной пары фотоном

Узлы рождения и поглощения трех частиц вакуумом

Сумма диаграмм, описывающих распространение свободного электрона

Одна из возможных диаграмм свободного электрона

Экранировка электрического заряда в КЭД

Диаграмма экранировки в КХД

Процесс, приводящий к антиэкранировке

Антиэкранировка цветового заряда

